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Централна тема дисертације је успостављање потребних и 

довољних услова под којима ограничен линеаран оператор Т 
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резултате из Фредхолмове теорије на неограничене затворене 

операторе. 
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Preface

A major event in mathematics at the beginning of the 20th century was the
appearance of Fredholm’s theory of integral equations. In a preliminary re-
port in 1900 and in an article in Acta Mathematica in 1903, Fredholm gave
a complete analysis of integral equations of the second type, now known as
Fredholm equations. The classical Fredholm integral equation is

λf(s)−
∫ b

a

K(s, t)f(t)dt = g(s), a ≤ s ≤ b,

where g is given in C[a, b], K(s, t) is a continuous complex-valued function
defined on [a, b]× [a, b], λ is a parameter and f ∈ C[a, b] is the unknown. This
equation can be rewritten as (λI − T )f = g, where T is a compact operator

defined by the rule (Tf)(s) =
∫ b
a
K(s, t)f(t)dt. Naturally, we are led to the

study of operators of the form λI − T on any Banach space, where λ 6= 0
and T is compact; this idea goes back to the work by F. Riesz [63]. The
operators λI − T are special cases of a class of operators called Fredholm
operators (and also special cases of semi-Fredholm operators), so it seems that
the birth of Fredholm operators is closely related to the problem of solving
integral equations.

Semi-Fredholm operators were studied by a number of authors. The best
general references here are the books by T. Kato [46], V. Müller [57], P. Aiena
[1, 2], S. Caradus, W. Pfaffenberger and B. Yood [17], M. Schechter [65], I.
Gohberg, S. Goldberg and M. A. Kaashoek [29], and others. In his famous
paper [45], T. Kato showed that semi-Fredholm operators possess an important
decomposition property. Namely, let T ∈ L(X ) and suppose that there exists
a decomposition X = M ⊕ N , where M and N are closed subspaces of X
such that T (M) ⊂ M and T (N) ⊂ N . It is said that T admits a Kato
decomposition if:

(i) dimN <∞, TM is a Kato operator and TN is nilpotent, where TM and
TN are respectively reductions of T on M and N .

According to [45], every semi-Fredholm operator admits a Kato decomposition.
Furthermore, it is possible to consider the following more general cases:

(ii) TM is a Kato operator and TN is nilpotent;

(iii) TM is a Kato operator and TN is quasinilpotent;

iii
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(iv) TM is a Kato operator and TN is Riesz.

It is said that T is of Kato type (T admits a generalized Kato decomposition) if
T satisfies (ii) ((iii)). Decompositions (i) - (iii) have been already studied; for a
survey of the results we refer to [1] and [57]. Decomposition (iv) is introduced
in this dissertation. We say that T ∈ L(X ) admits a Kato type decomposition
if T satisfies any condition (i) - (iv). It is obvious that decompositions (i) -
(iii) are special cases of (iv).

As an additional point, semi-Browder operators may be characterized by
means of the Kato decomposition [57, Theorem 20.10]: an operator T ∈ L(X )
is upper semi-Browder (lower semi-Browder, Browder) if and only if there
exists a decomposition X = M ⊕ N , where dimN < ∞, T (M) ⊂ M and
T (N) ⊂ N , with TM bounded below (onto, invertible) and TN nilpotent. In
addition, M. Berkani introduced the concept of B-Fredholm operators and
proved that T ∈ L(X ) is B-Bredholm if and only if T = TM ⊕ TN , where
TM is Fredholm and TN is nilpotent [7, Theorem 2.7]. It is easy to see that
B-Fredholm operators satisfy (ii). Further, operators of the form T = TM⊕TN
with TM Fredholm (Weyl, bounded below, surjective) and TN quasinilpotent
were studied recently [15, 40, 70]. Finally, an operator T ∈ L(X ) is Drazin
(generalized Drazin) invertible exactly when T possesses decomposition (ii)
(decomposition (iii)) with TM invertible.

All these observations strongly motivated us to consider a situation of
an operator T ∈ L(X ) which admits a decomposition T = TM ⊕ TN , with
TN nilpotent (quasinilpotent, Riesz) and TM ∈ R, where R is any of the
following classes: upper (lower) semi-Fredholm operators, Fredholm opera-
tors, upper (lower) semi-Weyl operators, Weyl operators, upper (lower) semi-
Browder operators, Browder operators, bounded below operators, surjective
operators, and invertible operators. The dissertation is organized in six chap-
ters and its central theme is to give sufficient and necessary conditions under
which T = TM ⊕ TN , where TM ∈ R and TN is nilpotent (quasinilpotent,
Riesz). The results of this dissertation were published in international math-
ematical journals included in Science Citation Index Expanded (SCIe); see
[20, 21, 22, 80, 81]. The article [19] was published in a national journal.

Chapter 1 presents some preliminaries. According to the available
literature, the results given here are known except the statements (ii) and
(iv) of Proposition 1.4.9. For many items we document their sources, but they
are not always original sources. Also, the proofs of some selected statements
are included since we find that it improves our presentation.

Chapter 2 deals with the generalized Kato decomposition and it is based
on [21]. In our main results we prove that T ∈ L(X ) may be represented by
T = TM ⊕ TN with TM ∈ R and TN quasinilpotent (TN nilpotent) if and only
if T admits a generalized Kato decomposition (T is of Kato type) and 0 is
not an interior point of σR(T ) = {λ ∈ C : T − λI /∈ R}. In addition, we
show that if T − λ0I admits a generalized Kato decomposition, then σR(T )

iv



does not cluster at λ0 if and only if λ0 is not an interior point of σR(T ). Also,
this chapter contains several examples that supplement the presentation. In
Section 2.4 our results are applied to different types of spectra.

In Chapter 3 we present the results from the paper [20]. The goal is to
describe the set ⋂

C∈L(K,H)

σgD(MC),

where H and K are separable Hilbert spaces, A ∈ L(H), B ∈ L(K), MC =(
A C
0 B

)
is an upper triangular operator matrix which is acting on the

product space H⊕K, and σgD(MC) is the generalized Drazin spectrum of MC .
This is done using the result where we give sufficient conditions
under which MC is generalized Drazin invertible. More precisely, consider
the following conditions:

(i) A and B each admits a generalized Kato decomposition;
(ii) The approximate point spectrum of A does not cluster at 0;
(iii) The surjective spectrum of B does not cluster at 0;
(iv) There exists δ > 0 such that β(A− λI) = α(B − λI) for 0 < |λ| < δ.

Theorem 3.2.6 states that if the conditions (i)-(iv) are satisfied then there
exists C ∈ L(K,H) such that MC is generalized Drazin invertible. It is worth
pointing out that we use the results in Chapter 2 to prove this theorem. In
addition, we give sufficient and necessary conditions for

⋂
C∈L(Y,X )

σgD(MC) = ∅

and for
⋂

C∈L(Y,X )

σgD(MC) =
⋂

C∈L(Y,X )

σ(MC).

The results presented in Chapter 4 are taken from [81]. We introduce the
notion of the generalized Kato-Riesz decomposition (abbreviated as GKRD).
It is said that T ∈ L(X ) admits a GKRD if T = TM ⊕ TN with TM Kato
and TN Riesz. We give sufficient and necessary conditions for the existence of
a decomposition T = TM ⊕ TN , where TM ∈ R and TN is Riesz. Moreover,
the concept of generalized Drazin-Riesz invertible operators is introduced and
studied. It is said that an operator T ∈ L(X ) is generalized Drazin-Riesz
invertible if there exists S ∈ L(X ) commuting with T such that STS = S
and TST − T is Riesz. We show that T ∈ L(X ) is generalized Drazin-Riesz
invertible if and only if T admits a GKRD and 0 is not an interior point of the
spectrum of T , and it is also equivalent to the assertion that T = TM ⊕ TN ,
where TM is invertible and TN is Riesz. Evidently, every generalized Drazin
invertible operator is generalized Drazin-Riesz invertible. On the other hand,
if T ∈ L(X ) is a Riesz operator with infinite spectrum, then the point 0 is
an accumulation point of the spectrum of T , so T is not generalized Drazin
invertible. Obviously, T is generalized Drazin-Riesz invertible (S = 0). It
follows that the class of generalized Drazin invertible operators is a proper
subset of the class of generalized Drazin-Riesz invertible operators. By this

v



Preface

conclusion, the concept of generalized Drazin invertible operators is extended.
Chapter 5 is an attempt to generalize the theory of B-Fredholm operators.

The results of this chapter are from [22]. The Atkinson-type theorem for B-
Fredholm operators [12] leads to the following definition. Let A and B be two
complex unital Banach algebras and consider a (not necessarily continuous)
homomorphism T : A → B. The element a ∈ A will be said to be B-Fredholm
relative to T , if T (a) is Drazin invertible. We also introduce other classes of
objects such as B-Weyl and generalized B-Fredholm elements. In this chapter
the aforementioned elements will be characterized and their main properties
will be studied. In addition, the perturbation properties will be also considered.

In the sixth chapter some results from the Fredholm theory will be
extended to unbounded closed operators. We give sufficient and necessary
conditions such that a closed operator is upper or lower semi-Browder. Con-
sequently, the corresponding spectra are described. The work done in this
chapter comes from the paper [80].

vi



Chapter 1

Introduction

Let N (N0) denote the set of all positive (non-negative) integers, and let C
(R) denote the set of all complex (real) numbers. The modulus of a complex
number λ will be denoted by |λ| and its conjugate by λ̄. Throughout this thesis
X and Y will be infinite dimensional Banach spaces over the field of complex
numbers. We use the symbol (‖ · ‖) for the norm in any space and also for the
norm of operators.

1.1 Sets of the complex plane

For S ⊂ C, the set of accumulation points of S, the set of isolated points of
S, the interior of S, the boundary of S, the closure of S, and the complement
of S are denoted by accS, isoS, intS, ∂S, S and Sc, respectively. In the
following proposition we collect some basic facts concerning the sets of the
complex plane.

Proposition 1.1.1. Let S and L be sets of the complex plane. The following
statements hold:

(i) intS ⊂ accS;

(ii) If S ⊂ L then accS ⊂ accL and intS ⊂ intL;

(iii) If S is closed then S = intS ∪ ∂S and intS ∩ ∂S = ∅;
(iv) If S is closed and λ ∈ C, then λ 6∈ intS if and only if λ ∈ accSc;

(v) If S is bounded then S is finite if and only if accS = ∅.
(vi) If S is closed then S is at most countable if and only if accS is at most
countable.

Proposition 1.1.2. Let K ⊂ C be a closed set and let λ ∈ ∂K. Then:

λ ∈ accK if and only if λ ∈ acc ∂K. (1.1)

1
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Proof. Since acc ∂K ⊂ accK, it is sufficient to prove the opposite implication.
Let λ ∈ ∂K∩accK, but λ 6∈ acc ∂K. It means that λ ∈ iso ∂K, so there exists
an ε > 0 such that

∂K ∩
◦
U = ∅, (1.2)

where
◦
U = D(λ, ε) \ {λ} and D(λ, ε) = {µ ∈ C : |µ− λ| < ε}. Clearly,

◦
U = (K ∩

◦
U) ∪ (Kc ∩

◦
U). (1.3)

The set Kc ∩
◦
U is open as an intersection of two open sets. Using (1.2) we

obtain

K ∩
◦
U = (∂K ∪ intK) ∩

◦
U = (∂K ∩

◦
U) ∪ (intK ∩

◦
U) = intK ∩

◦
U,

so K∩
◦
U is also open since intK is open. According to (1.3),

◦
U is a union of two

open disjoint sets, and since
◦
U is connected it follows that either K ∩

◦
U = ∅ or

Kc ∩
◦
U = ∅. Suppose that Kc ∩

◦
U = ∅, i.e.

◦
U ⊂ K. Now, D(λ, ε) ⊂

◦
U ⊂ K =

K. Consequently, λ ∈ intK, what is not possible. It follows that K ∩
◦
U = ∅,

so λ ∈ isoK, a contradiction.

The claim of Proposition 1.1.2 is not true in the context of the metric space
R! Indeed, let K = [0, 1]. Then, ∂K = {0, 1}, 0 ∈ accK, but 0 6∈ acc ∂K. The

key reason is the fact that in this case the set
◦
U = (−ε,+ε) \ {0}, 0 < ε < 1,

is not connected:
◦
U = (−ε, 0) ∪ (0,+ε).

We recall that a set K ⊂ C is compact if it is closed and bounded. In that
case the set Kc is open and unbounded. The connected components of Kc are
open and, obviously, one of them is unbounded. The bounded components of
Kc are called holes in K. The connected hull of K is denoted by ηK and it
is known that ηK is the union of K and its holes (for example see [60, Lema
5.7.4]).

Proposition 1.1.3. Let K and H be compact sets of the complex plane. If
∂H ⊂ K ⊂ H, then the following statements hold:

(i) ∂H ⊂ ∂K ⊂ K ⊂ H;

(ii) ηK = ηH.

Lemma 1.1.4. Let K and H be compact sets of the complex plane. Then the
following statements hold:

(i) ηK = K if K is at most countable;

(ii) If ηK = ηH then K is at most countable if and only if H is at most
countable. In that case H = K.

2



1.2. Bounded linear operators in Banach spaces

1.2 Bounded linear operators in Banach spaces

The vector spaces X1 and X2 are said to be isomorphic whenever there
exists a one-one linear mapping from X1 onto X2. A vector space V is finite
dimensional if its Hamel basis contains finitely many elements. Otherwise,
V is infinite dimensional space. The dimension of V , denoted by dimV , is
the cardinal number of its Hamel basis if V is finite dimensional. If V is
infinite dimensional, we simply take dimV = ∞ (we do not distinguish dif-
ferent infinite cardinalities). Obviously, two isomorphic vector spaces have
the same dimension. Further, it is said that the normed spaces X1 and X2

are isomorphic, denoted by X1
∼= X2, if there exists a linear bijective oper-

ator J : X1 → X2 which preserves the norm. Let L(X ,Y) denote the set
of all bounded linear operators from X to Y . For simplicity, we write L(X )
for L(X ,X ). Given T ∈ L(X ,Y), the kernel and the range of T are defined
respectively as N(T ) = {x ∈ X : Tx = 0} and R(T ) = {Tx : x ∈ X}. The
numbers α(T ) = dimN(T ) and β(T ) = dimX/R(T ) = codimR(T ) are nullity
and deficiency of T , respectively. The space of all bounded linear functionals
defined on X is denoted by X ′. Given M ⊂ X , the annihilator of M is defined
by M⊥ = {f ∈ X ′ : f(x) = 0 for every x ∈ M}. If R(T ) is closed, then
α(T ′) = β(T ) and β(T ′) = α(T ), where T ′ ∈ L(Y ′,X ′) is the adjoint operator
of T . An operator T ∈ L(X ,Y) is injective if N(T ) = {0}, and surjective if
R(T ) = Y . We say that T ∈ L(X ) is invertible if there exists S ∈ L(X ) such
that TS = ST = I, where I is the identity operator on X , and in that case
we write S = T−1. It is well known that T ∈ L(X ) is invertible if and only if
it is both injective and surjective. The group of all invertible operators on X
is denoted by L(X )−1, and the sets

σ(T ) = {λ ∈ C : T − λI 6∈ L(X )−1},
ρ(T ) = C \ σ(T ),

are the spectrum and resolvent set of T ∈ L(X ), respectively. The set of all
compact operators from X to Y is denoted by K(X ,Y); as usual K(X ) =
K(X ,X ). The set K(X ,Y) is a closed subspace in L(X ,Y) and K(X ) is
a closed two-sided ideal in L(X ). This fact enables us to define the Calkin
algebra over X as the quotient algebra L(X )/K(X ). L(X )/K(X ) is itself a
Banach algebra with the quotient algebra norm

‖T +K(X )‖ = inf
U∈K(X )

‖T + U‖.

We will use π to denote the natural homomorphism of L(X ) onto L(X )/K(X ):
π(T ) = T+K(X ). An operator T ∈ L(X ,Y) is of finite rank if dimR(T ) <∞.
We will denote by F (X ,Y) the set of all finite rank operators from X to Y ; if
X = Y , then F (X ,X ) = F (X ). Since F (X ) is not necessarily closed two-sided
ideal, L(X )/F (X ) is not a Banach algebra.
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Definition 1.2.1. Let T ∈ L(X ) and d ∈ N.

(i) T is nilpotent of degree d if T d−1 6= 0 and T d = 0;

(ii) T is quasinilpotent if T − λI ∈ L(X )−1 for 0 6= λ ∈ C.

Let T ∈ L(X ). Is is well known that if N(T n) = N(T n+1), then N(T k) =
N(T n) when k ≥ n. In this case, the ascent of T , denoted by asc(T ), is the
smallest n ∈ N0 such that N(T n) = N(T n+1). If such n does not exist, then
asc(T ) = ∞. Similarly, if R(T n+1) = R(T n), then R(T k) = R(T n) for k ≥ n.
In this case, the descent of T , denoted by dsc(T ), is the smallest n ∈ N0 such
that R(T n+1) = R(T n). If such an n does not exist, then dsc(T ) =∞.

The injectivity modulus (minimum modulus) of T ∈ L(X ,Y) is defined as

j(T ) = inf
‖x‖=1

‖Tx‖.

Immediately from this definition it follows that j(T )‖x‖ ≤ ‖Tx‖ for every
x ∈ X .

Definition 1.2.2. An operator T ∈ L(X ,Y) is bounded below if there exists
some c > 0 such that

c‖x‖ ≤ ‖Tx‖ for all x ∈ X .

Clearly, T ∈ L(X ,Y) is bounded below if and only if j(T ) > 0. Also, [57,
Theorem 9.4] asserts that T ∈ L(X ,Y) is bounded below if and only if it is
injective with closed range. We will use the following notation:

M(X ) = {T ∈ L(X ) : T is bounded below},
Q(X ) = {T ∈ L(X ) : T is surjective}.

The approximate point and surjective spectrum of T ∈ L(X ) are defined by

σap(T ) = {λ ∈ C : T − λI 6∈ M(X )},
σsu(T ) = {λ ∈ C : T − λI 6∈ Q(X )},

respectively. The spectra σ(T ), σap(T ) and σsu(T ) are non-empty and compact
subsets of C. The sets ρap(T ) = C \ σap(T ) and ρsu(T ) = C \ σsu(T ) are
corresponding resolvent sets.

Let M and N be subspaces of X . The sum of M and N is defined as

M +N = {z ∈ X : z = x+ y, x ∈M, y ∈ N}.

If M ∩N = {0} we say that the sum M +N is direct and write M⊕N instead
of M +N . It is evident that every vector z ∈M ⊕N can be represented in a
unique way as z = x+ y, where x ∈M and y ∈ N .

Given T ∈ L(X ) and a subspace M ⊂ X , it is said that M is T -invariant
if T (M) ⊂ M . We define TM : M → M as TMx = Tx, x ∈ M . In addition,
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if M is closed, then it is a Banach space, TM ∈ L(M) and ‖TM‖ ≤ ‖T‖. If
M and N are two closed T -invariant subspaces of X such that X = M ⊕ N ,
we say that T is completely reduced by the pair (M,N) and it is denoted by
(M,N) ∈ Red(T ). In this case we write T = TM ⊕ TN and say that T is a
direct sum of TM and TN .

An operator P ∈  L(X ) with the property that P 2 = P is called projection.
It is easy to see that both N(P ) and R(P ) are closed and X = N(P )⊕R(P ).
On the other hand, if M and N are closed subspaces of X such that X = M⊕N
then there exists P 2 = P ∈ L(X ) such that R(P ) = M and N(P ) = N . In
addition, operators P 2 = P ∈ L(X ) and T ∈ L(X ) commute if and only if
R(P ) and N(P ) are T -invariant.

Definition 1.2.3. Let T ∈ L(X ). The operator-valued function R(λ, T ) :
ρ(T )→ L(X ) defined by

R(λ, T ) = (λI − T )−1

is called the resolvent function of T .

The function R(λ, T ) is analytic on ρ(T ), and an isolated point λ0 of σ(T ) is
an isolated singular point of R(λ, T ). It follows that there exists δ > 0 such
that R(λ, T ) admits a Laurent expansion on the punctured open disc centered
at λ0 with radius δ:

R(λ, T ) =
∞∑
n=0

(λ− λ0)nAn +
∞∑
n=1

(λ− λ0)−nBn, 0 < |λ− λ0| < δ,

where the coefficients An and Bn belong to L(X ). These coefficient operators
are given by the standard formulas:

An =
1

2πi

∫
C

(λ− λ0)−n−1R(λ, T )dλ,

Bn =
1

2πi

∫
C

(λ− λ0)n−1R(λ, T )dλ,

where C is a circle centered at λ0, separating λ0 from the remaining spectrum
of T . In particular, B1 is the projection and it is called the spectral projection
of T corresponding to λ0. We shall say that λ0 is a pole of R(λ, T ) of order
m if Bm 6= 0 and Bn = 0 when n > m. The set of poles of R(λ, T ) will be
denoted by Π(T ). Sufficient and necessary for λ0 ∈ σ(T ) to be a pole of the
resolvent function is that ascent and descent of T − λ0I are both finite. It is
worth mentioning that the classical references on this topic are [67, Section
5.8] and [53].
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1.3 Kato operators, Kato type decompositions

and SVEP

Let u ∈ X and let S ⊂ X be a subset. By

dist(u, S) = inf
v∈S
‖u− v‖

we define the distance of a vector u from a subset S. If S is closed and u 6∈ S,
then dist(u, S) > 0.

In the following definition we introduce the gap function which measures
the “distance” between two closed subspaces.

Definition 1.3.1. Let M and N be two closed subspaces of X . We set

δ(M,N) = sup
u ∈M
‖u‖ = 1

dist(u,N).

The gap between M and N , denoted by δ̂(M,N), is defined as

δ̂(M,N) = max{δ(M,N), δ(N,M)}.

We define δ({0}, N) = 0 for any N . On the other hand, δ(M, {0}) = 1 if
M 6= {0}, as is seen from the definition.

For more details concerning the gap we refer the reader to [46, 57]. We only
mention the result that is relevant for our work.

Lemma 1.3.2. ([46, Corollary IV-2.6]) Let M and N be closed subspaces of
X . If δ̂(M,N) < 1 then dimM = dimN .

Definition 1.3.3. An operator T ∈ L(X ) is Kato ifR(T ) is closed andN(T ) ⊂
R(T n) for all n ∈ N0.

It is evident that any operator that is either bounded below or surjective is
Kato. Let T ∈ L(X ,Y). The reduced minimum modulus of T is defined by

γ(T ) = inf{‖Tx‖ : x ∈ X, dist(x,N(T )) = 1}.

If T = 0 we set γ(T ) = ∞. An operator T ∈ L(X ,Y) has closed range if
and only if γ(T ) > 0 [57, Theorem 10.2], and the notion of reduced minimum
modulus is motivated by this characterization. Obviously, if T ∈ L(X ) is Kato
then γ(T ) > 0.

Theorem 1.3.4. ([1, Theorem 1.38]) Let T ∈ L(X ) and λ0 ∈ C. The following
statements are equivalent:

(i) T − λ0I is Kato;

(ii) γ(T −λ0I) > 0 and the mapping λ→ N(T −λI) is continuous at the point
λ0 in the gap metric.
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Lemma 1.3.5. Let T ∈ L(X ) be Kato. Then there exists ε > 0 such that
T − λI is Kato, α(T ) = α(T − λI) and β(T ) = β(T − λI) for all |λ| < ε.

Proof. Let T ∈ L(X ) be Kato. There exists ε1 > 0 such that T − λI is Kato
for |λ| < ε1 [57, Corollary 12.4]. By Theorem 1.3.4, there exists ε2 > 0 such
that |λ| < ε2 implies δ̂(N(T ), N(T − λI)) < 1. From Lemma 1.3.2 we obtain
dimN(T ) = dimN(T − λI), i.e. α(T ) = α(T − λI) for |λ| < ε2.

Further, using the fact that T ′ is also Kato [57, Corollary 12.4] and from
what has already been proved we see that there exists ε3 > 0 such that

α(T ′) = α(T ′ − λI ′) and R(T − λI) is closed for |λ| < ε3. (1.4)

Now, from (1.4) we conclude β(T ) = α(T ′) = α(T ′ − λI ′) = β(T − λI) for
|λ| < ε3. We set ε = min{ε1, ε2, ε3}, and the lemma follows.

Definition 1.3.6. Let T ∈ L(X ). Then:

(i) T admits a generalized Kato decomposition (GKD for short) if there exists
a pair (M,N) ∈ Red(T ) such that TM is Kato and TN is quasinilpotent;

(ii) T is of Kato type if there exists a pair (M,N) ∈ Red(T ) such that TM is
Kato and TN is nilpotent;

(iii) T is essentially Kato if there exists a pair (M,N) ∈ Red(T ) such that TM
is Kato, TN is nilpotent and dimN <∞.

We have the following implications:

T is Kato =⇒ T is essentailly Kato =⇒ T is of Kato type

=⇒ Tadmits a GKD.

The Kato spectrum, the essentially Kato spectrum, the Kato type spectrum
and the generalized Kato spectrum of T ∈ L(X ) are defined respectively by

σK(T ) = {λ ∈ C : T − λI is not Kato},
σeK(T ) = {λ ∈ C : T − λI is not essentially Kato},
σKt(T ) = {λ ∈ C : T − λI is not of Kato type},
σgK(T ) = {λ ∈ C : T − λI does not admit a GKD}.

Obviously,

σgK(T ) ⊂ σKt(T ) ⊂ σeK(T ) ⊂ σK(T ) ⊂ σap(T ) ∩ σsu(T ). (1.5)

The Kato spectrum and essentially Kato spectrum are non-empty and compact
subsets of the complex plane [57, Theorem 12.11 and Theorem 21.11]. The
Kato type spectrum and generalized Kato spectrum are also compact (see [1,
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Corollary 1.45] and [41, Corollary 2.3]), but they may be non-empty. For
example, if P ∈ L(X ) is a projection and Q ∈ L(X ) is a quasinilpotent
operator, then σKt(P ) and σgK(Q) are empty sets.

An operator T ∈ L(X ) has the single-valued extension property at λ0 ∈ C,
SVEP at λ0, if for every open disc Dλ0 centered at λ0 the only analytic function
f : Dλ0 → X which satisfies

(T − λI)f(λ) = 0 for all λ ∈ Dλ0 , (1.6)

is the function f ≡ 0. The set of all λ ∈ C where T does not have the
SVEP is denoted by S(T ); it is said that T has the SVEP if S(T ) = ∅. Let
λ0 6∈ intσap(T ) and let f : Dλ0 → X be an analytic function satisfying (1.6),
where Dλ0 is arbitrary. Then, λ0 ∈ ∂σap(T ) or λ0 ∈ ρap(T ), but in both cases
there exists a sequence (λn) in ρap(T ) ∩Dλ0 , λn 6= λ0 for all n ∈ N, such that
limλn = λ0. Using (1.6) we have

(T − λnI)f(λn) = 0 for all n ∈ N.

Since T − λnI is injective, then f(λn) = 0 for all n ∈ N. It follows that f ≡ 0
on Dλ0 by the identity theorem for analytical functions. We have just proved
the implication:

λ0 6∈ intσap(T ) =⇒ T has the SVEP at λ0. (1.7)

If λ0 6∈ intσsu(T ), then λ0 6∈ intσap(T
′) since σsu(T ) = σap(T

′). We now apply
(1.7), with T replaced by T ′, to obtain the following implication:

λ0 6∈ intσsu(T ) =⇒ T ′ has the SVEP at λ0. (1.8)

Clearly, (1.7) and (1.8) give the implication:

λ0 6∈ intσ(T ) =⇒ T and T ′ have the SVEP at λ0. (1.9)

The following two results will be needed in this work. For more compre-
hensive study of the SVEP see [1, 52].

Proposition 1.3.7. ([1, Theorem 2.9]) Suppose that T ∈ L(X ) and that
(M,N) ∈ Red(T ). Then, T has the SVEP at λ0 if and only if both TM and
TN have the SVEP at λ0.

Theorem 1.3.8. ([1, Theorem 2.49]) Let T −λ0I ∈ L(X ) be a Kato operator.
Then the following equivalences hold:

(i) T has the SVEP at λ0 if and only if T − λ0I is bounded below.

(ii) T ′ has the SVEP at λ0 if and only if T − λ0I is surjective.
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1.4 Fredholm theory

Definition 1.4.1. Let T ∈ L(X ,Y). We say that:

(i) T is upper semi-Fredholm if R(T ) is closed and α(T ) <∞;

(ii) T is lower semi-Fredholm if β(T ) <∞;

(iii) T is Fredholm if α(T ) and β(T ) <∞.

The set of all upper semi-Fredholm, lower semi-Fredholm and Fredholm
operators will be denoted by Φ+(X ,Y), Φ−(X ,Y) and Φ(X ,Y), respectively.
We recall that the condition β(T ) < ∞ implies that the range of T is closed
[45, Lemma 332]. According to this observation, it is obvious that Φ(X ,Y) =
Φ+(X ,Y) ∩ Φ−(X ,Y). The set of all semi-Fredholm operators is defined
by Φ±(X ,Y) = Φ+(X ,Y) ∪ Φ−(X ,Y). We shall set Φ+(X ) = Φ+(X ,X ),
Φ−(X ) = Φ−(X ,X ), Φ(X ) = Φ(X ,X ), and Φ±(X ) = Φ±(X ,X ). The class
of semi-Fredholm operators belongs to the class of essentially Kato operators
[57, Theorem 16.21].

Probably one of the most important results concerning Fredholm operators
is the Atkinson theorem; see for example [17, Theorem 3.2.8].

Theorem 1.4.2. (Atkinson theorem) An operator T ∈ L(X ) is Fredholm if
and only if π(T ) is invertible in the Calkin algebra L(X )/K(X ).

If T ∈ Φ±(X ,Y) then it is possible to define the index of T , denoted by
ind(T ), as ind(T ) = α(T )− β(T ). Using the notion of index we introduce the
following classes of operators.

Definition 1.4.3. Let T ∈ L(X ,Y). We say that:

(i) T is upper semi-Weyl if T ∈ Φ+(X ,Y) and ind(T ) ≤ 0;

(ii) T is lower semi-Weyl if T ∈ Φ−(X ,Y) and ind(T ) ≥ 0;

(iii) T is Weyl if T ∈ Φ(X ,Y) and ind(T ) = 0.

The set of all upper semi-Weyl, lower semi-Weyl and Weyl operators will be
denoted byW+(X ,Y),W−(X ,Y) andW(X ,Y), respectively. The meaning of
W+(X ), W−(X ) and W(X ) is clear.

Theorem 1.4.4. [1, Theorem 3.39] Let T ∈ L(X ). The following assertions
are equivalent:

(i) T is a Weyl operator;

(ii) There exists a finite rank operator F ∈ L(X ) and A ∈ L(X )−1 such that
T = A+ F ;

(iii) There exists a compact operator K ∈ L(X ) and A ∈ L(X )−1 such that
T = A+K.
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Definition 1.4.5. Let T ∈ L(X ). We say that:

(i) T is upper semi-Browder if T ∈ Φ+(X ) and asc(T ) <∞;

(ii) T is lower semi-Browder if T ∈ Φ−(X ) and dsc(T ) <∞;

(iii) T is Browder if T ∈ Φ(X ), asc(T ) <∞ and dsc(T ) <∞.

The set of all upper semi-Browder, lower semi-Browder and Browder operators
will be denoted by B+(X ), B−(X ) and B(X ), respectively. It is clear that T
is Browder if it is both lower and upper semi-Browder.

Theorem 1.4.6. [17, Theorem 1.4.5] Let T ∈ L(X ). The following assertions
are equivalent:

(i) T is a Browder operator;

(ii) T can be written as T = A + F , where A ∈ L(X )−1, F ∈ L(X ) is a finite
rank operator and AF = FA;

(iii) T can be written as T = A + K, where A ∈ L(X )−1, K ∈ L(X ) is a
compact operator and AK = KA.

We will use the following notation:

R1 =M(X ) R2 = Q(X ) R3 = L(X )−1

R4 = B+(X ) R5 = B−(X ) R6 = B(X )
R7 = Φ+(X ) R8 = Φ−(X ) R9 = Φ(X )

R10 =W+(X ) R11 =W−(X ) R12 =W(X )

The sets Ri, 1 ≤ i ≤ 12, are open in L(X ) and contain L(X )−1 (for the
openness of the set of upper (lower) semi-Browder operators see [50, Satz 4]).
The spectra with respect to the sets Ri, 1 ≤ i ≤ 12, are defined by

σRi
(T ) = {λ ∈ C : T − λI 6∈ Ri}, 1 ≤ i ≤ 12.

Obviously, σR1(T ) = σap(T ), σR2(T ) = σsu(T ) and σR3(T ) = σ(T ). The set
σR7(T ) = σΦ+(T ) is the upper semi-Fredholm spectrum of T , the set σR5(T ) =
σB−(T ) is the lower semi-Browder spectrum of T , etc. All spectra σRi

(T ),
4 ≤ i ≤ 12, are also non-empty and compact subsets of C, and common name
for them is essential spectra. By ρRi

(T ) = C \ σRi
(T ), 4 ≤ i ≤ 12, we define

the corresponding resolvent sets.

Lemma 1.4.7. Let T ∈ L(X ) and (M,N) ∈ Red(T ). The following state-
ments hold:
(i) T ∈ Ri if and only if TM ∈ Ri and TN ∈ Ri, 1 ≤ i ≤ 9, and in that case
ind(T ) = ind(TM) + ind(TN);

(ii) If TM ∈ Ri and TN ∈ Ri, then T ∈ Ri, 10 ≤ i ≤ 12;

(iii) If T ∈ Ri and TN is Weyl, then TM ∈ Ri, 10 ≤ i ≤ 12.
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Proof. (i). From the equalities N(T ) = N(TM)⊕N(TN) and R(T ) = R(TM)⊕
R(TN) it follows that

α(T ) = α(TM) + α(TN) and β(T ) = β(TM) + β(TN). (1.10)

Consequently,

α(T ) <∞ if and only if α(TM) <∞ and α(TN) <∞; (1.11)

β(T ) <∞ if and only if β(TM) <∞ and β(TN) <∞. (1.12)

Further, by [41, Lemma 3.3],

R(T ) is closed if and only if R(TM) and R(TN) are closed. (1.13)

Let asc(T ) = p < ∞. Then N(T p) = N(T p+1). Since for all n ∈ N0 we
have N((TM)n) = N(T n) ∩M , then N((TM)p) = N(T p) ∩M = N(T p+1) ∩
M = N((TM)p+1), so asc(TM) < ∞. Similarly, asc(TN) < ∞. On the other
hand, suppose that asc(TM) = p1 < ∞ and asc(TN) = p2 < ∞, and let
p = max{p1, p2}. We have N(T p) = N((TM)p) ⊕ N((TN)p) = N((TM)p+1) ⊕
N((TN)p+1) = N(T p+1), hence asc(T ) <∞. We have just proved

asc(T ) <∞ if and only if asc(TM) <∞ and asc(TN) <∞. (1.14)

It is not difficult to show that R((TM)n) = R(T n) ∩ M and R((TN)n) =
R(T n)∩N for all n ∈ N0. Using these facts and applying a similar method as
above we obtain that

dsc(T ) <∞ if and only if dsc(TM) <∞ and dsc(TN) <∞. (1.15)

Now, the result follows from (1.10), (1.11), (1.12), (1.13), (1.14) and (1.15).
Moreover, ind(T ) = α(T ) − β(T ) = (α(TM) + α(TN)) − (β(TM) + β(TN)) =
ind(TM) + ind(TN).

(ii). Follows from (i).

(iii). Suppose that T ∈ W+(X ) and that TN is Weyl. According to (i) it
follows that TM ∈ Φ+(X ) and ind(TM) = ind(TM) + ind(TN) = ind(T ) ≤ 0.
Thus TM is upper semi-Weyl. The cases i = 11 and i = 12 can be proved
similarly.

Lemma 1.4.8. ([57, Lemma 20.9]) Let T ∈ L(X ) be upper semi-Browder and
Kato. Then T is bounded below. If T is lower semi-Browder and Kato, then
T is surjective.

The following proposition plays an important role in this dissertation.
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Proposition 1.4.9. Let T ∈ L(X ). Then the following implications hold:

(i) If T is Kato and 0 ∈ acc ρΦ+(T ) (0 ∈ acc ρΦ−(T )), then T is upper (lower)
semi-Fredholm;

(ii) If T is Kato and 0 ∈ acc ρW+(T ) (0 ∈ acc ρW−(T )), then T is upper (lower)
semi-Weyl;

(iii) If T is Kato and 0 ∈ acc ρap(T ) (0 ∈ acc ρsu(T )), then T is bounded below
(surjective);

(iv) If T is Kato and 0 ∈ acc ρB+(T ) (0 ∈ acc ρB−(T )), then T is bounded below
(surjective).

Proof. (i). Suppose that T is Kato and 0 ∈ acc ρΦ+(T ) (0 ∈ acc ρΦ−(T )).
According to Lemma 1.3.5, there exists ε > 0 such that α(T ) = α(T − λI)
and β(T ) = β(T − λI) for |λ| < ε. Also, there exists µ ∈ C such that
0 < |µ| < ε and T − µI is upper semi-Fredholm (lower semi-Fredholm), so
α(T ) = α(T −µI) < +∞ (β(T ) = β(T −µI) < +∞). Since R(T ) is closed, T
is upper semi-Fredholm (lower semi-Fredholm).

(ii). Suppose that T is Kato and 0 ∈ acc ρW+(T ). Again Lemma 1.3.5 implies
that there exists ε > 0 such that α(T ) = α(T − λI) and β(T ) = β(T − λI) for
|λ| < ε. Since 0 ∈ acc ρW+(T ), there exists µ ∈ C such that 0 < |µ| < ε and T−
µI is upper semi-Weyl. Then, α(T ) = α(T −µI) <∞ and β(T ) = β(T −µI).
In addition, ind(T ) = α(T )−β(T ) = α(T−µI)−β(T−µI) = ind(T−µI) ≤ 0
and so T is upper semi-Weyl.

The second statement can be obtained similarly.

(iii). As above we conclude that there exists ε > 0 such that α(T ) = α(T −λI)
(β(T ) = β(T − λI)) for |λ| < ε. Also, there exists µ ∈ C such that 0 < |µ| < ε
and that T − µI is bounded below (surjective). Consequently, α(T ) = α(T −
µI) = 0 (β(T ) = β(T − µI) = 0), so T is bounded below (surjective).

(iv). From Lemma 1.3.5 we see that there exists ε > 0 such that T−λI is Kato
and α(T ) = α(T − λI) (β(T ) = β(T − λI)) for |λ| < ε. Since 0 ∈ acc ρB+(T )
(0 ∈ acc ρB−(T )) it follows that there exists µ ∈ C such that 0 < |µ| < ε and
T − µI is upper semi-Browder (lower semi-Browder). Lemma 1.4.8 implies
that T − µI is bounded below (surjective). Now, α(T ) = α(T − µI) = 0
(β(T ) = β(T − µI) = 0), and hence T is bounded below (surjective).

Corollary 1.4.10. Let T ∈ L(X ). Then the following implications hold:

(i) If T is Kato and 0 6∈ accσΦ+(T ) (0 6∈ accσΦ−(T )), then T is upper semi-
Fredholm (lower semi-Fredholm);

(ii) If T is Kato and 0 6∈ accσW+(T ) (0 6∈ accσW−(T )), then T is upper semi-
Weyl (lower semi-Weyl);

(iii) If T is Kato and 0 6∈ accσap(T ) (0 6∈ accσsu(T )), then T is bounded below
(surjective);

(iv) If T is Kato and 0 6∈ accσB+(T ) (0 6∈ accσB−(T )), then T is bounded below
(surjective).
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Proof. (i). By Proposition 1.1.1, 0 6∈ accσΦ+(T ) implies 0 ∈ acc ρΦ+(T ). The
assertion follows from Proposition 1.4.9.

The remaining statements can be proved analogously.

For T ∈ L(X ) using Proposition 1.4.9 we can easily proved that ∂σ(T ) ⊂
σK(T ); see also [57, Theorem 12.11] and [78, Theorem 2.1]. In the following
proposition σl(T ) and σr(T ) are respectively the left and right spectrum of T ,
see Section 1.5.

Proposition 1.4.11. Let T ∈ L(X ). Then:

(i) ∂σ(T ) ⊂ σK(T ) ⊂ σ(T );

(ii) σK(T ) is finite if and only if σ(T ) is finite, and in that case σK(T ) = σ(T );

(iii) σl(T ) is finite if and only if σ(T ) is finite, and in that case σl(T ) = σ(T );

(iv) σr(T ) is finite if and only if σ(T ) is finite, and in that case σr(T ) = σ(T ).

Proof. (i). It is sufficient to prove ∂σ(T ) ⊂ σK(T ). Suppose that there exists
λ0 ∈ ∂σ(T ) but such that λ0 6∈ σK(T ). It means that T − λ0I is Kato, and
λ0 ∈ acc ρ(T ). Consequently, λ0 ∈ acc ρap(T ) and λ0 ∈ acc ρsu(T ). According
to Proposition 1.4.9, T−λ0I is both bounded below and surjective, i.e. T−λ0I
is invertible. But this contradicts our assumption since λ0 ∈ ∂σ(T ) ⊂ σ(T ).

(ii). Apply Proposition 1.1.3 and Lemma 1.1.4.

(iii) and (iv). σK(T ) ⊂ σl(T )∩σr(T ) and (i) imply ∂σ(T ) ⊂ σl(T ) ⊂ σ(T ) and
∂σ(T ) ⊂ σr(T ) ⊂ σ(T ). As above, we apply Proposition 1.1.3 and Lemma
1.1.4, and obtain the desired conclusions.

A point λ0 ∈ σ(T ) is a Riesz point of T ∈ L(X ) if λ0 ∈ isoσ(T ) and if the
spectral projection corresponding to λ0 has finite-dimensional range.

Definition 1.4.12. An operator T ∈ L(X ) is Riesz if every nonzero point of
σ(T ) is a Riesz point of T .

Lemma 1.4.13. ([79, Lemma 2.11]) Let T ∈ L(X ) and let (M,N) ∈ Red(T ).
Then T is Riesz if and only if TM and TN are Riesz.

For T ∈ L(X ) and n ∈ N, define Tn : R(T n) → R(T n) by Tnx = Tx,
x ∈ R(T n) (in particular T0 = T ). If for some integer n the range space
R(T n) is closed and Tn is a Fredholm operator, then T is called a B-Fredholm
operator. In addition, if ind(Tn) = 0 we say that T is a B-Weyl operator.
The classes of B-Fredholm and B-Weyl operators are denoted by BΦ(X ) and
BW(X ) respectively. M. Berkani introduced and characterized B-Fredholm
and B-Weyl operators [7, 9].

Theorem 1.4.14. ([7, Theorem 2.7]) Let T ∈ L(X ). Then T is a B-Fredholm
operator if and only if there exist two closed subspaces M and N such that
X = M ⊕N and:

(i) T (N) ⊂ N and TN is a nilpotent operator;

(ii) T (M) ⊂M is a Fredholm operator.
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Theorem 1.4.15. ([9, Lemma 4.1]) Let T ∈ L(X ). Then T is a B-Weyl
operator if and only if T = T0 ⊕ T1, where T0 is a Weyl operator and T1 is a
nilpotent operator.

1.5 Drazin and generalized Drazin inverse

Let A denote a complex unital Banach algebra with identity 1. Many notions
concerning the bounded linear operators can be extended in the context of
Banach algebras. We say that a ∈ A is left (right) invertible if there exists
b ∈ A such that ba = 1 (ab = 1). An element a ∈ A is invertible if it is both
left and right invertible. It is easy to see that in this case there exists a unique
b ∈ A such that ab = ba = 1. Let A−1, A−1

left and A−1
right denote the set of

all invertible elements, the set of all left invertible elements and the set of all
right invertible elements, respectively. The spectrum, the left spectrum and
the right spectrum of a ∈ A are respectively the following sets

σ(a) = {λ ∈ C : a− λ1 6∈ A−1},
σl(a) = {λ ∈ C : a− λ1 6∈ A−1

left},
σr(a) = {λ ∈ C : a− λ1 6∈ A−1

right}.

The spectra σ(a), σl(a) and σr(a) are non-empty and compact subsets of C.
It is said that a ∈ A is nilpotent (quasinilpotent) if an = 0 for some n ∈ N
(if σ(a) = {0}). Every nilpotent element is quasinilpotent. An element p ∈ A
is an idempotent if p2 = p. An idempotent p is nontrivial if p 6∈ {0, 1}. The
set of all nilpotent elements, the set of all quasinilpotent elements and the set
of all idempotents on A is denoted by Anil, Aqnil and A•, respectively. Also,
(λ1− a)−1 is an analytic function on C \ σ(a) and if λ0 ∈ isoσ(a) then by

p =
1

2πi

∫
C

(λ1− a)−1dλ

is given the spectral idempotent of a corresponding to λ0, where C is again a
circle centered at λ0 which separates λ0 from the set σ(a) \ {λ0}.

The concept of Drazin invertibility was originally introduced by M. P.
Drazin in [27] for elements of an associative ring. We recall his definition,
but for our purpose it is sufficient to consider the Banach algebra case.

Definition 1.5.1. An element a ∈ A is said to be Drazin invertible if there
exists an element b ∈ A and some k ∈ N such that

ab = ba, bab = b, akba = ak.

The least k ∈ N such that the above equations hold is the index of a. If a ∈ A
is invertible, then the index of a is 0. The element b is a Drazin inverse of a,
and it is denoted by aD.

14



1.5. Drazin and generalized Drazin inverse

If a ∈ A is Drazin invertible then its Drazin inverse is unique, and explicit
expression for aD is given in the following proposition.

Proposition 1.5.2. ([64, Proposition 1]) Let A be a Banach algebra. An
element a ∈ A is Drazin invertible of degree k if and only if there exists an
idempotent p ∈ A such that:

ap = pa, a+ p is invertible, akp = 0. (1.16)

If (1.16) is satisfied, then aD = (a+ p)−1(1− p).

If A = L(X ) it is possible to give another sufficient and necessary conditions
such that T ∈ L(X ) is Drazin invertible, and in the following theorem we
collect some of them.

Theorem 1.5.3. Let T ∈ L(X ) and 0 ∈ σ(T ). The following statements are
equivalent:

(i) T is Drazin invertible;

(ii) asc(T ) <∞ and dsc(T ) <∞;

(iii) 0 ∈ Π(T );

(iv) There exists (M,N) ∈ Red(T ) such that TM is invertible and TN is
nilpotent.

Proof. (i) ⇐⇒ (ii) is proved in [47, Theorem 4]. For (iii) =⇒ (ii) see [67,
Theorem 5.8-A], while (ii) =⇒ (iii) is shown in [53, Thereom 2.1].

(ii) =⇒ (iv). Let asc(T ) < ∞ and dsc(T ) < ∞. It is a classical result that
asc(T ) = dsc(T ) = p < ∞, and X = R(T p) ⊕ N(T p) with R(T p) and N(T p)
closed; see for example [68, Theorem 3.7] and [30, Theorem IV.1.12]. Clearly,
R(T p) and N(T p) are T -invariant, TR(T p) is invertible and TN(T p) is nilpotent.
We set M = R(T p) and N = N(T p), and the implication follows; see also [64,
Proposition 6].

(iv) =⇒ (ii). Let T = TM ⊕ TN with TM invertible and TN nilpotent of degree
d. Then, asc(TM) = dsc(TM) = 0 and asc(TN) = dsc(TN) = d. According to
(1.14) and (1.15), asc(T ) <∞ and dsc(T ) <∞.

Definition 1.5.4. Let T ∈ L(X ).

(i) T is left Drazin invertible if asc(T ) <∞ and R(T asc(T )+1) is closed;

(ii) T is right Drazin invertible if dsc(T ) <∞ and R(T dsc(T )) is closed.

Left and right Drazin invertible operators acting on a Hilbert space are
characterized by M. Berkani [8, Theorem 3.12].

Theorem 1.5.5. ([8, Theorem 3.12]) Let H be a Hilbert space and T ∈ L(H).
Then T is left (right) Drazin invertible if and only if there exists (M,N) ∈
Red(T ) such that TM is bounded below (surjective) and TN is nilpotent.
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The concept of Drazin invertibility were generalized by J. Koliha [48].

Definition 1.5.6. ([48, Definition 4.1]) An element a ∈ A is said to be gen-
eralized Drazin invertible if there exists an element b ∈ A such that

ab = ba, bab = b, aba− a ∈ Aqnil.

The element b is a generalized Drazin inverse of a, and it will be denoted by
b = ad.

The following theorem gives necessary and sufficient conditions for the
existence of a generalized Drazin inverse in a Banach algebra.

Theorem 1.5.7. ([48, Theorem 4.2]) Let A be a Banach algebra. The follow-
ing conditions on an element a ∈ A are equivalent:

(i) a is generalized Drazin invertible;

(ii) There exists an idempotent p ∈ A commuting with a such that a+p ∈ A−1

and ap ∈ Aqnil;
(iii) 0 6∈ accσ(a).

In this case the generalized Drazin inverse is unique, and is given by ad =
(a+ p)−1(1− p), where p is the spectral idempotent of a corresponding to 0.

Again, the Banach algebra L(X ) deserves a special attention. Before
we proceed, we need to recall definitions of two important subspaces of X
corresponding to every T ∈ L(X ).

The quasinilpotent part H0(T ) of an operator T ∈ L(X ) is defined by

H0(T ) = {x ∈ X : lim
n→+∞

‖T nx‖1/n = 0}.

It is easy to verify that H0(T ) = {0} if T is bounded below. An operator
T ∈ L(X ) is quasinilpotent if and only if H0(T ) = X [1, Theorem 1.68].

The analytical core of T , denoted by K(T ), is the set of all x ∈ X for which
there exist c > 0 and a sequence (xn) in X satisfying

Tx1 = x, Txn+1 = xn for all n ∈ N, ‖xn‖ ≤ cn‖x‖ for all n ∈ N.

If T is surjective, then K(T ) = X [1, Theorem 1.22].

Theorem 1.5.8. ([1, Theorem 1.41, Corollary 1.69]) Suppose that T ∈ L(X )
admits a GKD (M,N). Then:

(i) H0(T ) = H0(TM)⊕H0(TN);

(ii) K(T ) = K(TM) and K(T ) is closed.
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1.5. Drazin and generalized Drazin inverse

Theorem 1.5.9. Let T ∈ L(X ). The following conditions are equivalent:

(i) T is generalized Drazin invertible;

(ii) There is a bounded projection P on X such that R(P ) = H0(T ) and
N(T ) = K(T );

(iii) There exists (M,N) ∈ Red(T ) such that TM is invertible and TN is
quasinilpotent;

(iv) X = K(T )⊕H0(T ) with at least one of the component spaces closed.
If T is generalized Drazin invertible, then the subspaces M and N from

Condition (iii) are uniquely determined: M = K(T ) and N = H0(T ).

Proof. (i) ⇐⇒ (ii) is proved in [55, Théorème 1.6]. For (i) ⇐⇒ (iv) see [66,
Theorem 4] and [23, Theorem 6.7], and for (i) =⇒ (iii) see [48, Theorem 7.1].

(iii) =⇒ (i). There exists ε > 0 such that TM − λI and TN − λI are invertible
for 0 < |λ| < ε. According to Lemma 1.4.7, T −λI is invertible for 0 < |λ| < ε.
It means that 0 6∈ accσ(T ), and T is generalized Drazin invertible by Theorem
1.5.7.

If T is generalized Drazin invertible then there exists (M,N) ∈ Red(T )
such that TM is invertible and TN quasinilpotent. Since (M,N) is a GKD for
T , Theorem 1.5.8 implies

H0(T ) = H0(TM)⊕H0(TN) and K(T ) = K(TM).

We note that H0(TM) = {0}, H0(TN) = N and K(TM) = M . Consequently,
M = K(T ) and N = H0(T ).

The set of all Drazin invertible elements and generalized Drazin invertible
elements of a Banach algebra A will be denoted by AD and AgD, respectively.
The Drazin and generalized Drazin spectrum of a ∈ A are respectively the sets

σD(a) = {λ ∈ C : a− λ1 6∈ AD} and σgD(a) = {λ ∈ C : a− λ1 6∈ AgD}.

The Drazin spectrum σD(a) is compact [12, Proposition 2.5]. From Theorem
1.5.7 it follows that σgD(a) = accσ(a), hence σgD(a) is also compact. Unlike
the spectrum of a, σD(a) and σgD(a) may be empty sets. For instance, if a is
nilpotent element of A or is an idempotent, then σD(a) = ∅; σgD(a) = ∅ if a is
quasinilpotent. The Drazin and generalized Drazin resolvent set of a ∈ A are
defined by ρD(a) = C \ σD(a) and ρgD(a) = C \ σgD(a), respectively.

We give a brief exposition of the axiomatic theory of spectrum; see [49, 57,
58].

Definition 1.5.10. Let A be a Banach algebra. A non-empty subset R of A
is called a regularity if it satisfies the following conditions:

(i) If a ∈ A and n ∈ N, then a ∈ R if and only if an ∈ R;

(ii) If a, b, c, d ∈ A are mutually commuting elements satisfying ac + bd = 1,
then necessary and sufficient for ab ∈ R is that a ∈ R and b ∈ R.
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According to [12, Theorem 2.3] and [54, Theorem 1.2], the sets AD and AgD
are regularities.

Proposition 1.5.11. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A → B. If R is a regularity
in B, then T −1(R) is a regularity in A.

Proof. Since T (1) = 1 ∈ R [57, Proposition 6.2], we see that 1 ∈ T −1(R), so
T −1(R) is a non-empty subset of A. For a ∈ A and n ∈ N we have

a ∈ T −1(R)⇔ T (a) ∈ R ⇔ T (a)n ∈ R ⇔ T (an) ∈ R ⇔ an ∈ T −1(R).

It is also very easy to verify that T −1(R) satisfies condition (ii) of Definition
1.5.10, so T −1(R) is a regularity in A.

Given a regularity R ⊂ A, it is possible to define the spectrum of a ∈ A
corresponding to R as

σR(a) = {λ ∈ C : a− λ1 /∈ R}.

Let a ∈ A and let f be an analytic function on a neighbourhood U of σ(a). It
is possible to define f(a) by

f(a) =
1

2πi

∫
Γ

f(z)(z1− a)−1dz,

where Γ is a contour surrounding σ(a) in U ; for details see [57]. Every spectrum
defined by a regularity satisfies the spectral mapping theorem [57, Theorem
6.7].

Theorem 1.5.12. (spectral mapping theorem) Let R be a regularity in a
Banach algebra A and let σR be the corresponding spectrum. Then

σR(f(a)) = f(σR(a))

for every a ∈ A and every function f analytic on a neighbourhood of σ(a)
which is non-constant on each component of its domain of definition.
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Chapter 2

GKD and spectra originating
from Fredholm theory

In this chapter we study an operator T ∈ L(X ) which can be decomposed
by T = TM ⊕ TN , where TM ∈ Ri and TN is quasinilpotent. Clearly, such
an operator admits a generalized Kato decomposition. Lemma 1.4.7 and
Proposition 1.4.9 enable us to approach the problem in a unified way. It
means that we may study all decompositions mentioned above (for any Ri) by
using the same method.

2.1 The classes gDRi

We consider the following classes of bounded linear operators:

gDRi =

{
T ∈ L(X ) :

there exists (M,N) ∈ Red(T ) such that
TM ∈ Ri and TN is quasinilpotent

}
, 1 ≤ i ≤ 12.

Proposition 2.1.1. Let T ∈ L(X ) and 1 ≤ i ≤ 12. If T belongs to the set
gDRi, then 0 6∈ accσRi

(T ).

Proof. Let (M,N) ∈ Red(T ) such that TM ∈ Ri and TN is quasinilpotent.
Since Ri is open, there exists ε > 0 such that (T − λI)M = TM − λIM ∈ Ri

for |λ| < ε. On the other hand, (T − λI)N = TN − λIN ∈ L(N)−1 ⊂ Ri for
every λ 6= 0. Now, by applying Lemma 1.4.7 we obtain that T − λI ∈ Ri for
0 < |λ| < ε, and so 0 6∈ accσRi

(T ).

Theorem 2.1.2. Let T ∈ L(X ) and 7 ≤ i ≤ 12. The following conditions are
equivalent:

(i) There exists (M,N) ∈ Red(T ) such that TM ∈ Ri and TN is quasinilpotent,
that is T ∈ gDRi;

(ii) T admits a GKD and 0 6∈ accσRi
(T );

(iii) T admits a GKD and 0 6∈ intσRi
(T );
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(iv) There exists a projection P ∈ L(X ) that commutes with T such that
T + P ∈ Ri and TP is quasinilpotent.

Proof. (i) =⇒ (ii). Let T = TM⊕TN , where TM ∈ Ri and TN is quasinilpotent.
Then 0 6∈ accσRi

(T ) by Proposition 2.1.1. From [57, Theorem 16.21] it follows
that there exist two closed T -invariant subspaces M1 and M2 such that M =
M1⊕M2, M2 is finite dimensional, TM1 is Kato and TM2 is nilpotent. We have
X = M1 ⊕ (M2 ⊕N), M2 ⊕N is closed, TM2⊕N = TM2 ⊕ TN is quasinilpotent
and thus T admits the GKD (M1,M2 ⊕N).

(ii) =⇒ (iii). Clear.

(iii) =⇒ (i). Let i ∈ {7, 8, 9}. Assume that T admits a GKD and 0 6∈
intσRi

(T ), that is 0 ∈ acc ρRi
(T ). Then there exists (M,N) ∈ Red(T ) such

that TM is Kato and TN is quasinilpotent. Since 0 ∈ acc ρRi
(T ), according to

Lemma 1.4.7(i), it follows that 0 ∈ acc ρRi
(TM). From Proposition 1.4.9(i) it

follows that TM ∈ Ri, and hence T ∈ gDRi.
Suppose that T admits a GKD and 0 6∈ intσW+(T ), i.e. 0 ∈ acc ρW+(T ).

Then there exists (M,N) ∈ Red(T ) such that TM is Kato and TN is
quasinilpotent. We will show that 0 ∈ acc ρW+(TM). Let ε > 0. From
0 ∈ acc ρW+(T ) it follows that there exists λ ∈ C such that 0 < |λ| < ε
and T − λI ∈ W+(X). As TN is quasinilpotent, TN − λIN is invertible, and
according to Lemma 1.4.7(iii), we conclude that TM − λIM ∈ W+(M), that is
λ ∈ ρW+(TM). Therefore, 0 ∈ acc ρW+(TM) and from Proposition 1.4.9(ii) it
follows that TM is upper semi-Weyl, and so T ∈ gDW+(X ). The cases i = 11
and i = 12 can be proved similarly.

(i) =⇒ (iv). Suppose that there exists (M,N) ∈ Red(T ) such that TM ∈ Ri

and TN is quasinilpotent. Let P ∈ L(X ) be a projection such that N(P ) = M
and R(P ) = N . Then TP = PT and every element x ∈ X may be represented
as x = x1 + x2, where x1 ∈M and x2 ∈ N . Also,

‖(TP )nx‖
1
n = ‖T nPx‖

1
n = ‖(TN)nx2‖

1
n → 0 (n→∞),

since TN is quasinilpotent. We obtain H0(TP ) = X , so TP is quasinilpotent.
Since (T + P )M = TM and (T + P )N = TN + IN ∈ L(N)−1, we have that
(T +P )M ∈ Ri and (T +P )N ∈ Ri, and hence T +P ∈ Ri by Lemma 1.4.7(i)
and (ii).

(iv) =⇒ (i). Assume that there exists a projection P ∈ L(X ) that commutes
with T such that T + P ∈ Ri and TP is quasinilpotent. Put N(P ) = M and
R(P ) = N . Then X = M ⊕N , T (M) ⊂M and T (N) ⊂ N . For every x ∈ N
we have

‖(TN)nx‖
1
n = ‖T nP nx‖

1
n = ‖(TP )nx‖

1
n → 0 (n→∞),

since TP is quasinilpotent. It follows that H0(TN) = N , so TN is
quasinilpotent. It remains to prove that TM ∈ Ri. For i ∈ {7, 8, 9}, by
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Lemma 1.4.7(i) we deduce that TM = (T +P )M ∈ Ri. Set i = 10. Since TN is
quasinilpotent, it follows that TN + IN is invertible. From T + P ∈ W+(X )
and the decomposition

T + P = (T + P )M ⊕ (T + P )N = TM ⊕ (TN + IN),

according to Lemma 1.4.7(iii), we conclude that TM ∈ W+(M). For i = 10
and i = 12 we apply a similar consideration.

In the case that T − λ0I ∈ L(X ) admits a GKD, Q. Jiang and H. Zhong
gave a characterization of the SVEP at λ0 by using the approximate point
spectrum of T [41].

Theorem 2.1.3. ([41, Theorem 3.5, Theorem 3.9]) Suppose that T − λ0I ∈
L(X ) admits a GKD. Then the following statements are equivalent:

(i) T has the SVEP at λ0 (T ′ has the SVEP at λ0);

(ii) σap(T ) does not cluster at λ0 (σsu(T ) does not cluster at λ0);

(iii) λ0 is not an interior point of σap(T ) (λ0 is not an interior point of σsu(T )).

We extend Theorem 2.1.3 in two directions. Firstly, in Theorems 2.1.4 and
2.1.5 we provide further conditions equivalent to Conditions (i)-(iii) of Theorem
2.1.3. Secondly, under the hypotheses of Theorem 2.1.3, we show that the
equivalence (ii)⇐⇒ (iii) remains valid in the case of essential spectra (4 ≤ i ≤
12), see Corollary 2.1.7 below.

Theorem 2.1.4. Let T ∈ L(X ). The following conditions are equivalent:

(i) H0(T ) is closed and there exists a closed subspace M of X such that
(M,H0(T )) ∈ Red(T ) and T (M) is closed;

(ii) There exists (M,N) ∈ Red(T ) such that TM is bounded below and TN is
quasinilpotent, that is T ∈ gDM(X );

(iii) T admits a GKD and 0 /∈ accσap(T );

(iv) T admits a GKD and 0 /∈ intσap(T );

(v) There exists a bounded projection P on X which commutes with T such
that T + P is bounded below and TP is quasinilpotent;

(vi) There exists (M,N) ∈ Red(T ) such that TM is upper semi-Browder and
TN is quasinilpotent, that is T ∈ gDB+(X );

(vii) T admits a GKD and 0 /∈ accσB+(T );

(viii) T admits a GKD and 0 /∈ intσB+(T );

(ix) There exists a bounded projection P on X which commutes with T such
that T + P is upper semi-Browder and TP is quasinilpotent.

In particular, if T satisfies any of Conditions (i)-(ix), then the subspace N
in (ii) is uniquely determined and N = H0(T ).
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Proof. (i) =⇒ (ii). Suppose that H0(T ) is closed and that there exists a closed
T -invariant subspace M of X such that X = H0(T )⊕M and T (M) is closed.
For N = H0(T ) we have that (M,N) ∈ Red(T ) and H0(TN) = N , which
implies that TN is quasinilpotent. From N(TM) = N(T )∩M ⊂ H0(T )∩M =
{0} it follows that TM is injective and since R(TM) = T (M) is a closed subspace
in M , we conclude that TM is bounded below.

(ii) =⇒ (i). Assume that there exists (M,N) ∈ Red(T ) such that TM is
bounded below and TN is quasinilpotent. Then (M,N) is a GKD for T , and so
from Theorem 1.5.8 it follows that H0(T ) = H0(TM)⊕H0(TN) = H0(TM)⊕N .
Since TM is bounded below, we get that H0(TM) = {0} and hence H0(T ) = N .
Therefore, H0(T ) is closed and complemented with M , (M,H0(T )) ∈ Red(T ),
and T (M) is closed because TM is bounded below.

(ii) =⇒ (iii). Since TM is bounded below then it is Kato, hence T admits a
GKD. Applying Proposition 2.1.1 we obtain that 0 6∈ accσap(T ).

(vi) =⇒ (vii) can be proved analogously to the proof of the implication (i) =⇒
(ii) in Theorem 2.1.2. The implications (iii) =⇒ (iv) and (vii) =⇒ (viii) are
clear.

(viii) =⇒ (ii). Let T admit a GKD and let 0 /∈ intσB+(T ), i.e. 0 ∈ acc ρB+(T ).
There exists (M,N) ∈ Red(T ) such that TM is Kato and TN is quasinilpotent.
From 0 ∈ acc ρB+(T ) it follows that 0 ∈ acc ρB+(TM) according to Lemma
1.4.7(i). From Proposition 1.4.9(iv) it follows that TM is bounded below, and
hence T ∈ gDM(X ).

(iv) =⇒ (ii). This implication can be proved by using Proposition 1.4.9(iii),
analogously to the proof of the implication (viii) =⇒ (ii).

(ii) =⇒ (vi). Follows from the fact that every bounded below operator is upper
semi-Browder.

The equivalences (v) ⇐⇒ (ii) and (vi) ⇐⇒ (ix) can be proved analogously to
the equivalence (i) ⇐⇒ (iv) in Theorem 2.1.2.

Theorem 2.1.5. For T ∈ L(X ) the following conditions are equivalent:

(i) K(T ) is closed and there exists a closed subspace N of X such that N ⊂
H0(T ) and (K(T ), N) ∈ Red(T );

(ii) There exists (M,N) ∈ Red(T ) such that TM is surjective and TN is
quasinilpotent, that is T ∈ gDQ(X );

(iii) T admits a GKD and 0 /∈ accσsu(T );

(iv) T admits a GKD and 0 /∈ intσsu(T );

(v) There exists a bounded projection P on X which commutes with T such
that T + P is surjective and TP is quasinilpotent;

(vi) There exists (M,N) ∈ Red(T ) such that TM is lower semi-Browder and
TN is quasinilpotent, that is T ∈ gDB−(X );

(vii) T admits a GKD and 0 /∈ accσB−(T );
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(viii) T admits a GKD and 0 /∈ intσB−(T );

(ix) There exists a bounded projection P on X which commutes with T such
that T + P is lower semi-Browder and TP is quasinilpotent.

In particular, if T satisfies any of Conditions (i)-(ix), then the subspace M
in (ii) is uniquely determined: M = K(T ).

Proof. (i) =⇒ (ii). Assume that K(T ) is closed and that there exists a closed
T -invariant subspace N , such that N ⊂ H0(T ) and X = K(T ) ⊕ N . For
M = K(T ) we have that (M,N) ∈ Red(T ), R(TM) = R(T ) ∩M = R(T ) ∩
K(T ) = K(T ) = M , and so TM is surjective. Since H0(TN) = H0(T )∩N = N ,
we conclude that TN is quasinilpotent.

(ii) =⇒ (i). Suppose that there exists (M,N) ∈ Red(T ) such that TM is
surjective and TN is quasinilpotent. Then (M,N) is a GKD for T and from
Theorem 1.5.8 we see that K(T ) = K(TM). Since TM is surjective, it follows
that K(TM) = M , and so K(T ) = M and K(T ) is closed. Thus (K(T ), N) ∈
Red(T ) and since TN is quasinilpotent, we have that N = H0(TN) ⊂ H0(T ).

The rest of the proof is similar to the proofs of Theorems 2.1.4 and 2.1.2.

In the following theorem we characterize generalized Drazin invertible op-
erators.

Theorem 2.1.6. Let T ∈ L(X ). The following conditions are equivalent:

(i) T is generalized Drazin invertible;

(ii) T admits a GKD and 0 /∈ intσ(T );

(iii) T admits a GKD and 0 /∈ intσB(T );

(iv) T admits a GKD and 0 /∈ accσB(T );

(v) There exists (M,N) ∈ Red(T ) such that TM is Browder and TN is quasinilpo-
tent;

(vi) There exists a bounded projection P on X which commutes with T such
that T + P is Browder and TP is quasinilpotent.

Proof. Similar to the proof of Theorem 2.1.4.

Corollary 2.1.7. Let T ∈ L(X ) and λ0 ∈ C. If T − λ0I admits a GKD and
4 ≤ i ≤ 12, then the following statements are equivalent:

(i) σRi
(T ) does not cluster at λ0;

(ii) λ0 is not an interior point of σRi
(T ).

Proof. Follows from the equivalence (ii)⇐⇒(iii) of Theorem 2.1.2, equivalences
(vii)⇐⇒ (viii) of Theorems 2.1.4 and 2.1.5, and from the equivalence (iii)⇐⇒
(iv) of Theorem 2.1.6.

Corollary 2.1.8. Let T ∈ L(X ) and let 0 ∈ ∂σRi
(T ), 1 ≤ i ≤ 12. Then T

admits a generalized Kato decomposition if and only if T belongs to the class
gDRi.
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Proof. Follows from the equivalence (i) ⇐⇒ (iii) of Theorem 2.1.2, the equiv-
alences (ii)⇐⇒ (iv) and (vi)⇐⇒ (viii) of Theorems 2.1.4 and 2.1.5, and from
the equivalence (i) ⇐⇒ (ii) of Theorem 2.1.6.

We observe that the statement of Corollary 2.1.8 for i = 3 has already been
proved in [41, Theorem 3.8].

Proposition 2.1.9. Let T ∈ L(X ) and 1 ≤ i ≤ 12. If T ∈ gDRi, then
T n ∈ gDRi for every n ∈ N.

Proof. Let 1 ≤ i ≤ 12 and n ∈ N. If T ∈ gDRi then there exists (M,N) ∈
Red(T ) such that TM ∈ Ri and TN is quasinilpotent. It implies T n = (TM)n⊕
(TN)n, (TM)n ∈ Ri, and (TN)n is quasinilpotent. Consequently, T n ∈ gDRi.

Remark 2.1.10. Let T ∈ L(X ) and suppose that p is a nontrivial complex
polynomial. According to [34, Theorem 2] and [39, Lemma 2.3.2], accσ(p(T )) =
p(accσ(T )). Analysis similar to that in the proof of [39, Lemma 2.3.2] shows
that accσRi

(p(T )) = p(accσRi
(T )), 1 ≤ i ≤ 9. Indeed, let λ ∈ accσRi

(p(T )).
By the spectral mapping theorem, σRi

(p(T )) = p(σRi
(T )), 1 ≤ i ≤ 9. Conse-

quently, λ ∈ acc p(σRi
(T )), and hence λ 6= p(sn) → λ (n → ∞) for some se-

quence (sn) in σRi
(T ). By compactness of σRi

(T ), there is a subsequence (snk
)

of (sn) such that snk
→ s (k → ∞). We obtain s ∈ accσRi

(T ) and p(snk
) →

p(s) (k →∞) since p is continuous. It means λ = p(s) ∈ p(accσRi
(T )).

Conversely, assume that λ ∈ p(accσRi
(T )). Then there exists an element

s ∈ accσRi
(T ) such that λ = p(s) and there is a sequence (sn) in σRi

(T ) such
that sn 6= s for each n ∈ N, and sn → s (n → ∞). Because σRi

(T ) is closed,
s ∈ σRi

(T ). Also, the sequence (p(sn)) converges to p(s) since p is continuous.
By the spectral mapping theorem, p(s) ∈ σRi

(p(T )) and p(sn) ∈ σRi
(p(T )) for

all n ∈ N. Further, consider the polynomial q(z) = p(z) − p(s) and suppose
p(sn) = p(s) for an infinite number of elements sn. It means that the set of
zeros of q has an accumulation point and the standard argument of complex
analysis implies g ≡ 0, what is a contradiction. We can only have p(sn) = p(s)
for finitely many elements sn, and thus there is a subsequence of (p(sn)) not
containing p(s), but converging to p(s), so λ = p(s) ∈ accσRi

(p(T )).

Proposition 2.1.11. Let T ∈ L(X ) admit a GKD. If T n ∈ gDRi for some
n ∈ N, then T ∈ gDRi, where 1 ≤ i ≤ 9.

Proof. Let T ∈ L(X ) admit a GKD and suppose that T n ∈ gDRi for some
n ∈ N. It follows that 0 6∈ accσRi

(T n). By Remark 2.1.10 (p(z) = zn),

0 6∈ accσRi
(T )⇐⇒ 0 6∈ accσRi

(T n),

and so 0 6∈ accσRi
(T ). We apply Theorems 2.1.2, 2.1.4, 2.1.5 or 2.1.6, and

obtain T ∈ gDRi.
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2.2 Examples and comments

The inclusions L(X )gD ⊂ gDM(X ) and L(X )gD ⊂ gDQ(X ) may be strict.

Example 2.2.1. Each element in the space `2(N) is a sequence x = (xi) =
(x1, x2, · · · ) of complex numbers such that

∞∑
i=1

|xi|2 <∞.

The space `2(N) is a Hilbert space with scalar product defined by

(x, y) =
∞∑
i=1

xiȳi for every x, y ∈ `2(N).

The forward and backward unilateral shifts operators are defined respectively
by

U(x1, x2, · · · ) = (0, x1, x2, · · · ) and V (x1, x2, · · · ) = (x2, x3, · · · ),

where x = (xi) ∈ `2(N). The operators U and V belong to L(`2(N)), and

σ(U) = σ(V ) = D, σap(U) = σsu(V ) = S, σsu(U) = σap(V ) = D,

where D = {λ ∈ C : |λ| ≤ 1} and S = {λ ∈ C : |λ| = 1}. We conclude that
U is bounded below (so U is generalized Drazin bounded below), but U is not
generalized Drazin invertible since 0 ∈ accσ(U). Also, V is surjective (so V is
generalized Drazin surjective), but V is not generalized Drazin invertible.

We also show that the inclusions gDM(X ) ⊂ gDW+(X ) and gDQ(X ) ⊂
gDW−(X ) can be proper. We note that in the next example we will use
notions and facts presented in section 3.1.

Example 2.2.2. Let U and V be as in Example 2.2.1, and let T = U⊕V . It is
easy to see that α(U) = β(V ) = 0, β(U) = α(V ) = 1. Consequently, U and V
are Fredholm operators, ind(U) = −1, and ind(V ) = 1. According to Lemma
1.4.7, (3.2), (3.4) and (3.8), T is Fredholm and ind(T ) = ind(U) + ind(V ) = 0.
Accordingly, T is Weyl, and so T is generalized Drazin Weyl. By Example 2.2.1
and (3.12), σap(T ) = σap(U) ∪ σap(V ) = D and σsu(T ) = σsu(U) ∪ σsu(V ) =
D. Therefore, 0 ∈ accσap(T ) and 0 ∈ accσsu(T ), and from Theorems 2.1.4
and 2.1.5 it follows that T is neither generalized Drazin bounded below nor
generalized Drazin surjective.

Remark 2.2.3. The following inclusions are true:

Φ+(X ) \W+(X ) ⊂ gDΦ+(X ) \ gDW+(X ),

Φ−(X ) \W−(X ) ⊂ gDΦ−(X ) \ gDW−(X ),

Φ(X ) \W(X ) ⊂ gDΦ(X ) \ gDW(X ).
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Let T ∈ Φ+(X ) \ W+(X ). Clearly, Φ+(X ) \ W+(X ) ⊂ Φ+(X ) ⊂ gDΦ+(X ).
In addition, there exists ε > 0 such that ind(T − λ) = ind(T ) > 0 for |λ| < ε
[57, Theorem 18.4]. It follows that T − λ 6∈ W+(X ) for |λ| < ε. Consequently,
0 ∈ accσW+(T ), and applying Theorem 2.1.2 we obtain that T 6∈ gDW+(X ).

The same argument can be used for the remaining inclusions.

The next example shows that the inclusions gDW+(X ) ⊂ gDΦ+(X ), gDW−(X )
⊂ gDΦ−(X ) and gDW(X ) ⊂ gDΦ(X ) can be proper.

Example 2.2.4. Let X = `2(N) and let U and V be as in Example 2.2.1.
By Example 2.2.2, U ∈ Φ−(X ) \ W−(X ), V ∈ Φ+(X ) \ W+(X ), and U, V ∈
Φ(X ) \ W(X ). According to Remark 2.2.3, U ∈ gDΦ−(X ) \ gDW−(X ),
V ∈ gDΦ+(X ) \ gDW+(X ), and U, V ∈ gDΦ(X ) \ gDW(X ).

Example 2.2.5. Let T ∈ L(X ) be a Riesz operator with infinite spectrum.
The spectrum of T is a sequence converging to 0, σ(T ) = σap(T ) = σsu(T )
and σRi

(T ) = {0}, 4 ≤ i ≤ 12, (see [1, Section 3.9]). It follows that 0 /∈
intσRi

(T ) = ∅, 1 ≤ i ≤ 12, and 0 /∈ accσRi
(T ) = ∅, 4 ≤ i ≤ 12. On the

other hand, it was shown in [41] that T does not admit a GKD. It means that
“T admits a GKD” can not be deleted from statements (iv), (vii) and (viii)
of Theorems 2.1.4 and 2.1.5, as well as from statements (ii), (iii) and (iv) of
Theorem 2.1.6, and also from statements (ii) and (iii) of Theorem 2.1.2.

Remark 2.2.6. We recall that if T ∈ L(X ) is generalized Drazin bounded
below then a pair (M,N) ∈ Red(T ) such that TM is bounded below and TN
is quasinilpotent has the property: N = H0(T ); we are not sure whether
M is uniquely determined (Theorem 2.1.4). Now, suppose that T ∈ L(X )
is generalized Drazin invertible. According to Theorem 1.5.9, then there ex-
ists a unique pair (M,N) ∈ Red(T ) such that TM is invertible and TN is
quasinilpotent: M = K(T ) and N = H0(T ). Since TM is also bounded be-
low then T is generalized Drazin bounded below by Theorem 2.1.4. Is there
a pair (M,H0(T )) ∈ Red(T ), M 6= K(T ), such that TM is bounded below
and TH0(T ) quasinilpotent? The answer is negative! Indeed, if such a pair
exists then 0 6∈ accσ(TM) since 0 6∈ accσ(T ). Consequently, TM is invertible
by Corollary 1.4.10(iii) and hence M = K(T ). Similarly, if T is generalized
Drazin invertible then there is a unique decomposition (M,N) of X which
completely reduced T and such that TM is surjective and TN is quasinilpotent:
(M,N) = (K(T ), H0(T )).

2.3 The classes DRi

Applying the same method as in the proof of Theorem 2.1.2 we can prove the
following result.
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Theorem 2.3.1. Let T ∈ L(X ) and 1 ≤ i ≤ 12. The following conditions are
equivalent:

(i) There exists (M,N) ∈ Red(T ) such that TM ∈ Ri and TN is nilpotent, that
is T ∈ DRi;

(ii) T is of Kato type and 0 6∈ accσRi
(T );

(iii) T is of Kato type and 0 /∈ intσRi
(T );

(iv) There exists a projection P ∈ L(X ) that commutes with T such that
T + P ∈ Ri and TP is nilpotent.

Using Theorems 1.4.14, 1.4.15 and 1.5.3 we see that if i = 9 (i = 12) then
Conditions (i)-(iv) of Theorem 2.3.1 are equivalent to the assertion that T is
B-Fredholm (T is B-Weyl), while if i = 3 these conditions are equivalent to
the fact that T is Drazin invertible.

Corollary 2.3.2. Let T ∈ L(X ) and suppose that 0 ∈ ∂σRi
(T ), 1 ≤ i ≤ 12.

Then T is of Kato type if and only if T belongs to the class DRi.

Proof. Follows from the equivalence (i) ⇐⇒ (iii) of Theorem 2.3.1.

Remark 2.3.3. Corollary 2.3.2(i = 3) and Theorem 1.5.3 give the following
result:

Let T ∈ L(X ) and suppose that 0 ∈ ∂σ(T ). Then T is of Kato type if and
only if 0 is a pole of the resolvent of T .

This result was proved by P. Aiena and E. Rosas [3, Theorem 2.9].

We recall that for every linear operator T acting on a Banach space X
and every n ∈ N0 the operator Tn : R(T n) → R(T n) is defined as Tnx = Tx
for x ∈ R(T n). Clearly, Tn is linear operator and T0 = T . Further, let
c′n(T ) = dimN(T n+1)/N(T n) and cn(T ) = dimR(T n)/R(T n+1). According
to [43, Lemma 1 and Lemma 2], c′n(T ) = dim(N(T ) ∩ R(T n)) and cn(T ) =
codim(R(T )+N(T n)), so the sequences (c′n(T ))n and (cn(T ))n are non-increasing.
In particular, c′0(T ) = α(T ) and c0(T ) = β(T ). The sequence ((kn(T ))n is given
by

kn(T ) = dim(R(T n) ∩N(T ))/(R(T n+1) ∩N(T )),

and equivalently

kn(T ) = dim(R(T ) +N(T n+1))/(R(T ) +N(T n)).

From this it is easily seen that

c′n(T ) = kn(T ) + c′n+1(T ) and cn(T ) = kn(T ) + cn+1(T ), (2.1)

and that an operator T ∈ L(X ) is Kato if and only if R(T ) is closed and
ki(T ) = 0 for all i ≥ 0.
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Remark 2.3.4. (i) Suppose that X is a Banach space and let T ∈ L(X ). If
(M,N) ∈ Red(T ) and if TN is nilpotent, then the following statements are
equivalent:
(a) asc(Tn) <∞ for every n ∈ N0;
(b) asc(Tn) <∞ for some n ∈ N0;
(c) asc(TM) <∞.

The implication (a) =⇒ (b) is obvious.

(b) =⇒ (c). Let asc(Tn) <∞ for some n ∈ N0. It is evident that c′p(Tn) = 0 for
some p. From [8, Lemma 3.1] it follows that c′n+p(T ) = c′p(Tn) = 0 and therefore
asc(T ) <∞. According to the proof of Lemma 1.4.7, we get asc(TM) <∞.

(c) =⇒ (a). Suppose that asc(TM) <∞ and let n ∈ N0. Since TN is nilpotent
then asc(TN) is finite, and thus asc(T ) < ∞ by the proof of Lemma 1.4.7.
There exists p ≥ n such that c′p(T ) = 0. From [8, Lemma 3.1] it follows
c′p−n(Tn) = c′p(T ) = 0, and thus asc(Tn) <∞.

Similarly, if (M,N) ∈ Red(T ) and if TN is nilpotent, then the following
statements are equivalent:
(a) dsc(Tn) <∞ for every n ∈ N0;
(b) dsc(Tn) <∞ for some n ∈ N0;
(c) dsc(TM) <∞.

(ii) If Tn is upper (resp. lower) semi-Fredholm for some n ≥ 0 then R(Tm)
is closed, Tm is upper (resp. lower) semi-Fredholm and ind(Tm) = ind(Tn) for
every m ≥ n [13].

Similar to the definitions of the classes BΦ(X ) and BW(X ), the classes
BRi are introduced and studied [8]. In what follows we establish a relationship
between classes BRi and DRi in the case of Banach spaces. For the case of a
Hilbert space see [8, Theorem 3.12].

Proposition 2.3.5. Let X be a Banach space and T ∈ L(X ). If
i ∈ {1, 2, 4, 5, 7, 8, 10, 11} then the following statements are equivalent:

(i) T is of Kato type and T ∈ BRi;

(ii) T ∈ DRi.

Proof. (i) =⇒ (ii). Suppose that T is of Kato type and that T ∈ BΦ+(X ).
There exist two closed T -invariant subspaces M and N such that X = M⊕N ,
TM is Kato and TN is nilpotent of degree d. Also, there exists n ≥ 0 such that
R(T n) is closed and Tn is upper semi-Fredholm. From c′n(T ) = dim(N(T ) ∩
R(T n)) = α(Tn) < ∞ and from the fact that (c′k(T ))k is a non-increasing
sequence, there exists p ≥ max{d, n} such that c′p(T ) = c′p+1(T ) = · · · < ∞.
Since (TN)p = 0, c′p(TN) = 0 and thus c′p(TM) = c′p(TM)+c′p(TN) = c′p(T ) <∞.
Since kj(TM) = 0 for each j ≥ 0 then (2.1) gives α(TM) = c′0(TM) = c′p(TM) <
∞. Since TM has closed range, it follows that TM is upper semi-Fredholm.
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In addition, if T ∈ BM(X ), then c′n(T ) = α(Tn) = 0, so α(TM) =
c′p(TM) = c′p(T ) = 0, and hence TM is bounded below. Further, if T ∈ BB+(X ),
then TM is upper semi-Browder by Remark 2.3.4.

Let T ∈ BW+(X ). It follows that R(T p) = R((TM)p) ⊂ M , R(T p) is
closed and ind(Tp) = ind(Tn) ≤ 0. Since TM is upper semi-Fredholm, then
ind(TM) = ind((TM)p), where (TM)p : R((TM)p) → R((TM)p). It is evident
that Tp = (TM)p, hence ind(TM) = ind((TM)p) = ind(Tp) = ind(Tn) ≤ 0, i.e.
TM ∈ W+(X ), so T ∈ DW+(X ).

The remaining part can be proved similarly.

(ii) =⇒ (i). Let T ∈ DW+(X ). There exists (M,N) ∈ Red(T ) such that TM
is upper semi-Weyl and TN is nilpotent. Then R(T p) is closed and R(T p) =
R((TM)p) ⊂ M for sufficiently large p. From Tp = (TM)p we conclude that Tp
is upper semi-Fredholm and ind(Tp) = ind((TM)p) = ind(TM) ≤ 0. It means
that Tp is upper semi-Weyl, so T ∈ BW+(X). Using the similar technique we
can prove the remaining part.

Recall that for a Riesz operator T ∈ L(X ) with infinite spectrum we have
0 ∈ σgK(T ) ⊂ σKt(T ), so T is not of Kato type. It means that the condition
that T is of Kato type can not be omitted from statement (iii) of Theorem 2.3.1
if 1 ≤ i ≤ 12, as well as from statement (ii) of Theorem 2.3.1 if 4 ≤ i ≤ 12.
The following example ensures that the condition that T is of Kato type in
statement (ii) of Theorem 2.3.1 can not be omitted if i ∈ {1, 2, 3}.

Example 2.3.6. The space `1(N) consists of all complex sequences x = (xi) =
(x1, x2, · · · ) such that

∑∞
i=1 |xi| converges. It is a Banach space with norm

given by

‖x‖ =
∞∑
i=1

|xi|.

Let B : `1(N)→ `1(N) be defined by

B(x1, x2, x3, · · · ) = (0, x1,
1

2
x2,

1

3
x3, · · · ), (x1, x2, x3, · · · ) ∈ `1(N).

Then B is a quasinilpotent (but not nilpotent) operator of the space L(`1(N))
[69, p. 280]. It means that 0 is not an accumulation point of σ(B), σap(B) and
σsu(B). What is more, B is not Drazin invertible [48, Example 8.1]. According
to Corollary 2.3.2(i = 3), B is not of Kato type.

2.4 Applications

For T ∈ L(X ) we define the spectra with respect to the sets gDRi, 1 ≤ i ≤ 12,
in a classical way:

σgDRi
(T ) = {λ ∈ C : T − λI 6∈ gDRi}, 1 ≤ i ≤ 12.
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From Theorems 2.1.2, 2.1.4 and 2.1.5 it follows that

σgDRi
(T ) = σgK(T ) ∪ accσRi

(T )
= σgK(T ) ∪ intσRi

(T ), 1 ≤ i ≤ 12.

}
(2.2)

The theorems mentioned above also imply that σgDL(X )−1(T ) = σgDB(T ) is
the generalized Drazin spectrum of T , and that σgDM(T ) = σgDB+(T ) and
σgDQ(T ) = σgDB−(T ). The following scheme is clear:

σgDΦ+
(T ) ⊂ σgDW+

(T ) ⊂ σgDM(T ) ⊂ σap(T )

⊂ ⊂

σgK(T ) ⊂ σgDΦ(T ) ⊂ σgDW (T ) ⊂ σgD(T )

⊂ ⊂

σgDΦ− (T ) ⊂ σgDW− (T ) ⊂ σgDQ(T ) ⊂ σsu(T )

Proposition 2.4.1. Let T ∈ L(X ) and 1 ≤ i ≤ 12. If σRi
(T ) = ∂σRi

(T ), then
σgK(T ) = σgDRi

(T ). In particular, if σ(T ) is at most countable or contained
in a line, then σgK(T ) = σgD(T ).

Proof. Since σRi
(T ) = ∂σRi

(T ), then from Proposition 1.1.1(iii) we conclude
that intσRi

(T ) = ∅. The desired result follows from (2.2).

As examples of operators with the spectrum contained in a line we mention
self-adjoint and unitary operators on a Hilbert space. The spectrum of a Riesz
operator is at most countable.

Proposition 2.4.2. Let T ∈ L(X ) and 1 ≤ i ≤ 12. The following statements
hold:

(i) σgDRi
(T ) ⊂ σDRi

(T ) ⊂ σRi
(T ) ⊂ σ(T );

(ii) σgDRi
(T ) is a compact subset of C;

(iii) σRi
(T ) \ σgDRi

(T ) consists of at most countably many isolated points.

Proof. (i). It is obvious.

(ii). It suffices to prove that σgDRi
(T ) is closed since it is bounded by (i). If

λ0 6∈ σgDRi
(T ), then T − λ0I ∈ gDRi and by Proposition 2.1.1 there exists

ε > 0 such that T − λ0I − λI ∈ Ri ⊂ gDRi for 0 < |λ| < ε. It means that
D(λ0, ε) ⊂ C \ σgDRi

(T ), where D(λ0, ε) is an open disc centered at λ0 with
radius ε. Consequently, σgDRi

(T ) is closed.

(iii). If λ ∈ σRi
(T )\σgDRi

(T ), then λ ∈ σRi
(T ) and T−λI ∈ gDRi. Applying

Proposition 2.1.1 we obtain that λ ∈ isoσRi
(T ), and hence σRi

(T ) \ σgDRi
(T )

consists of at most countably many isolated points.

Corollary 2.4.3. Let T ∈ L(X ). Then the following inclusions hold:

(i) accσap(T ) \ accσB+(T ) ⊂ σgK(T );

(ii) accσsu(T ) \ accσB−(T ) ⊂ σgK(T );
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(iii) accσ(T ) \ accσB(T ) ⊂ σgK(T );

(iv) intσap(T ) \ intσB+(T ) ⊂ σgK(T );

(v) intσsu(T ) \ intσB−(T ) ⊂ σgK(T );

(vi) intσ(T ) \ intσB(T ) ⊂ σgK(T ).

Proof. Follows from the equivalences (iii) ⇐⇒ (vii) and (iv) ⇐⇒ (viii) in
Theorems 2.1.4 and 2.1.5.

Remark 2.4.4. Let T ∈ L(X ) be a Riesz operator with infinite spectrum.
As we mentioned earlier, T does not admit a GKD (more precisely, σgK(T ) =
{0}, see [42, Example 1]). It is interesting to note that the same follows
from Corollary 2.4.3. Namely, σB(T ) = {0} and so 0 6∈ accσB(T ), while
0 ∈ accσ(T ). Therefore, 0 ∈ accσ(T ) \ accσB(T ) and hence 0 ∈ σgK(T ) by
Corollary 2.4.3. On the other hand, if 0 6= λ ∈ C then T − λI is Browder.
Consequently, T − λI admits a GKD for 0 6= λ ∈ C, and hence σgK(T ) = {0}.

Theorem 2.4.5. Let T ∈ L(X ). Then the following inclusions hold:

∂σRi
(T ) ∩ accσRi

(T ) ⊂ σgK(T ), 1 ≤ i ≤ 12. (2.3)

In addition,

∂σB+(T ) ∩ accσap(T ) ⊂ σgK(T );

∂σB−(T ) ∩ accσsu(T ) ⊂ σgK(T );

∂σB(T ) ∩ accσ(T ) ⊂ σgK(T ).

Proof. According to Theorem 2.1.3 and Corollary 2.1.7,

∂σRi
(T ) ∩ accσRi

(T ) = acc σRi
(T ) \ intσRi

(T ) ⊂ σgK(T ), 1 ≤ i ≤ 12.

Moreover, suppose that λ ∈ ∂σB+(T )∩accσap(T ) and T−λ admits a GKD.
Then λ /∈ intσB+(T ) and from the equivalence (viii)⇐⇒(iii) in Theorem 2.1.4
we get that λ /∈ accσap(T ), a contradiction.

The remaining inclusions can be proved analogously.

Corollary 2.4.6. Let T ∈ L(X ) and 1 ≤ i ≤ 12. Then the set ∂σRi
(T ) \

σgK(T ) consists of at most countably many points.

Proof. From (2.3) it follows that

∂σRi
(T ) ⊂ σgK(T ) ∪ isoσRi

(T ), 1 ≤ i ≤ 12,

which implies that
∂σRi

(T ) \ σgK(T ) ⊂ isoσRi
(T ).

Consequently, ∂σRi
(T ) \ σgK(T ) is at most countable.
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Theorem 2.4.7. Let T ∈ L(X ). Then

∂σgDM(T ) ⊂ ∂σgDW+(T ) ⊂ ∂σgDΦ+(T )
⊂ ⊂

∂σgD(T ) ⊂ ∂σgDW(T ) ⊂ ∂σgDΦ(T ) ⊂ ∂σgK(T )
⊂ ⊂

∂σgDQ(T ) ⊂ ∂σgDW−(T ) ⊂ ∂σgDΦ−(T )

In addition,

∂σgDΦ(T ) ⊂ ∂σgDΦ+(T ), ∂σgDΦ(T ) ⊂ ∂σgDΦ−(T ),

∂σgDW(T ) ⊂ ∂σgDW+(T ), ∂σgDW(T ) ⊂ ∂σgDW−(T ),

and

ησgK(T ) = ησgDΦ+(T ) = ησgDW+(T ) = ησgDM(T )
= ησgDΦ−(T ) = ησgDW−(T ) = ησgDQ(T )

= ησgDΦ(T ) = ησgDW(T ) = ησgD(T ).

 (2.4)

Proof. According to Proposition 1.1.3 it is sufficient to prove the inclusions:

∂σgD(T ) ⊂ σgK(T ); ∂σgDM(T ) ⊂ σgK(T ); ∂σgDW+(T ) ⊂ σgK(T );

∂σgDΦ+(T ) ⊂ σgK(T ); ∂σgDQ(T ) ⊂ σgK(T ); ∂σgDW−(T ) ⊂ σgK(T );

∂σgDΦ−(T ) ⊂ σgK(T ); ∂σgDW(T ) ⊂ σgK(T ); ∂σgDΦ(T ) ⊂ σgK(T ).

We will only prove ∂σgD(T ) ⊂ σgK(T ) since the remaining inclusions can be
proved analogously.

Suppose that λ0 ∈ ∂σgD(T ). From (2.2) and from the fact that σgD(T ) is
closed, it follows that

λ0 ∈ σgD(T ) = σgK(T ) ∪ intσ(T ). (2.5)

We prove that
λ0 /∈ intσ(T ). (2.6)

Suppose on the contrary that λ0 ∈ intσ(T ). Since intσ(T ) is an open set,
then there exists an ε > 0 such that D(λ0, ε) ⊂ intσ(T ). It follows that
D(λ0, ε) ⊂ σgD(T ), which contradicts the fact that λ0 ∈ ∂σgD(T ). Now, (2.5)
and (2.6) imply that λ0 ∈ σgK(T ).

Proposition 2.4.8. Let T ∈ L(X ) and 1 ≤ i ≤ 12. Then the following
statements are equivalent:

(i) σ(T ) is at most countable;

(ii) σgK(T ) is at most countable;

(iii) σgDRi
(T ) is at most countable.

In that case σgK(T ) = σgDRi
(T ). In particular, σ(T ) is a finite set if and

only if σgK(T ) = ∅ if and only if σgDRi
(T ) = ∅.
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Proof. The equivalence (ii) ⇐⇒ (iii) and identity σgK(T ) = σgDRi
(T ) are

consequences of (2.4) and Lemma 1.1.4. It remains to prove (i) ⇐⇒ (ii).

(i) =⇒ (ii). Follows from σgK(T ) ⊂ σ(T );

(ii) =⇒ (i). From (2.4) and Lemma 1.1.4 we conclude that σgD(T ) = acc σ(T )
is at most countable. According to Proposition 1.1.1(vi), σ(T ) is at most
countable.

We note that σ(T ) is finite if and only if σgD(T ) is empty (apply Proposition
1.1.1(v)). The remaining part follows from (2.4) and Lemma 1.1.4.

The fact that σgK(T ) is empty if and only if σ(T ) is finite has already been
proved in [42, Theorem 5].

Corollary 2.4.9. ([42, Theorem 3]) Let T ∈ L(X ) and let ρgK(T ) has only
one component. Then

σgK(T ) = σgD(T ).

Proof. Since ρgK(T ) has only one component, it follows that σgK(T ) has no
holes, and so σgK(T ) = ησgK(T ). From (2.4) it follows that σgD(T ) ⊃
σgK(T ) = ησgK(T ) = ησgD(T ) ⊃ σgD(T ), and hence σgD(T ) = σgK(T ).

We now consider some special situations.

Theorem 2.4.10. Let T ∈ L(X ) and 1 ≤ i ≤ 12. If

∂σRi
(T ) ⊂ accσRi

(T ), (2.7)

then
∂σRi

(T ) ⊂ σgK(T ) ⊂ σKt(T ) ⊂ σeK(T ) ⊂ σRi
(T ) (2.8)

and
ησRi

(T ) = ησgK(T ) = ησKt(T ) = ησeK(T ). (2.9)

Proof. From (2.7) it follows that ∂σRi
(T ) ∩ accσRi

(T ) = ∂σRi
(T ). Now (2.3)

implies that ∂σRi
(T ) ⊂ σgK(T ). (2.9) follows from (2.8) and Proposition

1.1.3.

Theorem 2.4.11. Let T ∈ L(X ) and 1 ≤ i ≤ 12. If

σRi
(T ) = ∂σRi

(T ) = acc σRi
(T ), (2.10)

then

σgK(T ) = σKt(T ) = σeK(T ) = σgDRi
(T ) = σDRi

(T ) = σRi
(T ). (2.11)

Proof. From (2.10) and Theorem 2.4.10 it follows that

σRi
(T ) = ∂σRi

(T ) ⊂ σgK(T ) ⊂ σKt(T ) ⊂ σeK(T ) ⊂ σRi
(T ),

and so σRi
(T ) = σgK(T ) = σKt(T ) = σeK(T ). Since σRi

(T ) = σgK(T ) ⊂
σgDRi

(T ) ⊂ σDRi
(T ) ⊂ σRi

(T ), then (2.11) is proved.
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Corollary 2.4.12. Let T ∈ L(X ) and 1 ≤ i ≤ 12. If σRi
(T ) = ∂σ(T ), and

every λ ∈ ∂σ(T ) is not isolated in σ(T ) then

σgK(T ) = σKt(T ) = σeK(T ) = σgDRi
(T ) = σDRi

(T ) = σRi
(T ).

Proof. Firstly, we will prove σRi
(T ) = ∂σRi

(T ). The inclusion ∂σRi
(T ) ⊂

σRi
(T ) is evident. Let λ ∈ σRi

(T ) and let D(λ, r) be an open disc centered at
λ with radius r > 0. It is clear that σRi

(T )∩D(λ, r) 6= ∅. By assumption, λ ∈
∂σ(T ), so ∅ 6= ρ(T )∩D(λ, r) ⊂ ρRi

(T )∩D(λ, r). Consequently, λ ∈ ∂σRi
(T ).

On the other hand, using Proposition 1.1.2 we obtain

σRi
(T ) = ∂σ(T ) = ∂σ(T ) ∩ accσ(T ) = acc ∂σ(T ) = acc σRi

(T ).

Now we have σRi
(T ) = ∂σRi

(T ) = accσRi
(T ), and the result follows from

Theorem 2.4.11.

Example 2.4.13. Let U and V be as in Example 2.2.1. We have already
mentioned that σ(U) = σ(V ) = D and σap(U) = σsu(V ) = S. Also, σΦ(U) =
σΦ(V ) = S (see [76, Theorem 4.2]). According to [57, Proposition 19.1], S =
∂σΦ(U) ⊂ σΦ+(U) ∩ σΦ−(U). On the other hand, S = σΦ(U) = σΦ+(U) ∪
σΦ−(U), so σΦ+(U) ⊂ S and σΦ−(U) ⊂ S. It follows that σΦ(U) = σΦ+(U) =
σΦ−(U) = S. Now, the operator U satisfies the conditions of Corollary 2.4.12
(i = 1, 7, 8, 9), so we have

S = σgK(U) = σKt(U) = σeK(U)

= σgDM(U) = σgDW+(U) = σgDΦ+(U) = σgDΦ−(U) = σgDΦ(U)

= σDM(U) = σDW+(U) = σDΦ+(U) = σDΦ−(U) = σBΦ(U).

What is more, from σeK(U) = σap(U) = S and from (1.5) we obtain σK(U) = S.
In the same manner as above we can see that σΦ(V ) = σΦ+(V ) = σΦ−(V ) =

S and

S = σgK(V ) = σKt(V ) = σeK(V ) = σK(V )

= σgDQ(V ) = σgDW−(V ) = σgDΦ−(V ) = σgDΦ+(V ) = σgDΦ(V )

= σDQ(V ) = σDW−(V ) = σDΦ−(V ) = σDΦ+(V ) = σBΦ(V ).

If T ∈ L(X ) then r(T ) = max{|λ| : λ ∈ σ(T )} denotes the spectral radius of
T . A classical result indicates that r(T ) = limn→∞ ||T n||1/n.

Example 2.4.14. A weighted right shift T on `2(N) is defined by

T (x1, x2, · · · ) = (0, w1x1, w2x2, · · · ) for all (x1, x2, · · · ) ∈ `2(N),

where (wn) is a given weight sequence. We always assume that 0 < wn ≤
1 for all n ∈ N. A routine calculation shows that T is a bounded lin-
ear operator on `2(N) and that ‖T n‖ = sup

k∈N
wk · · ·wk+n−1 for every n ∈
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N. It is immediate that r(T ) = lim
n→∞

sup
k∈N

(wk · · · ·wk+n−1)1/n. If we suppose

that lim
n→∞

inf
k∈N

(wk · · ·wk+n−1)1/n = r(T ), then [52, Proposition 1.6.15] implies

σap(T ) = {λ ∈ C : |λ| = r(T )}. Thus, σap(T ) = ∂σap(T ) = accσap(T ). Now,
from Theorem 2.4.11 it follows that

σgK(T ) = σKt(T ) = σK(T ) = σap(T )

= σgDM(T ) = σgDW+(T ) = σgDΦ+(T )

= σDM(T ) = σDW+(T ) = σDΦ+(T )

= {λ ∈ C : |λ| = r(T )}.
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Chapter 3

Generalized inverses of operator
matrices

Let MC =

(
A C
0 B

)
be an upper triangular operator matrix acting on the

Banach space X ⊕ Y or separable Hilbert space H ⊕ K. The sets
⋂
C

σ∗(MC),

where C ∈ L(Y ,X ) (or C ∈ L(K,H)) and σ∗ = {σ, σl, σr, σK , σΦ, σW , σB, · · · },
have been widely studied; for example see [6, 26, 32, 73]. In this chapter we
investigate the set

⋂
C

σgD(MC), where C ∈ L(Y ,X ) or C ∈ L(K,H). What is

more, the case of Drazin invertibility is also considered.

3.1 Upper triangular operator matrices

Let X = M1 ⊕ M2 and Y = N1 ⊕ N2, where M1,M2 are closed subspaces
of X , and N1, N2 are closed subspaces of Y . It is a classical fact that there
exist projections P1, P2 ∈ L(X ) such that R(P1) = M1, N(P1) = M2, R(P2) =
M2, N(P2) = M1 (see [51, Korolar 8.4.4]). Similarly, there exist projections
Q1, Q2 ∈ L(Y) such that R(Q1) = N1, N(Q1) = N2, R(Q2) = N2, N(Q2) =
N1. For given bounded linear operators U : M1 → N1, V : M2 → N1,
S : M1 → N2 and W : M2 → N2 we may define A : X → Y by

A =

(
U V
S W

)
:

(
M1

M2

)
→
(
N1

N2

)
.

In other words, for x ∈ X we define Ax = Ux1 + V x2 + Sx1 + Wx2, where
x1 ∈ M1 and x2 ∈ M2 are unique vectors such that x = x1 + x2. It is clear
that A is linear. Since

‖Ax‖ ≤ ‖U‖‖x1‖+ ‖V ‖‖x2‖+ ‖S‖‖x1‖+ ‖W‖‖x2‖
≤ 2K(‖x1‖+ ‖x2‖) ≤ 2K(‖P1‖+ ‖P2‖)‖x‖,
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Generalized inverses of operator matrices

where K = max{‖U‖, ‖V ‖, ‖S‖, ‖W‖}, it follows that A ∈ L(X ,Y). On
the other hand, for every A ∈ L(X ,Y) it is possible to find bounded linear
operators U : M1 → N1, V : M2 → N1, S : M1 → N2 and W : M2 → N2

such that Ax = Ux1 + V x2 + Sx1 + Wx2, where x1 ∈ M1, x2 ∈ M2 and
x = x1 + x2. Indeed, let Uw = Q1Aw, Sw = Q2Aw for every w ∈M1, and let
V z = Q1Az, Wz = Q2Az for every z ∈ M2. Clearly, U, V, S,W are bounded
linear operators, and

Ax = (Q1 +Q2)A(x1 + x2) = Q1Ax1 +Q1Ax2 +Q2Ax1 +Q2Ax2

= Ux1 + V x2 + Sx1 +Wx2.

For a deeper discussion on this topic we refer the reader to [59, Glava 2].
Now we consider a particular situation. Let X̃ be the set

X̃ = {(x, y) : x ∈ X , y ∈ Y}.

X̃ is a vector space with standard addition and multiplication by scalars. The
space X̃ endowed with the norm ||(x, y)|| = (||x||2 + ||y||2)

1
2 becomes a Banach

space. The sets M1 = {(x, 0) : x ∈ X} and M2 = {(0, y) : y ∈ Y} are closed
subspaces of X̃ and X̃ = M1 ⊕M2. Let consider the operator M : X̃ → X̃
defined by

M(x, y) = (Ax+ Cy,By) for every (x, y) ∈ X̃ ,

where A ∈ L(X ), B ∈ L(Y) and C ∈ L(Y ,X ) are given operators. It is very
common to represent M as

M =

(
A C
0 B

)
,

since

(
A C
0 B

)(
x
y

)
=

(
Ax+ Cy
By

)
. Obviously, M is linear. Let define

operators U :M1 →M1, V :M2 →M1, S :M1 →M2 and W :M2 →M2

by

U(x, 0) = (Ax, 0), V (0, y) = (Cy, 0),

S(x, 0) = (0, 0), W (0, y) = (0, By).

Then, S is the zero operator and ‖U(x, 0)‖ = ‖Ax‖ ≤ ‖A‖‖(x, 0)‖, so U is
bounded. In the same manner we can see that V and W are also bounded.
Now, M(x, y) = U(x, 0) + V (0, y) +W (0, y), i.e.

M =

(
U V
0 W

)
:

(
M1

M2

)
→
(
M1

M2

)
. (3.1)

By the preceding paragraph, M is bounded, and it is said that M is an up-
per triangular operator matrix. In addition, if A and B are fix, and C is
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3.1. Upper triangular operator matrices

arbitrary, we write MC(A,B) =

(
A C
0 B

)
. To shorten notation, we use

MC for MC(A,B) when no confusion can arise. In particular, if C = 0 then(
A 0
0 B

)
is denoted by A⊕B. Clearly,M1 andM2 are (A⊕B)−invariant,

(A⊕B)M1 = U , and (A⊕B)M2 = W . For λ ∈ C, let consider the mapping J :
N(A−λI)→ N(U −λI) defined by Jx = (x, 0). This mapping is well-defined
since for every x ∈ N(A−λI) we have (U−λI)(x, 0) = ((A−λI)x, 0) = (0, 0),
so Jx ∈ N(U − λI). It is easy to check that J is an isomorphism between
N(A− λI) and N(U − λI). Consequently,

α(A− λI) = α(U − λI). (3.2)

In particular,

A− λI is one-one if and only if U − λI is one-one. (3.3)

It is a matter of routine to show that:

β(A− λI) = β(U − λI), (3.4)

A− λI is onto if and only if U − λI is onto, (3.5)

A− λI has closed range if and only if U − λI has closed range. (3.6)

(3.3), (3.5) and (3.6) imply

σap(A) = σap(U), σsu(A) = σsu(U), σ(A) = σ(U). (3.7)

Similarly,

α(B − λI) = α(W − λI), β(B − λI) = β(W − λI) (3.8)

σap(B) = σap(W ), σsu(B) = σsu(W ), σ(B) = σ(W ). (3.9)

According to Lemma 1.4.7 and (3.2)-(3.9), we obtain:

α((A⊕B)− λI) = α(U − λI) + α(W − λI) = α(A− λI) + α(B − λI),
(3.10)

β((A⊕B)− λI) = β(U − λI) + β(W − λ) = β(A− λI) + β(B − λI),
(3.11)

σ∗(A⊕B) = σ∗(U) ∪ σ∗(W ) = σ∗(A) ∪ σ∗(B), (3.12)

where σ∗ = {σap, σsu, σ}.
Finally, suppose that some M ∈ L(X̃ ) possesses the decomposition (3.1) (it

means that M has an upper triangular form with respect to the decomposition
X̃ = M1 ⊕M2). Then there exist A ∈ L(X ), B ∈ L(Y) and C ∈ L(Y ,X )
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such that M =

(
A C
0 B

)
, and this fact will be used later (see Proposition

3.2.4). Indeed, let

Ax = T1U(x, 0) for every x ∈ X ,
By = T2W (0, y) for every y ∈ Y ,
Cy = T1V (0, y) for every y ∈ Y ,

where bounded linear operators T1 :M1 → X and T2 :M2 → Y are defined by
T1(x, 0) = x and T2(0, y) = y for every (x, 0) ∈ M1 and (0, y) ∈ M2. Clearly,
(x, 0) = (T1(x, 0), 0) and (0, y) = (0, T2(0, y)) for every x ∈ X and y ∈ Y .
Consequently, A, B and C are bounded linear operators, U(x, 0) = (Ax, 0),
W (0, y) = (0, By) and V (0, y) = (Cy, 0). Now we have M(x, y) = U(x, 0) +

V (0, y) +W (0, y) = (Ax+ Cy,By), so M =

(
A C
0 B

)
.

3.2 Generalized Drazin invertibility of MC

If H and K are Hilbert spaces then H × K = {(h, k) : h ∈ H, k ∈ K} is a
Hilbert space with the inner product defined by

((h1, k1), (h2, k2)) = (h1, h2)1 + (k1, k2)2,

where (· , ·)1 is the inner product in H and (· , ·)2 is the inner product in K (for
example, see problem 124 in [18]). The Hilbert space H×K is usually denoted
by H⊕K. In addition, if H and K are separable Hilbert spaces then H⊕K is
also separable since the Cartesian product of two countable sets is countable.
In what follows, H and K will be always separable Hilbert spaces.

H. K. Du and J. Pan [28] have considered the invertible completions of
upper triangular operator matrices acting on the separable Hilbert spaceH⊕K.

Theorem 3.2.1. ([28, Theorem 2]) For given A ∈ L(H) and B ∈ L(K), we
have ⋂

C∈L(K,H)

σ(MC) = σap(A) ∪ σsu(B) ∪ {λ ∈ C : α(B − λI) 6= β(A− λI)}.

J. K. Han, H. Y. Lee and W. Y. Lee [32] have extended the above result to
Banach spaces.

Theorem 3.2.2. ([32, Theorem 2]) A 2×2 operator matrices MC is invertible
for some C ∈ L(Y ,X ) if and only if A ∈ L(X ) and B ∈ L(Y) satisfy the
following conditions:

(i) A is left invertible;
(ii) B is right invertible;
(iii) X/R(A) ∼= N(B).
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The generalized Drazin invertibility of upper triangular operator matrices are
studied in [25, 70, 72]. Necessary conditions for the existence of C ∈ L(Y ,X )
such that MC is generalized Drazin invertible are presented in [70].

Theorem 3.2.3. ([70, Theorem 3.16]) Let A ∈ L(X ), B ∈ L(Y) and C ∈
L(Y ,X ). If MC is generalized Drazin invertible, then the following statements
hold:

(i) σl(A) does not cluster at 0;
(ii) σr(B) does not cluster at 0;
(iii) There exists δ > 0 such that β(A− λI) = α(B − λI) for 0 < |λ| < δ.

We recall that D. Djordjević and P. Stanimirović showed that if A ∈ L(X )
and B ∈ L(Y) are generalized Drazin invertible, then (MC)d exists and has
an upper triangular form for every C ∈ L(Y ,X ) [25, Theorem 5.1]. In the
following proposition we prove the converse.

Proposition 3.2.4. Let A ∈ L(X ) and B ∈ L(Y). If (MC)d exists for some
C ∈ L(Y ,X ) and has an upper triangular form, then A and B are generalized
Drazin invertible.

Proof. Suppose that there exists some C ∈ L(Y ,X ) such that MC is general-

ized Drazin invertible, and let (MC)d =

(
U V
0 W

)
, where U ∈ L(X ), V ∈

L(Y ,X ) and W ∈ L(Y). It is easy to check that the equations MC(MC)d =
(MC)dMC and (MC)dMC(MC)d = (MC)d imply

AU = UA, BW = WB, UAU = U, WBW = W. (3.13)

A routine calculation shows that

(
A− AUA S

0 B −BWB

)
is quasinilpo-

tent, where S = C − AUC − AV B − CWB, since MC − MC(MC)dMC is

quasinilpotent. Consequently,

(
A− AUA− λI S

0 B −BWB − λI

)
is in-

vertible for every 0 6= λ ∈ C. Using Theorem 3.2.2 we obtain σl(A− AUA) =
{0} and σr(B −BWB) = {0}. From Proposition 1.4.11 it follows that

σ(A− AUA) = {0} and σ(B −BWB) = {0}. (3.14)

The equations (3.13) and (3.14) ensure that A and B are generalized Drazin
invertible.

Remark 3.2.5. In this remark we will use standard notions related to Hilbert
spaces and we refer to [60, Glava 3] for their definitions and properties. Let H1

be a closed subspace of a separable Hilbert space H. With the inner product
defined by restriction, H1 is a Hilbert space in its own right. Let M be a
countable dense set in H and let S = {P (x) : x ∈M}, where P ∈ L(H) is the
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orthogonal projection on H1. It is clear that S is countable. We claim that
S = H1. Let x ∈ H1 and ε > 0. There exists z ∈ M such that ‖z − x‖ < ε.
The vectors Pz − x and z − Pz are mutually orthogonal, so

‖Pz − x‖2 ≤ ‖Pz − x‖2 + ‖z − Pz‖2 = ‖z − x‖2 < ε2.

Consequently, ‖Pz − x‖ < ε, which proves that H1 is separable.

In the following theorem we give sufficient conditions under which MC ∈
L(H⊕K) is generalized Drazin invertible for some C ∈ L(K,H).

Theorem 3.2.6. Let A ∈ L(H) and B ∈ L(K) be such that the following
statements are satisfied:

(i) A and B each admits a GKD;
(ii) σap(A) does not cluster at 0;
(iii) σsu(B) does not cluster at 0;
(iv) There exists δ > 0 such that β(A− λI) = α(B − λI) for 0 < |λ| < δ.

Then there exists C ∈ L(K,H) such that MC is generalized Drazin invertible.

Proof. By assumptions and Theorems 2.1.4 and 2.1.5, there exist closed A-
invariant subspaces H1 and H2 of H, and there exist closed B-invariant sub-
spaces K1 and K2 of K, such that H1 ⊕ H2 = H, K1 ⊕ K2 = K, AH1 = A1

is bounded below, AH2 = A2 is quasinilpotent, BK1 = B1 is surjective and
BK2 = B2 is quasinilpotent.

By Lemma 1.4.7 (see (1.10)), β(A − λI) = β(A1 − λI) + β(A2 − λI) and
α(B − λI) = α(B1 − λI) + α(B2 − λI) for every λ ∈ C. Since A2 and B2 are
quasinilpotent,

β(A− λI) = β(A1 − λI), (3.15)

α(B − λI) = α(B1 − λI), (3.16)

for every λ ∈ C \ {0}. Further, according to Lemma 1.3.5 there exists ε > 0
such that

β(A1) = β(A1 − λI) and α(B1) = α(B1 − λI) for |λ| < ε. (3.17)

Consider λ0 ∈ C such that 0 < |λ0| < min{ε, δ}, where δ is as in (iv). Using
(3.15), (3.16), (3.17) and (iv) we obtain

β(A1) = β(A1 − λ0I) = β(A− λ0I) = α(B − λ0I) = α(B1 − λ0I) = α(B1).

On the other hand, H1, K1, H2 and K2 are separable Hilbert spaces (see
Remark 3.2.5), H1 ⊕ K1 and H2 ⊕ K2 are closed subspaces of H ⊕ K, and
(H1 ⊕ K1) ⊕ (H2 ⊕ K2) = H ⊕ K. Applying Theorem 3.2.1 we conclude that
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there exists an operator C1 ∈ L(K1,H1) such that the operator

(
A1 C1

0 B1

)
:

H1 ⊕K1 → H1 ⊕K1 is invertible. Let define an operator C ∈ L(K,H) by

C =

(
C1 0
0 0

)
:

(
K1

K2

)
→
(
H1

H2

)
.

An easy computation shows that H1⊕K1 and H2⊕K2 are invariant for MC =(
A C
0 B

)
, and also

(MC)H1⊕K1 =

(
A1 C1

0 B1

)
,

(MC)H2⊕K2 =

(
A2 0
0 B2

)
.

Since A2 and B2 are quasinilpotent, then σ((MC)H2⊕K2) = σ(A2) ∪ σ(B2) =
{0}. Consequently, (MC)H2⊕K2 is quasinilpotent. By Theorem 1.5.9, MC is
generalized Drazin invertible.

Corollary 3.2.7. (i) Let A ∈ L(X ) and B ∈ L(Y). Then:

accσl(A) ∪ accσr(B) ∪ G ⊂
⋂

C∈L(Y,X )

σgD(MC),

where G = {λ ∈ C : @δ > 0 such that β(A−λI−λ′I) = α(B−λI−λ′I) for 0 <
|λ′| < δ}.
(ii) Let A ∈ L(H) and B ∈ L(K). Then:

accσap(A) ∪ accσsu(B) ∪ G ⊂
⋂

C∈L(K,H)

σgD(MC) ⊂

⊂ accσap(A) ∪ accσsu(B) ∪ G ∪ σgK(A) ∪ σgK(B).

In particular, if σgK(A) ⊂ accσap(A) and σgK(B) ⊂ accσsu(B), then:⋂
C∈L(K,H)

σgD(MC) = acc σap(A) ∪ accσsu(B) ∪ G.

Proof. (i). Follows from Theorem 3.2.3.

(ii). The result follows from (i) and Theorem 3.2.6 if we notice that σl(·) =
σap(·) and σr(·) = σsu(·) for operators acting on a Hilbert space.

Remark 3.2.8. We recall that σgK(T ) ⊂ σap(T )∩ σsu(T ) for every T ∈ L(X )
(see (1.5)). It means that the above conditions σgK(A) ⊂ accσap(A) and
σgK(B) ⊂ accσsu(B) are satisfied whenever σap(A) = acc σap(A) and σsu(B) =
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accσsu(B). In particular, if U and V are respectively forward and backward
unilateral shift operators on the space `2(N) then σap(U) = acc σap(U) = S and
σsu(V ) = acc σsu(V ) = S (see Example 2.2.1). Further, if T is a Riesz operator,
then by Proposition 2.4.8 or by [42, Theorem 5], σgK(T ) = accσap(T ) =
accσsu(T ) = ∅ if T has finite spectrum, and from [42, Example 1] and Example
2.2.5 we have σgK(T ) = acc σap(T ) = acc σsu(T ) = {0} if the spectrum of T is
infinite.

The following example is from [71], and here we use it to demonstrate that
there exists a nontrivial situation such that the conditions of Theorem 3.2.6
are satisfied.

Example 3.2.9. Let U and V be as in Example 2.2.1. Let define an operator
W as

W =

(
V 0
0 0

)
: `2(N)⊕ `2(N)→ `2(N)⊕ `2(N).

U admits a GKD and 0 6∈ accσap(U). Further, it is evident that W admits
a GKD. By (3.12), σsu(W ) = σsu(V ) ∪ σsu(0) = S ∪ {0}, so 0 6∈ accσsu(W ).
We recall that β(U) = α(V ) = 1. Also, from Lemma 1.3.5 we obtain β(U) =
β(U − λI) and α(V ) = α(V − λI) for 0 < |λ| < δ, where δ > 0 is a constant.
By virtue of (3.10), for 0 < |λ| < δ we have

β(U−λI) = β(U) = α(V ) = α(V −λI) = α(V −λI)+α(0−λI) = α(W−λI).

From Theorem 3.2.6 it follows that there exists C ∈ L(`2(N) ⊕ `2(N), `2(N))
such that

MC =

(
U C
0 W

)
: `2(N)⊕ (`2(N)⊕ `2(N))→ `2(N)⊕ (`2(N)⊕ `2(N))

is generalized Drazin invertible, i.e. 0 6∈
⋂
C∈L(`2(N)⊕`2(N),`2(N)) σgD(MC).

For given A ∈ L(X ) and B ∈ L(Y), the set
⋂
C∈L(Y,X ) σ(MC) is completely

described [32, Corollary 3]. It follows that
⋂
C∈L(Y,X ) σ(MC) is non-empty since

σl(A) and σr(B) are non-empty sets. On the other hand,
⋂
C∈L(Y,X ) σgD(MC)

may be empty, and in the following result we give sufficient and necessary
conditions under which

⋂
C∈L(Y,X ) σgD(MC) = ∅.

Theorem 3.2.10. Let A ∈ L(X ) and B ∈ L(Y). The following statements
are equivalent:
(i)

⋂
C∈L(Y,X )

σgD(MC) = ∅;

(ii) σ(A) and σ(B) are finite;

(iii) σgD(MC) = ∅ for every C ∈ L(Y ,X );

(iv) σgD(MC) = ∅ for some C ∈ L(Y ,X );

(v) σgK(MC) = ∅ for some C ∈ L(Y ,X );
(vi) σgK(MC) = ∅ for every C ∈ L(Y ,X ).
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Proof. (i) =⇒ (ii). Suppose that
⋂

C∈L(Y,X )

σgD(MC) = ∅. By Corollary 3.2.7,

accσl(A) = ∅ and acc σr(B) = ∅, so σl(A) and σr(B) are finite sets. That
σ(A) and σ(B) are finite follows from Proposition 1.4.11.

(ii) =⇒ (iii). We have σgD(A) = acc σ(A) = ∅ and σgD(B) = acc σ(B) = ∅.
From [25, Theoem 5.1] it follows that σgD(MC) ⊂ σgD(A) ∪ σgD(B) for every
C ∈ L(Y ,X ). Consequently, σgD(MC) = ∅ for every C ∈ L(Y ,X ).

The implications (iii) =⇒ (iv), (iv) =⇒ (i) and (vi) =⇒ (v) are clear.

(iv) =⇒ (v) and (iii) =⇒ (vi). Follows from σgK(MC) ⊂ σgD(MC).

(v) =⇒ (iv). Suppose that σgK(MC) = ∅ for some C ∈ L(Y ,X ). From [42,
Theorem 5] it follows that σ(MC) is finite, i.e. σgD(MC) = ∅.

In the Hilbert space setting it is possible to provide another condition which
is equivalent to those in Theorem 3.2.10.

Remark 3.2.11. Let A ∈ L(H) and B ∈ L(K). For arbitrary C ∈ L(K,H),
M. Barraa and M. Boumazgour showed in [6, Theorem 2.5] the inclusion

(σK(A) \ σp(B)) ∪ (σK(B) \ σp(A∗)) ⊂ σK(MC),

where A∗ ∈ L(H) is the Hilbert-adjoint operator of A, and the bar stands for
complex conjugation. It is well known that σd(A) = σp(A∗), and we will have
in mind this observation when we apply the aforementioned result.

Theorem 3.2.12. Let A ∈ L(H) and B ∈ L(K).

(a) Then: (accσK(A)\accσp(B))∪(accσK(B)\accσd(A)) ⊂
⋂

C∈L(K,H)

σgK(MC).

(b) In addition, the following assertions are equivalent:

(i)
⋂

C∈L(K,H)

σgD(MC) = ∅;

(ii)
⋂

C∈L(K,H)

σgK(MC), accσp(B) and accσd(A) are all empty.

Proof. (a) We will prove accσK(A) \ accσp(B) ⊂
⋂
C∈L(K,H) σgK(MC). The

inclusion accσK(B)\ accσd(A) ⊂
⋂
C∈L(K,H) σgK(MC) can be proved similarly.

To obtain a contradiction, let λ 6∈
⋂
C∈L(K,H) σgK(MC) and λ ∈ accσK(A) \

accσp(B). Then, there exists C ∈ L(K,H) such that MC −λI admits a GKD.
According to [41, Theorem 2.2] it follows that there exists ε > 0 such that
MC − λI − λ′I is Kato for 0 < |λ′| < ε. Since λ 6∈ accσp(B), then there exists
ε1 > 0 such that B − λI − λ′I is injective for 0 < |λ′| < ε1. Without loss of
generality we may assume ε = ε1. Now, by [6, Theorem 2.5], A − λI − λ′I is
Kato, i.e., λ 6∈ accσK(A) what is not possible.
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(b) (i) =⇒ (ii). σ(A) and σ(B) are finite by Theorem 3.2.10. Consequently,
accσp(B) and accσd(A) are empty sets. That

⋂
C∈L(K,H)

σgK(MC) = ∅ follows

from
⋂

C∈L(K,H)

σgK(MC) ⊂
⋂

C∈L(K,H)

σgD(MC).

(ii) =⇒ (i). Using (a) we obtain accσK(A) = accσK(B) = ∅, so σK(A) and
σK(B) are finite. By Proposition 1.4.11, we have that σ(A) and σ(B) are also
finite. We apply Theorem 3.2.10 to obtain

⋂
C∈L(K,H)

σgD(MC) = ∅.

In some particular situations generalized Drazin invertibility of MC for
some C ∈ L(K,H) implies that there exists C1 ∈ L(K,H) such that MC1 is
invertible.

Proposition 3.2.13. Let A ∈ L(H) and B ∈ L(K) be Kato operators. If
MC is generalized Drazin invertible for some C ∈ L(K,H), then A is bounded
below, B is surjective, and β(A) = α(B), i.e., MC1 is invertible for some
C1 ∈ L(K,H).

Proof. Theorem 3.2.3 implies 0 6∈ accσap(A) ∪ accσsu(B) and β(A − λI) =
α(B − λI) for 0 < |λ| < δ, where δ > 0 is some constant. A is bounded below
and B is surjective by Corollary 1.4.10. The equality β(A) = α(B) follows
from Lemma 1.3.5. The existence of the operator C1 follows from Theorem
3.2.1.

The following result is an immediate consequence of Proposition 3.2.13 and
Theorem 3.2.1.

Corollary 3.2.14. Let A ∈ L(H) and B ∈ L(K). Then:

σK(A) ∪ σK(B) ∪
⋂

C∈L(K,H)

σgD(MC) =
⋂

C∈L(K,H)

σ(MC).

Corollary 3.2.15. Let A ∈ L(H) and B ∈ L(K). The following statements
are equivalent:
(i)
⋂
C∈L(K,H) σgD(MC) =

⋂
C∈L(K,H) σ(MC);

(ii) σK(A) ∪ σK(B) ⊂
⋂
C∈L(K,H) σgD(MC).

Proof. Apply Corollary 3.2.14.

The following proposition gives necessary and sufficient condition under
which

⋂
C∈L(Y,X ) σgD(MC) =

⋂
C∈L(Y,X ) σ(MC) holds in case of Banach spaces.

Proposition 3.2.16. Let A ∈ L(X ) and B ∈ L(Y). Suppose that

σgD(MC) = σgD(A) ∪ σgD(B) for every C ∈ L(Y ,X ). (3.18)

Then:
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(i)
⋂
C∈L(Y,X ) σgD(MC) = (

⋂
C∈L(Y,X ) σ(MC)) \ (ρgD(A) ∩ ρgD(B));

(ii)
⋂
C∈L(Y,X ) σgD(MC) =

⋂
C∈L(Y,X ) σ(MC) if and only if ρgD(A) ∩ ρgD(B) ⊂

(
⋂
C∈L(Y,X ) σ(MC))c.

Proof. (i). Applying [25, Theorem 5.1] we obtain

⋂
C∈L(Y,X ) σgD(MC) ⊂ (

⋂
C∈L(Y,X ) σ(MC)) \ (ρgD(A) ∩ ρgD(B))

⊂
⋂
C∈L(Y,X ) σ(MC),

}
(3.19)

and it is worth pointing out that these inclusions are true for every A ∈ L(X )
and B ∈ L(Y). On the other hand, let λ 6∈

⋂
C∈L(Y,X ) σgD(MC). There

exists some C ∈ L(Y ,X ) such that λ 6∈ σgD(MC). By assumption, λ 6∈
σgD(MC) = σgD(A) ∪ σgD(B). Consequently, λ ∈ ρgD(A) ∩ ρgD(B), and hence

λ 6∈
(⋂

C∈L(Y,X ) σ(MC)
)
\ (ρgD(A) ∩ ρgD(B)).

(ii). The implication =⇒ follows from (3.19). Suppose that the equality
(3.18) is satisfied and that ρgD(A) ∩ ρgD(B) ⊂ (

⋂
C∈L(Y,X ) σ(MC))c. Using

(i) we deduce
⋂
C∈L(Y,X ) σgD(MC) = (

⋂
C∈L(Y,X ) σ(MC))\ (ρgD(A)∩ρgD(B)) =⋂

C∈L(Y,X ) σ(MC), which is the desired conclusion.

Some sufficient conditions for the equality (3.18) can be found in [70].

The following example shows that if (3.18) is satisfied, then the equality⋂
C∈L(Y,X ) σgD(MC) =

⋂
C∈L(Y,X ) σ(MC) is not always true.

Example 3.2.17. Let both A ∈ L(X ) and B ∈ L(Y) be quasinilpotent.
Clearly, σgD(A) = σgD(B) = ∅. From σgD(MC) ⊂ σgD(A) ∪ σgD(B), we have
σgD(MC) = ∅ for every C ∈ L(Y ,X ), so (3.18) holds. Further, we apply
Theorem 3.2.10 to conclude

⋂
C∈L(Y,X ) σgD(MC) = ∅. On the other hand,⋂

C∈L(Y,X ) σ(MC) ⊂ σ(A) ∪ σ(B) = {0}. It follows that
⋂
C∈L(Y,X ) σ(MC) =

{0} since it is a non-empty set.

In general, the condition ρgD(A) ∩ ρgD(B) ⊂ (
⋂
C∈L(Y,X ) σ(MC))c does not

imply
⋂
C∈L(Y,X ) σgD(MC) =

⋂
C∈L(Y,X ) σ(MC).

Example 3.2.18. Let U , V , W and MC be as in Example 3.2.9. Since σ(U) =
σ(V ) = σ(W ) = D, it follows that σgD(U) = σgD(W ) = D, hence ρgD(U) ∩
ρgD(W ) = C \D. Moreover,

⋂
C∈L(`2(N)⊕`2(N),`2(N)) σ(MC) ⊂ σ(U)∪ σ(W ) = D.

We see that

ρgD(U) ∩ ρgD(W ) = C \ D ⊂

 ⋂
C∈L(`2(N)⊕`2(N),`2(N))

σ(MC)

c

.
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From Example 3.2.9 we know that 0 6∈
⋂
C∈L(`2(N)⊕`2(N),`2(N)) σgD(MC). On

the other hand, we recall that the operator W is not surjective, hence 0 ∈⋂
C∈L(`2(N)⊕`2(N),`2(N)) σ(MC) by Theorem 3.2.1. Consequently,⋂

C∈L(`2(N)⊕`2(N),`2(N))

σgD(MC) 6=
⋂

C∈L(`2(N)⊕`2(N),`2(N))

σ(MC).

3.3 Drazin invertibility of MC

Using Theorem 3.2.6 and Theorem 1.5.5 we obtain [16, Theorem 2.1] in a
simpler way.

Theorem 3.3.1 ([16]). Let A ∈ L(H) and B ∈ L(K) be given operators on
separable Hilbert spaces H and K, respectively, such that:

(i) A is left Drazin invertible;
(ii) B is right Drazin invertible;
(iii) There exists a constant δ > 0 such that β(A− λI) = α(B − λI) for every
λ ∈ C such that 0 < |λ| < δ.

Then there exists an operator C ∈ L(K,H) such that MC is Drazin invertible.

Proof. By Theorem 1.5.5 it follows that there exist pairs (H1,H2) ∈ Red(A)
and (K1,K2) ∈ Red(B) such that AH1 = A1 is bounded below, BK1 = B1 is
surjective, AH2 = A2 and BK2 = B2 are nilpotent. As in the proof of Theorem
3.2.6 we conclude that there exists C ∈ L(K,H) such that

MC = (MC)H1⊕K1 ⊕ (MC)H2⊕K2 ,

(MC)H1⊕K1 is invertible,

(MC)H2⊕K2 =

(
A2 0
0 B2

)
.

For sufficiently large n ∈ N we have(
A2 0
0 B2

)n
=

(
(A2)n 0

0 (B2)n

)
=

(
0 0
0 0

)
,

so (MC)H2⊕K2 is nilpotent. According to Theorem 1.5.3, MC is Drazin invert-
ible.

Under additional assumptions the converse implication in Theorem 3.3.1 is
also true even in the context of Banach spaces.

Theorem 3.3.2. Let A ∈ L(X ) and B ∈ L(Y) be of Kato type. If there exists
some C ∈ L(Y ,X ) such that MC is Drazin invertible, then the following holds:

(i) A is left Drazin invertible;
(ii) B is right Drazin invertible;
(iii) There exists a constant δ > 0 such that β(A− λI) = α(B − λI) for every
λ ∈ C such that 0 < |λ| < δ.

48



3.3. Drazin invertibility of MC

Proof. (iii) is satisfied and 0 6∈ accσap(A) ∪ accσsu(B) by Theorem 3.2.3.
Now Theorem 2.3.1 implies that there exist (X1,X2) ∈ Red(A) and (Y1,Y2) ∈
Red(B) such that A1 is bounded below, A2 is nilpotent, B1 is surjective and B2

is nilpotent. Let n ≥ d where d ∈ N is such that (A2)d = 0 and (A2)d−1 6= 0.
We have

N(An) = N((A1)n)⊕N((A2)n) = X2,

N(Ad−1) = N((A1)d−1)⊕N((A2)d−1) = N((A2)d−1) ( X2.

It follows that asc(A) = d < ∞. From R(An) = R((A1)n) ⊕ R((A2)n) =
R((A1)n) we conclude that R(An) is closed, and therefore A is left Drazin
invertible. In a similar way we prove that B is right Drazin invertible.

M. Boumazgour proved that if both A and B are semi-Fredholm, and if MC

is Drazin invertible for some C, then conditions (i)-(iii) of Theorem 3.3.2 are
satisfied [16, Corollary 2.3]. We recall that the class of semi-Fredholm operators
belongs to the class of Kato type operators [57, Theorem 16.21]. According to
this observation, it seems that Theorem 3.3.2 is an extension of [16, Corollary
2.3].
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Chapter 4

Generalized Kato-Riesz
decomposition and generalized
Drazin-Riesz invertible
operators

In this chapter we give necessary and sufficient conditions for an operator
T ∈ L(X ) to admit a decomposition T = TM ⊕ TN with TM ∈ Ri and TN
Riesz. The case i = 3 is of particular importance. It leads to the introduction
of generalized Drazin-Riesz invertible operators (Definition 4.2.1), a class which
is larger than the class of generalized Drazin invertible operators.

4.1 Generalized Kato-Riesz decomposition

Definition 4.1.1. An operator T ∈ L(X ) is said to admit a generalized Kato-
Riesz decomposition, abbreviated as GKRD, if there exists a pair (M,N) ∈
Red(T ) such that TM is Kato and TN is Riesz.

Proposition 4.1.2. Let T ∈ L(X ). If T admits a GKRD (M,N), then
(N⊥,M⊥) is a GKRD for T ′.

Proof. Suppose that T admits a GKRD (M,N). It is easily seen that both
N⊥ and M⊥ are invariant under T ′. Let PM denote the projection onto M
along N . Clearly, PM ∈ L(X ) and (PM)′ is also a projection. Since R(PM) is
closed, we have

N((PM)′) = R(PM)⊥ = M⊥ and R((PM)′) = N(PM)⊥ = N⊥.

Accordingly, X ′ = R((PM)′) ⊕ N((PM)′) = N⊥ ⊕M⊥, and so (N⊥,M⊥) ∈
Red(T ′).

If PN = I−PM then R(PN) = N , N(PN) = M , TPN = PNT and (M,N) ∈
Red(TPN). By TPN = (TPN)M ⊕ (TPN)N = 0 ⊕ TN and Lemma 1.4.13,
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TPN is Riesz. Consequently, T ′(PN)′ = (PN)′T ′ is Riesz, and (N⊥,M⊥) ∈
Red(T ′(PN)′). Since R((PN)′) = N(PN)⊥ = M⊥, we conclude that
(T ′(PN)′)M⊥ = (T ′)M⊥ . From Lemma 1.4.13 it follows that (T ′)M⊥ is Riesz.
As in the proof of [1, Theorem 1.43], we obtain that (T ′)N⊥ is Kato, and the
proposition follows.

4.2 Generalized Drazin-Riesz invertible

operators

Definition 4.2.1. An operator T ∈ L(X ) is generalized Drazin-Riesz invert-
ible if there exists S ∈ L(X ) such that:

TS = ST, STS = S, T − TST is Riesz.

Definition 4.2.2. An operator T ∈ L(X ) is said to be Riesz quasi-polar if
there exists a projection Q ∈ L(X ) satisfying

TQ = QT, T (I −Q) is Riesz, Q ∈ (L(X )T ) ∩ (TL(X )). (4.1)

Theorem 4.2.3. Let T ∈ L(X ). The following conditions are equivalent:

(i) There exists (M,N) ∈ Red(T ) such that TM is invertible and TN is Riesz;

(ii) T admits a GKRD and 0 6∈ intσ(T );

(iii) T admits a GKRD, and both T and T ′ have the SVEP at 0;

(iv) T is generalized Drazin-Riesz invertible;

(v) T is Riesz quasi-polar;

(vi) There exists a bounded projection P ∈ L(X ) which commutes with T such
that T + P is Browder and TP is Riesz;

(vii) There exists (M,N) ∈ Red(T ) such that TM is Browder and TN is Riesz;

(viii) T admits a GKRD and 0 6∈ accσB(T );

(ix) T admits a GKRD and 0 6∈ intσB(T ).

Proof. (i) =⇒ (ii). Suppose that there exists (M,N) ∈ Red(T ) such that TM
is invertible and TN is Riesz. By the fact that TM is Kato, we conclude that T
admits a GKRD (M,N). Since TM is invertible, 0 ∈ ρ(TM), and there exists
ε > 0 such that D(0, ε) ⊂ ρ(TM). As TN is Riesz, it follows that 0 ∈ acc ρ(TN).
Consequently, 0 ∈ acc (ρ(TM) ∩ ρ(TN)) = acc ρ(T ), so 0 6∈ intσ(T ).

(ii) =⇒ (i). Suppose that T admits a GKRD (M,N) and 0 6∈ intσ(T ). Then
TM is Kato and 0 ∈ acc ρ(T ). According to Lema 1.4.7(i), it follows that
0 ∈ acc ρ(TM). From Proposition 1.4.9 we deduce that TM is invertible.

(ii) =⇒ (iii). Apply (1.9).

(iii) =⇒ (ii). Suppose that T admits a GKRD, and that both T and T ′ have the
SVEP at 0. Then there exists (M,N) ∈ Red(T ) such that TM is Kato and TN
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is Riesz. By Proposition 1.3.7, TM has the SVEP at 0. According to Theorem
1.3.8, TM is bounded below and so there exists ε1 > 0 such that TM − λ is
bounded below for every |λ| < ε1, that is D(0, ε1) ⊂ ρap(TM). Further, TN
is Riesz, then D(0, ε1) \ C1 ⊂ ρap(TN), where C1 is at most countable set of
Riesz points of TN . Consequently, D(0, ε1)\C1 ⊂ ρap(TM)∩ρap(TN) = ρap(T ).
From Proposition 4.1.2 it follows that T ′ admits the GKRD (N⊥,M⊥). From
what has already been proved, it may be concluded that there exists ε2 > 0
such that D(0, ε2) \ C2 ⊂ ρap(T

′) = ρsu(T ), where C2 is at most countable set
of Riesz points of (T ′)M⊥ . Let ε = min{ε1, ε2} and C = C1 ∪ C2. Then C is
at most countable and D(0, ε) \ C ⊂ ρap(T ) ∩ ρsu(T ) = ρ(T ). Consequently,
0 6∈ intσ(T ).

(i) =⇒ (iv). Suppose that there exists (M,N) ∈ Red(T ) such that TM is
invertible and TN is Riesz. Let S = (TM)−1 ⊕ 0, i.e.

S =

(
(TM)−1 0

0 0

)
:

(
M
N

)
→
(
M
N

)
,

and let x ∈ X . Then x = u+ v, where u ∈M and v ∈ N , and TSx = TS(u+
v) = T (TM)−1u = u and STx = ST (u+ v) = S(TMu+ TNv) = (TM)−1TMu =
u. Thus TS = ST . Further, STSx = STS(u + v) = Su = S(u + v) = Sx,
hence STS = S. In addition,

T − T 2S =

(
TM 0
0 TN

)
−
(

(TM)2 0
0 (TN)2

)
·
(

(TM)−1 0
0 0

)
=

(
TM 0
0 TN

)
−
(
TM 0
0 0

)
=

(
0 0
0 TN

)
,

and so T − T 2S is Riesz by Lemma 1.4.13.

(iv) =⇒ (v). Suppose that T is generalized Drazin-Riesz invertible. Then
there exists S ∈ L(X ) such that ST = TS, STS = S and T − T 2S is Riesz.
Let Q = TS. Then Q is a bounded projection which commutes with T ,
Q = TS = ST ∈ (L(X )T ) ∩ (TL(X )), and T (I −Q) = T (I − TS) = T − T 2S
is Riesz.

(v) =⇒ (vi). Suppose that T is Riesz quasi-polar. Then there exists a bounded
projection Q ∈ L(X ) satisfying (4.1). Let P = I −Q. Then P 2 = P ∈ L(X ),
TP = PT , and TP is Riesz. From I−P = Q ∈ (L(X )T )∩(TL(X )), it follows
that there exist U, V ∈ L(X ) such that I − P = UT = TV . Then

(T + P )(UTV + P ) = (UTV + P )(T + P ) = I + TP. (4.2)

Since TP is Riesz, [1, Theorem 3.111] implies that I + TP is Browder. Now,
from (4.2) and [33, Theorem 7.9.2], we deduce that T + P is Browder.
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(vi) =⇒ (vii). Suppose that there exists a projection P ∈ L(X ) such that
TP = PT , T +P is Browder, and TP is Riesz. For M = N(P ) and N = R(P )
we have that (M,N) ∈ Red(T ). As TN = (TP )N and TM = (T + P )M ,
from Lemma 1.4.13 and Lemma 1.4.7(i) it follows that TN is Riesz and TM is
Browder.

(vii) =⇒ (viii). Let (M,N) ∈ Red(T ) and T = TM⊕TN , where TM is Browder
and TN is Riesz. Then 0 ∈ ρB(TM) and there exists ε > 0 such that D(0, ε) ⊂
ρB(TM). Since TN is Riesz, σB(TN) ⊂ {0} by [1, Theorem 3.111]. Consequently,
D(0, ε) \ {0} ⊂ ρB(TM) ∩ ρB(TN). According to Lemma 1.4.7(i), ρB(TM) ∩
ρB(TN) = ρB(T ), and so D(0, ε) \ {0} ⊂ ρB(T ). Therefore, 0 /∈ accσB(T ).

From [57, Theorem 16.21] it follows that there exist two closed T -invariant
subspaces M1 and M2 such that M = M1 ⊕M2, M2 is finite dimensional, TM1

is Kato and TM2 is nilpotent. Hence X = M1⊕(M2⊕N) and M2⊕N is closed.
From Lemma 1.4.13 it follows that TM2⊕N = TM2 ⊕ TN is Riesz, and thus T
admits the GKRD (M1,M2 ⊕N).

(viii) =⇒ (ix). Obvious.

(ix) =⇒ (i). Suppose that T admits a GKRD and 0 6∈ intσB(T ). Then there
exists (M,N) ∈ Red(T ) such that TM is Kato and TN is Riesz. Since 0 ∈
acc ρB(T ), from Lemma 1.4.7(i) we see that 0 ∈ acc ρB(TM). By Proposition
1.4.9(iv), TM is invertible.

Proposition 4.2.4. Let T ∈ L(X ). The following statements are equivalent:

(i) T = TM⊕TN , where TM is invertible and TN is Riesz with infinite spectrum;

(ii) T admits a GKRD and there exists a sequence of nonzero Riesz points of
T which converges to 0.

Proof. (i) =⇒ (ii). Suppose that T = TM ⊕TN , where TM is invertible and TN
is Riesz with infinite spectrum. Then T admits a GKRD(M,N) and σ(TN) =
{0, µ1, µ2, . . .}, where µn, n ∈ N, are nonzero Riesz points of TN , and

lim
n→∞

µn = 0. (4.3)

According to Theorem 4.2.3, 0 6∈ accσB(T ), i.e. there exists ε > 0 such that
µ 6∈ σB(T ) for 0 < |µ| < ε. From (4.3) it follows that there exists n0 ∈ N such
that 0 < |µn| < ε for n ≥ n0. Hence µn ∈ σ(T ) \ σB(T ) for all n ≥ n0. Since
the set σ(T ) \ σB(T ) is exactly the set of all Riesz points of T , we see that
(µn)∞n=n0

is the sequence of nonzero Riesz points of T which converges to 0.

(ii) =⇒ (i). Suppose that T = TM⊕TN , where TM is Kato, TN is Riesz, and let
(λn) be the sequence of nonzero Riesz points of T such that 0 = limn→∞ λn.
Since λn ∈ ρB(T ) for all n ∈ N, it follows that 0 ∈ acc ρB(T ). As in the
proof of Theorem 4.2.3 we conclude that TM is invertible. Thus there exists
an ε > 0 such that D(0, ε) ⊂ ρ(TM), and there exists n0 ∈ N such that
λn ∈ D(0, ε) for all n ≥ n0. Consequently, λn 6∈ σ(TM) for all n ≥ n0, and
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since λn ∈ σ(T ) = σ(TM) ∪ σ(TN), it follows that λn ∈ σ(TN) for all n ≥ n0.
Therefore, the spectrum of TN is infinite.

Corollary 4.2.5. Let T ∈ L(X ) be generalized Drazin-Riesz invertible and let
0 ∈ accσ(T ). Then there exists a sequence of nonzero Riesz points of T which
converges to 0.

Proof. According to Theorem 4.2.3, T = TM ⊕ TN with TM invertible and TN
Riesz. Since 0 ∈ accσ(T ), it follows that 0 ∈ accσN(T ), so σN(T ) is infinite.
The corollary follows by applying Proposition 4.2.4.

4.3 Generalized Drazin-Riesz semi-Fredholm

operators

Definition 4.3.1. Let T ∈ L(X ) and 1 ≤ i ≤ 12. We say that T belongs to
the class GDRRi if there exists (M,N) ∈ Red(T ) such that TM ∈ Ri and TN
is Riesz. If T ∈ GDRRi for some i, then it is said that T is generalized Drazin-
Riesz semi-Fredholm operator. In particular, the class GDRΦ(X ) consists of
generalized Drazin-Riesz Fredholm operators.

In what follows we characterize the classes GDRRi. Theorems 4.3.2 and
4.3.3 can be proved by an analysis similar to that in the proof of Theorem
4.2.3.

Theorem 4.3.2. Let T ∈ L(X ). The following conditions are equivalent:

(i) There exists (M,N) ∈ Red(T ) such that TM is bounded below and TN is
Riesz, that is T ∈ gDRM(X );

(ii) T admits a GKRD and 0 6∈ intσap(T );

(iii) T admits a GKRD and T has the SVEP at 0;

(iv) There exists (M,N) ∈ Red(T ) such that TM is upper semi-Browder and
TN is Riesz, that is T ∈ gDRB+(X );

(v) T admits a GKRD and 0 6∈ accσB+(T );

(vi) T admits a GKRD and 0 6∈ intσB+(T );

(vii) There exists a bounded projection P ∈ L(X ) which commutes with T such
that T + P is upper semi-Browder and TP is Riesz.

Theorem 4.3.3. Let T ∈ L(X ). The following conditions are equivalent:

(i) There exists (M,N) ∈ Red(T ) such that TM is surjective and TN is Riesz,
that is T ∈ gDRQ(X );

(ii) T admits a GKRD and 0 6∈ intσsu(T );

(iii) T admits a GKRD and T ′ has the SVEP at 0;
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(iv) There exists (M,N) ∈ Red(T ) such that TM is lower semi-Browder and
TN is Riesz, that is T ∈ gDRB−(X );

(v) T admits a GKRD and 0 6∈ accσB−(T );

(vi) T admits a GKRD and 0 6∈ intσB−(T );

(vii) There exists a bounded projection P ∈ L(X ) which commutes with T such
that T + P is lower semi-Browder and TP is Riesz.

Corollary 4.3.4. Let T ∈ L(X ) and λ0 ∈ C. If T − λ0I admits a GKRD,
then the following statements are equivalent:

(i) T has the SVEP at λ0 (T ′ has the SVEP at λ0);

(ii) λ0 is not an interior point of σap(T ) (λ0 is not an interior point of σsu(T ));

(iii) σB+(T ) does not cluster at λ0 (σB−(T ) does not cluster at λ0);

(iv) λ0 is not an interior point of σB+(T ) (λ0 is not an interior point of
σB−(T )).

Proof. Follows from the equivalences (ii)⇐⇒(iii)⇐⇒(v)⇐⇒(vi) of Theorems
4.3.2 and 4.3.3.

Remark 4.3.5. Let T ∈ L(X ) be a Riesz operator with infinite spectrum. By
(1.7) and (1.8), both T and T ′ have the SVEP at 0. On the other hand, 0 is
an accumulation point of σap(T ) and σsu(T ). Consequently, if T − λ0 admits
a GKRD decomposition, then the statement that T (T ′) has the SVEP at λ0

is not in general equivalent to the statement that σap(T ) (σsu(T )) does not
cluster at λ0.

Theorem 4.3.6. Let T ∈ L(X ) and 7 ≤ i ≤ 12. The following conditions are
equivalent:

(i) There exists (M,N) ∈ Red(T ) such that TM ∈ Ri and TN is Riesz, that is
T ∈ gDRRi;

(ii) T admits a GKRD and 0 6∈ accσRi
(T );

(iii) T admits a GKRD and 0 6∈ intσRi
(T );

(iv) There exists a bounded projection P on X which commutes with T such
that T + P ∈ Ri and TP is Riesz.

Proof. (i)=⇒(ii). Suppose that there exists (M,N) ∈ Red(T ) such that TM ∈
Ri and TN is Riesz. As in the proof of Theorem 4.2.3 we obtain that T admits
a GKRD (see (vii)=⇒(viii)).

Since Ri is open, from TM ∈ Ri it follows that there exists ε > 0 such
that D(0, ε) ⊂ ρRi

(TM). According to [1, Theorem 3.111], σRi
(TN) ⊂ {0},

and so D(0, ε) \ {0} ⊂ ρRi
(TM) ∩ ρRi

(TN). By Lemma 1.4.7(i) and (ii),
ρRi

(TM) ∩ ρRi
(TN) ⊂ ρRi

(T ), and hence D(0, ε) \ {0} ⊂ ρRi
(T ). Therefore,

0 6∈ accσRi
(T ).

(ii)=⇒(iii) Obvious.
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(iii)=⇒(i). Suppose that T admits a GKRD and 0 6∈ intσΦ+(T ). Then there
exists (M,N) ∈ Red(T ) such that TM is Kato and TN is Riesz, and 0 ∈
acc ρΦ+(T ). According to Lemma 1.4.7(i), 0 ∈ acc ρΦ+(TM). From Proposition
1.4.9(i) it follows that TM is upper semi-Fredholm. The cases i = 8 and i = 9
can be proved similarly.

Suppose that T admits a GKRD and 0 ∈ acc ρW+(T ). Then there exists
(M,N) ∈ Red(T ) such that TM is Kato and TN is Riesz. We show that
0 ∈ acc ρW+(TM). Let ε > 0. From 0 ∈ acc ρW+(T ) it follows that there exists
λ ∈ C such that 0 < |λ| < ε and T − λ ∈ W+(X ). As TN is Riesz, TN − λ is
Fredholm of index zero, and according to Lemma 1.4.7(iii), TM −λ ∈ W+(M),
that is λ ∈ ρW+(TM). Therefore, 0 ∈ acc ρW+(TM) and from Proposition 1.4.9
(ii) it follows that TM is upper semi-Weyl, and so T ∈ gDRW+(X ). The cases
i = 11 and i = 12 can be proved similarly.

(i) =⇒ (iv). Suppose that there exists (M,N) ∈ Red(T ) such that TM ∈ Ri

and TN is Riesz. Let P ∈ L(X ) be a projection such that N(P ) = M and
R(P ) = N . Then TP = PT , and since TP = (TP )M ⊕ (TP )N = 0 ⊕ TN ,
from Lemma 1.4.13 it follows that TP is Riesz. Also, σRi

(TN) ⊂ {0}, and so
(T + P )N = TN + IN ∈ Ri, where IN is identity on N . Since (T + P )M =
TM ∈ Ri, we see that T + P ∈ Ri by Lemma 1.4.7(i) and (ii).

(iv) =⇒ (i). Suppose that there exists a projection P ∈ L(X ) that commutes
with T such that T +P ∈ Ri and TP is Riesz. For M = N(P ) and N = R(P )
we have that (M,N) ∈ Red(T ) and TN = (TP )N is Riesz. For i ∈ {7, 8, 9},
from Lemma 1.4.7(i) it follows that TM = (T + P )M ∈ Ri. Suppose that
i ∈ {10, 11, 12}. Since TN is Riesz, it follows that TN + IN is Weyl. Now, from
T + P = (T + P )M ⊕ (T + P )N = TM ⊕ (TN + IN) and Lemma 1.4.7(iii), it
follows that TM ∈ Ri.

The following two corollaries follow at once from Theorems 4.2.3, 4.3.2, 4.3.3
and 4.3.6.

Corollary 4.3.7. Let T ∈ L(X ) and 7 ≤ i ≤ 12. If T − λ0 admits a GKRD,
then the following statements are equivalent:

(i) λ0 is not an interior point of σRi
(T );

(ii) σRi
(T ) does not cluster at λ0.

Corollary 4.3.8. Let T ∈ L(X ) and let 1 ≤ i ≤ 12. If 0 ∈ ∂σRi
(T ), then

T admits a generalized Kato-Riesz decomposition if and only if T belongs to
gDRRi.

Theorem 4.3.9. Let T ∈ L(X ) and let f be a complex analytic function in
a neighborhood of σ(T ). If T ∈ gDRRi and f−1(0) ∩ σRi

(T ) = {0}, then
f(T ) ∈ gDRRi, 1 ≤ i ≤ 12.

Proof. We give the proof only for the cases i = 4 and i = 10 since other cases
can be proved similarly. Suppose that T ∈ gDRB+(X ). Then, there exists
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(M,N) ∈ Red(T ) such that TM is upper semi-Browder and TN is Riesz. The
pair (M,N) completely reduces (λI − T )−1 for every λ ∈ ρ(T ). It follows
that f(T ) = 1

2πi

∫
γ

f(λ)(λI − T )−1dλ, where γ is a contour surrounding σ(T )

and which lies in the domain of f , is also reduced by the pair (M,N). It is
routine to verify that f(T )M = f(TM) and f(T )N = f(TN). Consequently,
f(T ) = f(TM)⊕ f(TN).

In addition, suppose that f−1(0) ∩ σB+(T ) = {0}. Using the fact that
0 6∈ σB+(TM) ⊂ σB+(T ), we obtain 0 6∈ f(σB+(TM)). According to the spectral
mapping theorem, 0 6∈ σB+(f(TM)) [62, Theorem 3.4], so f(TM) is upper semi-
Browder. Since f(0) = 0, it follows that f(TN) is Riesz by [1, Theorem 3.113
(i)]. Consequently, f(T ) ∈ gDRB+(X ).

Suppose that T ∈ gDRW+(X ) and f−1(0) ∩ σW+(T ) = {0}. Then there
exists (M,N) ∈ Red(T ) such that TM is upper semi-Weyl and TN is Riesz. As
above we conclude that f(T ) = f(TM)⊕f(TN) and that f(TN) is Riesz. From
0 6∈ σW+(TM) ⊂ σW+(T ), we obtain 0 6∈ f(σW+(TM)). Since σW+(f(TM)) ⊂
f(σW+(TM)) [62, Theorem 3.3], it follows that 0 6∈ σW+(f(TM)), and so f(TM)
is upper semi-Weyl. Consequently, f(T ) ∈ gDRW+(X ).

Proposition 4.3.10. Let T ∈ L(X ) and let f be a complex analytic function
in a neighborhood of σ(T ) such that f−1(0) ∩ accσ(T ) = ∅. Then f(T ) =
A + K, where A ∈ L(X ) is generalized Dazin-Riesz Fredholm and K ∈ L(X )
is compact.

Proof. Since σ(π(T )) ⊂ σ(T ), f is analytic in a neighborhood of σ(π(T )) and
f(π(T )) = π(f(T )), where π : L(X ) → L(X )/K(X ) is the natural homomor-
phism. According to [34, Theorem 2],

accσ(π(f(T )) = acc σ(f(π(T )) ⊂ f(accσ(π(T )) ⊂ f(accσ(T )).

By the assumption it follows that 0 6∈ f(accσ(T )). Consequently,
0 6∈ accσ(π(f(T )), i.e. π(f(T )) is generalized Drazin invertible. Now, we
apply [15, Theorem 3.11], which completes the proof.

Corollary 4.3.11. Let T ∈ L(X ) have finite spectrum and let f be a complex
analytic function in a neighborhood of σ(T ). Then f(T ) = A + K, where
A ∈ L(X ) is generalized Drazin-Riesz Fredholm and K ∈ L(X ) is compact.

Proof. Since accσ(T ) = ∅, the condition f−1(0)∩accσ(T ) = ∅ is automatically
satisfied. The result follows by Proposition 4.3.10.

An operator T ∈ L(X ) is polynomially Riesz if there exists a nonzero
complex polynomial p such that p(T ) is Riesz. According to [79], there will be
a unique polynomial πT of minimal degree with leading coefficient 1 such that
πT (T ) is Riesz. The polynomial πT is called the minimal polynomial of T .
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Corollary 4.3.12. Let T ∈ L(X ) be polynomially Riesz and let f be a complex
analytic function in a neighborhood of σ(T ) such that f−1(0) ∩ π−1

T (0) = ∅.
Then f(T ) = A + K, where A ∈ L(X ) is generalized Drazin-Riesz Fredholm
and K ∈ L(X ) is compact.

Proof. Notice that if T ∈ L(X ) is polynomially Riesz, then acc σ(T ) ⊂ σB(T ) =
π−1
T (0), so f−1(0) ∩ accσ(T ) ⊂ f−1(0) ∩ π−1

T (0) = ∅. The assertion follows by
Proposition 4.3.10.
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Chapter 5

B-Fredholm Banach algebra
elements

5.1 Motivation

As we mentioned earlier, the Atkinson theorem states that necessary and
sufficient for a Banach space operator to be Fredholm is that its coset in
the Calkin algebra is invertible, i.e. Φ(X ) = π−1((L(X )/K(X ))−1). The
introduction of a Fredholm theory relative to a Banach algebra
homomorphism was motivated by this well-known result and Theorems 1.4.4
and 1.4.6. This generalization is due to R. Harte [34].

Definition 5.1.1. [34] Let A and B be two unital Banach algebras and con-
sider a (not necessarily continuous) homomorphism T : A → B. An element
a ∈ A will be said to be

(i) Fredholm, if T (a) is invertible in B;

(ii) Weyl, if there exist b, c ∈ A, b ∈ A−1 and c ∈ T −1(0), such that a = b+ c;

(iii) Browder, if there exist b, c ∈ A, b ∈ A−1, c ∈ T −1(0) and bc = cb, such
that a = b+ c.

(T −1(0) denotes the kernel of the homomorphism T .)

The sets of Fredholm, Weyl and Browder elements relative to the homomor-
phism T : A → B will be denoted by FT (A), WT (A) and BT (A), respectively.
Naturally, these sets lead to the introduction of the corresponding spectra.

Definition 5.1.2. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A → B. Given a ∈ A,
the Fredholm spectrum, the Weyl spectrum and the Browder spectrum of a
relative to the homomorphism T : A → B are respectively the following sets:

(i) σFT (a) = {λ ∈ C : a− λ 6∈ FT (A)} = σ(T (a));

(ii) σWT (a) = {λ ∈ C : a− λ 6∈ WT (A)};
(iii) σBT (a) = {λ ∈ C : a− λ 6∈ BT (A)}.
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It is clear that BT (A) ⊂ WT (A) ⊂ FT (A) and that σFT (a) ⊂ σWT (a) ⊂
σBT (a) ⊂ σ(a). Also it is known that the sets σFT (a), σWT (a) and σBT (a) are
non-empty and compact. This theory has been developed by many authors,
see for example [5, 24, 34, 35, 36, 37, 56, 75, 76, 78].

According to [12, Theorem 3.4], T ∈ BΦ(X ) if and only if
π̃(T ) ∈ (L(X )/F (X ))D, where π̃ : L(X )→ L(X )/F (X ) is the quotient homo-
morphism. Moreover, according to [9, Corollary 4.4], T ∈ L(X ) is a B-Weyl
operator if and only if T = S + F , where S ∈ L(X )D and F ∈ F (X ). The
following definition is motivated by these observations.

Definition 5.1.3. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A → B. An element a ∈ A
is said to be

(i) B-Fredholm, if T (a) ∈ BD;

(ii) B-Weyl, if there exist b, c ∈ A, b ∈ AD and c ∈ T −1(0), such that a = b+c;

(iii) generalized B-Fredholm, if T (a) ∈ BgD;

The set of B-Fredholm (respectively B-Weyl, generalized B-Fredholm) ele-
ments of the unital Banach algebraA relative to the homomorphism T : A → B
will be denoted by BFT (A) (respectively BWT (A), GBFT (A)).

The algebra L(X )/F (X ) is not a Banach algebra, so it seems that Definition
5.1.3 does not generalize the class of B-Fredholm operators properly. This fact
was observed by M. Berkani and he has redefined the notion of B-Fredholm
elements [10, 11]. According to [10, Definition 1.2], an element a ∈ A is B-
Fredholm if π(a) is Drazin invertible in A/J , where J ⊂ A is an ideal and
π : A → A/J is the natural homomorphism. Whatever, in this chapter we
study the objects introduced in Definition 5.1.3.

5.2 B-Fredholm and generalized B-Fredholm

elements

Definition 5.2.1. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A → B. Given a ∈ A, the
B-Fredholm spectrum, the B-Weyl spectrum and the generalized B-Fredholm
spectrum of a relative to the homomorphism T : A → B are respectively the
following sets:

(i) σBFT (a) = {λ ∈ C : a− λ 6∈ BFT (A)} = σD(T (a));

(ii) σBWT (a) = {λ ∈ C : a− λ 6∈ BWT (A)};
(iii) σGBFT (a) = {λ ∈ C : a− λ 6∈ GBFT (A)} = σgD(T (a)).

Remark 5.2.2. It is not difficult to prove the following statements:

(i) FT (A) ⊆ BFT (A) ⊆ GBFT (A);
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5.2. B-Fredholm and generalized B-Fredholm elements

(ii) BFT (A) + T −1(0) = BFT (A);

(iii) WT (A) ⊆ BWT (A) = AD + T −1(0);

(iv) AD ⊆ BFT (A) and AgD ⊆ GBFT (A);

(v) GBFT (A) + T −1(0) = GBFT (A) and AD ⊆ AgD ⊆ GBFT (A);

(vi) σGBFT (a) ⊆ σBFT (a) ⊆ σFT (a), σBFT (a) ⊆ σD(a) and σGBFT (a) ⊆ σgD(a).

If S ⊂ A is an arbitrary set we will say that a ∈ Poly−1(S) if there
exists a nonzero complex polynomial p(z) such that p(a) ∈ S. In particular,
Poly−1({0}) is the set of algebraic elements of A. According to [78], if a is
algebraic then there is a unique polynomial p of minimal degree with leading
coefficient 1 such that p(a) = 0; p is called the minimal polynomial of a.

In the following theorem the main properties of the (generalized) B-Fredholm
spectrum will be studied.

Theorem 5.2.3. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A → B. If a ∈ A, then the
following statements hold.

(i) BFT (A) and GBFT (A) are regularities.

(ii) If f : U → C is an analytic function defined on a neighbourhood of σ(a)
which is non-constant on each component of its domain of definition, then

σBFT (f(a)) = f(σBFT (a)), and σGBFT (f(a)) = f(σGBFT (a)).

(iii) σBFT (a) and σGBFT (a) are closed.

(iv) σBFT (a) = ∅ if and only if a ∈ Poly−1(T −1(0)), equivalently, T (a) ∈
Poly−1({0}).

(v) σGBFT (a) = ∅ if and only if accσFT (a) = ∅.
(vi) σBFT (a) is countable if and only if σGBFT (a) is countable if and only if
σFT (a) is countable.

Proof. (i). Recalling that both AD and AgD are regularities, and applying
Proposition 1.5.11, we obtain that BFT (A) and GBFT (A) are regularities.

(ii). Apply Theorem 1.5.12 to BFT (A) and GBFT (A).

(iii). Recall that σBFT (a) = σD(T (a)) and σGBFT (a) = σgD(T (a)). Then, use
the fact that both σD(T (a)) and σgD(T (a)) are closed; see [12, Proposition
2.5] and [54, Proposition 1.5(ii)].

(iv). Since σBFT (a) = σD(T (a)), this statement can be deduced from [14,
Theorem 2.1].

(v). Use σGBFT (a) = σgD(T (a)) = acc σ(T (a)) = acc σFT (a).

(vi). Clearly, σBFT (a) = σD(T (a)), σGBFT (a) = σgD(T (a)), and σFT (a) =
σ(T (a)). According to [14, Theorem 2.2], necessary and sufficient for σD(T (a))
to be countable is that σ(T (a)) is countable. Also, σ(T (a)) = accσ(T (a)) ∪
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isoσ(T (a)) = σgD(T (a)) ∪ isoσ(T (a)), and we recall that the set isoσ(T (a))
is countable. As a result, σgD(T (a)) is countable if and only if σD(T (a)) is
countable if and only if σ(T (a)) is countable.

Let A and B be two unital Banach algebras and consider a (not necessarily
continuous) homomorphism T : A → B. The range of the homomorphism T
will be denoted by R(T ). Let RT (A) = {a ∈ A : T (a) ∈ Bqnil} be the set
of Riesz elements of A relative to the homomorphism T and NT (A) = {a ∈
A : there exists k ∈ N such that ak ∈ T −1(0)} = {a ∈ A : T (a) ∈ Bnil} be the
set of T -nilpotent elements of A; see [15, 78]. Clearly, NT (A) ⊆ RT (A).

On the other hand, the homomorphism T : A → B will be said to have
the lifting property, if given q ∈ B•, there is p ∈ A• such that T (p) = q,
i.e., T (A•) = B•, which is equivalent to the conjunction of the following two
conditions: T −1(B•) = A• + T −1(0) and B• ⊂ R(T ). This property does not
hold in general. In particular, if B• ⊂ R(T ) and T has the Riesz property, i.e.,
if for every z ∈ T −1(0), σ(z) is either finite or is a sequence converging to 0,
then T has the lifting property, see [24, Lemma 2]. Consequently, if T : A → B
is surjective and has the Riesz property, then T has the lifting property. Next,
(generalized) B-Fredholm elements will be characterized.

Theorem 5.2.4. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A → B. Suppose that T has
the lifting property. Then, the following statements hold.

(i) Necessary and sufficient for a ∈ GBFT (A) is that there exists p ∈ A• such
that a+ p ∈ FT (A), pa(1− p) and (1− p)ap ∈ T −1(0) and pap ∈ RT (A).

(ii) Necessary and sufficient for a ∈ BFT (A) is that there exists p ∈ A• such
that a+ p ∈ FT (A), pa(1− p) and (1− p)ap ∈ T −1(0) and pap ∈ NT (A).

Proof. (i). If a ∈ GBFT (A), then T (a) ∈ BgD. In particular, according to
Theorem 1.5.7, there is q ∈ B• such that qT (a) = T (a)q, T (a) + q ∈ B−1 and
T (a)q = qT (a)q ∈ Bqnil. Since T : A → B has the lifting property, there is
p ∈ A• such that T (p) = q.

Now, the identity qT (a) = T (a)q implies that pa− ap ∈ T −1(0). However,
multiplying by 1−p, it is easy to prove that pa(1−p) and (1−p)ap ∈ T −1(0).
In addition, since T (a+p) ∈ B−1, a+p ∈ FT (A). Finally, since T (pap) ∈ Bqnil,
pap ∈ RT (A).

Suppose that there exists p ∈ A• such that a + p ∈ FT (A), pa(1− p) and
(1 − p)ap ∈ T −1(0) and pap ∈ RT (A). Consequently, q = T (p) ∈ B• and
qT (a) = T (a)q, T (a) + q ∈ B−1 and T (a)q = qT (a)q ∈ Bqnil. Thus, according
to Theorem 1.5.7, T (a) ∈ BgD, equivalently, a ∈ GBFT (A).

(ii). Apply the same argument used in the proof of statement (i), using in
particular Proposition 1.5.2 instead of Theorem 1.5.7.

Next some basic properties of the objects introduced in Definition 5.1.3
will be considered.
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Theorem 5.2.5. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A → B. Then, the following
statements hold.

(i) T −1(0) ⊆ T −1(B•) ⊆ BFT (A).

(ii) A• ⊆ T −1(B•) ⊆ BFT (A).

(iii) FT (A) is a proper subset of BFT (A).

(iv) WT (A) is a proper subset of BWT (A).

(v) A• \ T −1(1) ⊆ BFT (A) \ FT (A).
(vi) If a, b ∈ BFT (A) are such that ab− ba ∈ T −1(0), then ab ∈ BFT (A).

(vii) If a ∈ BWT (A), then an ∈ BWT (A) for every n ∈ N.

(viii) BWT (A) \WT (A) ⊆ BFT (A) \ FT (A).

(ix) σBWT (a) =
⋂
c∈T −1(0) σD(a+ c) (a ∈ A).

(x) The set σBWT (a) is closed (a ∈ A).

Proof. (i). This statement can be easily derived from the inclusions

{0} ⊆ B• ⊆ BD.

(ii). Clearly, T (A•) ⊆ B• and B• ⊆ BD.

(iii). Since {0} ∩ B−1 = ∅, then T −1(0) ∩ FT (A) = T −1(0) ∩ T −1(B−1) = ∅.
Consequently, T −1(0) ⊆ BFT (A) \ FT (A).

(iv). Clearly, T −1(0) ⊆ BWT (A). In addition, according to the proof of
statement (iii), T −1(0)∩WT (A) ⊆ T −1(0)∩FT (A) = ∅. Therefore, T −1(0) ⊆
BWT (A) \WT (A).

(v). Note that A• \ T −1(1) ⊆ A• ⊆ BFT (A). In addition, if a ∈ A• \ T −1(1),
then T (a) ∈ B• \ B−1. In particular, a 6∈ FT (A).

(vi). Apply [12, Proposition 2.6].

(vii). Let a ∈ BWT (A). Then a = b + c, where b ∈ AD and c ∈ T −1(0). It
will be proved that an = bn +xn, where xn ∈ T −1(0), for every n ∈ N. In fact,
for n = 1 it is obvious. Suppose that this statement is true for k ∈ N. Then,

ak+1 = aka = (bk + xk)(b+ c) = bk+1 + (bkc+ xkb+ xkc).

Clearly, bkc + xkb + xkc ∈ T −1(0). As a result, since bk+1 ∈ AD, ak+1 ∈
BWT (A).

(viii). Clearly, BWT (A) \ WT (A) ⊆ BWT (A) ⊆ BFT (A). If a ∈ BWT (A) \
WT (A), then there exist c ∈ AD and d ∈ T −1(0) such that a = c + d. In
addition, according to Proposition 1.5.2, there is p ∈ A• such that

cp = pc, c+ p ∈ A−1, cp is nilpotent.

Note that since a = (c + p) + (d − p) and a /∈ WT (A) = A−1 + T −1(0),
p /∈ T −1(0). Let 0 6= q = T (p) ∈ B•. Then, qT (c) = T (c)q, T (c)+q ∈ B−1 and
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T (c)q is nilpotent. Thus, T (c) is Drazin invertible but not invertible (q 6= 0),
which implies that c /∈ FT (A). However, since d ∈ T −1(0), a /∈ FT (A).

(ix)-(x). These statements can be easily deduced.

5.3 Perturbations of B-Fredholm elements

Given a nonempty S ⊆ A, the commuting perturbation class of S is the set

Pcomm(S) = {a ∈ A : S +comm {a} ⊂ S},

where, if H,K ⊆ A

H +comm K = {c+ d : (c, d) ∈ H ×K, cd = dc}.

Evidently, 0 ∈ Pcomm(S), and so Pcomm(S) is always a nonempty set.

Remark 5.3.1. Let A and B be two unital Banach algebras and consider the
homomorphism T : A → B.

(i) Let K ⊆ B, and 1 ∈ K or 0 ∈ K. Since T (1) = 1 (T (0) = 0), T −1(K) 6= ∅.
Also, T (0) = 0 ∈ Pcomm(K), and so 0 ∈ T −1(Pcomm(K)). Consequently,
T −1(Pcomm(K)) is nonempty. Let a ∈ T −1(Pcomm(K)), d ∈ T −1(K) and
ad = da (there is at least one candidate for d: d = 1 or d = 0). We have
T (a) ∈ Pcomm(K), T (d) ∈ K and T (a)T (d) = T (d)T (a). It follows that
a+ d ∈ T −1(K). We have just established the following inclusion:

T −1(Pcomm(K)) ⊆ Pcomm(T −1(K)). (5.1)

In particular, T −1(Pcomm(BD)) ⊆ Pcomm(T −1(BD)) = Pcomm(BFT (A)).

(ii) Clearly, a ∈ T −1(Poly−1({0})) if and only if T (a) ∈ Poly−1({0}) if and
only if p(T (a)) = T (p(a)) = 0 for some nontrivial polynomial p if and only if
a ∈ Poly−1(T −1(0)). Accordingly, T −1(Poly−1({0})) = Poly−1(T −1(0)).

(iii) If K1, K2 ⊆ A are such that 0 ∈ K1 ∩K2 or 1 ∈ K1 ∩K2, then

Pcomm(K1) ∩ Pcomm(K2) ⊆ Pcomm(K1 ∩K2). (5.2)

Indeed, let a ∈ Pcomm(K1) ∩ Pcomm(K2), d ∈ K1 ∩K2 and ad = da (the above
condition ensures that for every a ∈ Pcomm(K1) ∩ Pcomm(K2) there is at least
one d ∈ K1 ∩ K2 such that ad = da, for example d = 0 or d = 1). Then,
a+ d ∈ K1 ∩K2, and hence a ∈ Pcomm(K1 ∩K2).

On the other hand, it is well known that b ∈ Aqnil if and only if for every
a ∈ A which commutes with b there is the equivalence:

a ∈ A−1 ⇐⇒ a+ b ∈ A−1, (5.3)
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that is,
a /∈ A−1 ⇐⇒ a+ b /∈ A−1. (5.4)

The equivalences (5.3) and (5.4) hold also if A−1 is replaced by A−1
left or A−1

right.
Consequently,

Aqnil = Pcomm(A−1) = Pcomm(A−1
left) = Pcomm(A−1

right),

and also,

Aqnil = Pcomm(A \ A−1) = Pcomm(A \ A−1
left) = Pcomm(A \ A−1

right). (5.5)

Proposition 5.3.2. Let A be a unital Banach algebra and consider an alge-
braic element a ∈ A. Then, a ∈ Aqnil if and only if a is nilpotent.

Proof. Every nilpotent element is quasinilpotent. On the other hand, if a ∈
Aqnil, then let p be the minimal polynomial such that p(a) = 0. It is well
known that σ(a) = p−1({0}). Since σ(a) = {0}, there must exist k ∈ N such
that p(x) = xk. Consequently, a is nilpotent.

In the following theorem the commuting perturbation class of AD and AgD
will be considered.

Theorem 5.3.3. Let A be a unital Banach algebra. Then:

(i) Anil ⊆ Pcomm(AD) ⊆ Poly−1({0});

(ii) Aqnil ⊆ Pcomm(AgD);

(iii) Anil ⊆ Pcomm(AD \ A−1);

(iv) Aqnil ⊆ Pcomm(AgD \ A−1).

Proof. (i). Let b ∈ Anil and a ∈ AD such that ab = ba. Since b ∈ AD and
bD = 0, according to [74, Theorem 3], a + b ∈ AD. In order to prove the
remaining inclusion, suppose that b ∈ Pcomm(AD). The elements λ1(= λ) are
Drazin invertible and commute with b for every λ ∈ C. Therefore, b+ λ ∈ AD
for every λ ∈ C. Consequently, σD(b) = ∅. According to [14, Theorem 2.1], b
is algebraic.

(ii). It follows from [74, Theorem 8] and from the fact that bd = 0 if b ∈ Aqnil.
(iii). Since Anil ⊆ Pcomm(AD) and Anil ⊆ Aqnil = Pcomm(A \ A−1) (identity
(5.5)), apply (5.2) to obtain Anil ⊆ Pcomm(AD∩(A\A−1)) = Pcomm(AD\A−1).

(iv). It follows from (ii), (5.5) and (5.2).

Corollary 5.3.4. Let A be a unital Banach algebra. Then

Poly−1({0}) ∩ Aqnil ⊆ Pcomm(AD). (5.6)

Proof. Apply Proposition 5.3.2 and Theorem 5.3.3(i).
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Next algebraic (nilpotent) elements will be characterized using the Drazin
spectrum.

Theorem 5.3.5. Let A be a unital Banach algebra and consider d ∈ Aqnil.
Then the following statements are equivalent:

(i) The element d is algebraic.

(ii) Given a ∈ A, ad = da implies that σD(a+ d) = σD(a).

Proof. If d is algebraic, then according to Proposition 5.3.2, d ∈ Anil, which
is equivalent to −d ∈ Anil. According to Corollary 5.3.4, d,−d ∈ Pcomm(AD).
Let a ∈ A such that ad = da. If λ ∈ C is such that λ /∈ σD(a), then a−λ ∈ AD,
and since d ∈ Pcomm(AD), a + d − λ ∈ AD. In particular, λ /∈ σD(a + d). To
prove the reverse, apply the same argument to −d ∈ Pcomm(AD), a + d and
λ /∈ σD(a+ d).

Conversely, if a = 0, then σD(d) = σD(0) = ∅. However, according to [14,
Theorem 2.1], d is algebraic.

In the following theorem the commuting perturbation class of (generalized)
B-Fredholm elements will be considered.

Theorem 5.3.6. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A → B. Then:

(i) NT (A) ⊆ Pcomm(BFT (A)) ⊆ T −1(Poly−1({0}).

(ii) RT (A) ⊆ Pcomm(GBFT (A)).

(iii) NT (A) ⊆ Pcomm(BFT (A) \ FT (A)).

(iv) RT (A) ⊆ Pcomm(GBFT (A) \ FT (A)).

Proof. (i). According to Theorem 5.3.3(i) and (5.1),

NT (A) ⊆ T −1(Pcomm(BD)) ⊆ Pcomm(T −1(BD)) = Pcomm(BFT (A)).

Let a ∈ Pcomm(BFT (A)). Then for every λ ∈ C, a+λ ∈ BFT (A), equivalently,
T (a)+λ ∈ BD. However, according to [14, Theorem 2.1], T (a) ∈ B is algebraic.

(ii)-(iv). Apply Theorem 5.3.3(ii)-(iv) and use an argument similar to the one
in the proof of statement (i).

Corollary 5.3.7. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A → B. Let a ∈ BFT (A)
and b ∈ NT (A) such that ab− ba ∈ T −1(0). Then, a+ b ∈ BFT (A).

Proof. Apply Theorem 5.3.3(i).

Corollary 5.3.8. Let A and B be two unital Banach algebras and consider a
(not necessarily continuous) homomorphism T : A → B. If a ∈ RT (A) and
T (a) ∈ B is algebraic, then a ∈ Pcomm(BFT (A)).
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Proof. According to Corollary 5.3.4, T (a) ∈ Pcomm(BD). Therefore, a ∈ T −1(
Pcomm(BD)) ⊆ Pcomm(T −1(BD)) = Pcomm(BFT (A)).

Under the same assumptions as in Corollary 5.3.8, note that if a ∈ A is
algebraic and a ∈ RT (A), then T (a) ∈ Pcomm(BD).

Let A and B be two unital Banach algebras and consider a (not necessarily
continuous) homomorphism T : A → B. Recall that according to [75, Theorem
10.1], the following statements are equivalent:

(i) The element d ∈ RT (A);

(ii) If a ∈ A is such that ad− da ∈ T −1(0), then σFT (a) = σFT (a+ d);

(iii) If a ∈ A is such that ad = ad, then σFT (a) = σFT (a+ d);

(iv) σFT (d) = {0}.
In the following theorem, a similar result for the B-Fredholm spectrum will be
considered.

Theorem 5.3.9. Let A and B be two unital Banach algebras and consider
a (not necessarily continuous) homomorphism T : A → B. Let d ∈ RT (A).
Then, the following conditions are equivalent:

(i) T (d) is algebraic;

(ii) If a ∈ A is such that ad− da ∈ T −1(0), then σBFT (a+ d) = σBFT (a);

(iii) If a ∈ A is such that ad = da, then σBFT (a+ d) = σBFT (a);

(iv) σBFT (d) = ∅.

Proof. (i)=⇒(ii). Apply Theorem 5.3.5.

(ii)=⇒(iii). It is obvious.

(iii)=⇒(iv). Consider a = 0. Then, σBF(d) = σBF(0) = ∅.
(iv)=⇒(i). Apply Theorem 5.2.3(iv).

5.4 Perturbations of (generalized) B-Fredholm

elements with equal spectral idempotents

Let A be a unital Banach algebra and consider a ∈ AgD \ A−1. Then, 0 6=
p = 1− ada is the spectral idempotent corresponding to 0, and in this section
it will be denoted by p = aπ. Note that (1 − p)A(1 − p) is a Banach algebra
with the unity 1− p, (1− p)a, ad ∈ ((1− p)A(1− p))−1, and ad is the inverse
of (1− p)a in the algebra (1− p)A(1− p).

Remark 5.4.1. Let A and B be two unital Banach algebras and consider a
(non necessarily continuous) homomorphism T : A → B.

(a) Let a ∈ A such that T (a) ∈ BgD. Let T (a)π = q and suppose that
there exist p ∈ A• such that T (p) = q and w ∈ (1 − p)A(1 − p) such that
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T (w) = T (a)d = ((1− q)T (a)(1− q))−1 ∈ ((1− q)B(1− q))−1. Then, it is not
difficult to prove the following statements.

(i) (1 − p)aw = 1 − p + c1 and wa(1 − p) = 1 − p + c2, where ci ∈ T −1(0) ∩
(1− p)A(1− p), i = 1, 2.

(ii) If w′ ∈ (1 − p)A(1 − p) is such that T (w′) = T (a)d, then w′ − w ∈
T −1(0) ∩ (1− p)A(1− p).
(b) Suppose in addition that T : A → B is surjective and has the lifting prop-
erty, and consider a ∈ A as before, i.e., T (a) ∈ BgD and T (a)π = q. In
particular, there exist p ∈ A• such that T (p) = q and z ∈ A such that
T (a)d = T (z). However, since T (a)d ∈ (1− q)B(1− q), it is possible to choose
z ∈ (1− p)A(1− p).

The results of Remark 5.4.1 will be used in what follows.

Proposition 5.4.2. Let A and B be two unital Banach algebras and consider
a (non necessarily continuous) homomorphism T : A → B. Let a1 ∈ A such
that T (a1) ∈ BgD and T (a1)π = q. Suppose that there exist p ∈ A• and
w1 ∈ (1 − p)A(1 − p) such that T (p) = q and T (w1) = T (a1)d. Let a2 ∈ A
and define z = 1 + T (a1)dT (a2 − a1). Then, the following statements hold.

(i) The element z ∈ B−1 if and only if p+ w1a2 ∈ FT (A).

(ii) Suppose that T (a2)T (a1)π = T (a1)πT (a2). Then, z ∈ B−1 if and only
p+ w1a2(1− p) ∈ FT (A).

Proof. (i). Note that z ∈ B−1 if and only if 1 + T (w1(a2 − a1)) ∈ B−1. Since
T (w1a1) = T (w1a1(1−p)) = 1− q, necessary and sufficient for z ∈ B−1 is that
q + T (w1a2) ∈ B−1, which in turn is equivalent to p+ w1a2 ∈ FT (A).

(ii). Since T (a1) and T (a2) commute with q, it follows that zq = qz. From
qzq = q ∈ (qBq)−1 and [60, Teorema 5.7.7] we conclude that z ∈ B−1 if and
only if (1− q)z(1− q) = 1− q + T (w1(a2 − a1)(1− p)) ∈ ((1− q)B(1− q))−1.
A routine calculation shows that 1− q+T (w1(a2− a1)(1− p)) = (1− q)T (p+
w1a2(1 − p))(1 − q) and qT (p + w1a2(1 − p))q = q ∈ (qBq)−1. According to
[60, Teorema 5.7.7], z ∈ B−1 if and only if T (p+w1a2(1− p)) ∈ B−1, and it is
exactly when p+ w1a2(1− p) ∈ FT (A).

In the following two theorems, (generalized) B-Fredholm elements that have
the same spectral idempotents relative to the homomorphism T will be char-
acterized.

Theorem 5.4.3. Let A and B be two unital Banach algebras and consider a
(non necessarily continuous) homomorphism T : A → B. Suppose in addition
that T : A → B is surjective and has the lifting property. Let a1 ∈ GBFT (A)
and consider p ∈ A• such that T (p) = T (a1)π. Then, the following statements
are equivalent.

(i) a2 ∈ GBFT (A) and T (a1)π = T (a2)π.
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(ii) pa2(1− p) and (1− p)a2p ∈ T −1(0), pa2p ∈ RT (A) and p+ a2 ∈ FT (A).

(iii) pa2(1− p) and (1− p)a2p ∈ T −1(0), pa2p ∈ RT (A) and p+w1a2(1− p) ∈
FT (A), where w1 ∈ (1− p)A(1− p) is such that T (w1) = T (a1)d.

(iv) a2 ∈ GBFT (A), p+ w1a2 ∈ FT (A) and w1 = (p+ w1a2)w2 + c, where w1

is as in statement (iii), w2 ∈ A is such that T (w2) = T (a2)d and c ∈ T −1(0).

Proof. (i) =⇒ (ii). Follows from Theorem 5.2.4.

(ii) =⇒ (iii). a2 ∈ GBFT (A) by Theorem 5.2.4. Since T (a1)π = T (a2)π,
[61, Theorem 2.2] implies that 1 + T (a1)dT (a2 − a1) ∈ B−1. According to
Proposition 5.4.2(ii), p+ w1a2(1− p) ∈ FT (A).

(iii) =⇒ (iv). It is easily seen that T (a2) and T (p) = T (a1)π commute, and
that T (a2)T (a1)π ∈ Bqnil. According to Proposition 5.4.2(ii), 1+T (a1)dT (a2−
a1) ∈ B−1. Now, by Proposition 5.4.2(i) and [61, Theorem 2.2], p + w1a2 ∈
FT (A), a2 ∈ GBFT (A) and

T (a2)d = (1 + T (a1)dT (a2 − a1))−1T (a1)d.

Since T (w1a1) = 1− T (p), the last identity is equivalent to

T (p+ w1a2)T (w2) = T (w1),

which in turn is equivalent to w1 = (p+ w1a2)w2 + c, c ∈ T −1(0).

(iv) =⇒ (i). 1 + T (a1)dT (a2− a1) ∈ B−1 by Proposition 5.4.2(i). Further, the
identity T (a2)d = (1 + T (a1)dT (a2 − a1))−1T (a1)d holds (see (iii) =⇒ (iv)).
Now, [61, Theorem 2.2] implies that T (a1)π = T (a2)π.

Theorem 5.4.4. Let A and B be two unital Banach algebras and consider a
(non necessarily continuous) homomorphism T : A → B. Suppose in addition
that T : A → B is surjective and has the lifting property. Let a1 ∈ BFT (A)
and consider p ∈ A• such that T (p) = T (a1)π. Then, the following statements
are equivalent.

(i) a2 ∈ BFT (A) and T (a1)π = T (a2)π.

(ii) pa2(1− p) and (1− p)a2p ∈ T −1(0), pa2p ∈ NT (A) and p+ a2 ∈ FT (A).

(iii) pa2(1− p) and (1− p)a2p ∈ T −1(0), pa2p ∈ NT (A) and p+w1a2(1− p) ∈
FT (A), where w1 ∈ (1− p)A(1− p) is such that T (w1) = T (a1)D.

(iv) a2 ∈ BFT (A), p+w1a2 ∈ FT (A) and w1 = (p+w1a2)w2 + c, where w1 is
as in statement (iii), w2 ∈ A is such that T (w2) = T (a2)D and c ∈ T −1(0).

Proof. The arguments from the preceding theorem apply to the case of B-
Fredholm elements using nilpotent elements instead of quasi-nilpotent ele-
ments. What is more, when considering Drazin invertible Banach algebra
elements, statements similar to the ones in [61, Theorem 2.2] hold, if nilpotent
elements instead of quasi-nilpotent elements are used.
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In the following theorem we consider the product of two generalized B-
Fredholm elements with equal spectral idempotents.

Theorem 5.4.5. Let A and B be two unital Banach algebras and consider
a (non necessarily continuous) homomorphism T : A → B such that T is
surjective and has the lifting property. Let ai ∈ GBFT (A), i = 1, 2, such that
T (a1)π = T (a2)π = q and a1a2 − a2a1 ∈ T −1(0). Let p ∈ A• such that T (p) =
q. Then, a1a2 ∈ GBFT (A), T (a1a2)π = q and if w1, w2, w12 ∈ (1− p)A(1− p)
are such that T (w1) = T (a1)d, T (w2) = T (a2)d and T (w12) = T (a1a2)d, then
w12 = w2w1 + c, c ∈ T −1(0).

Proof. Since T (a1), T (a2) ∈ BgD and T (a1)T (a2) = T (a2)T (a1), accord-
ing to [48, Theorem 5.5], T (a1a2) ∈ BgD and T (a1a2)d = T (a1)dT (a2)d =
T (a2)dT (a1)d. Consequently, a1a2 ∈ GBFT (A). Further, since T (a1)π =
T (a2)π = q,

T (a1a2)π = 1− T (a1a2)T (a1a2)d = 1− T (a1)T (a2)T (a2)dT (a1)d

= 1− T (a1)(1− q)T (a1)d = 1− (1− q)T (a1)T (a1)d

= 1− (1− q)(1− q) = 1− (1− q)
= q.

Since T (a1a2)d = T (a2)dT (a1)d, T (w12) = T (w2)T (w1). Consequently,
w12 = w2w1 + c, c ∈ T −1(0).
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Chapter 6

Closed upper and lower
semi-Browder operators

The necessary and sufficient conditions under which a bounded linear operator
defined everywhere is upper (lower) semi-Browder are well-known [2, Theorems
2.62 and 2.63], [77, Theorems 3 and 4]. Moreover, the upper (lower) semi-
Browder spectrum of such an operator is characterized; see [62], [57, Corollary
20.20, Theorem 20.21], [1, Corollaries 3.45 and 3.47], [2, Theorems 4.4 and
4.5]. Our main goal is to extend the aforementioned results to the class of
closed operators. It is done by generalizing Theorems 3 and 4 of [77]; see
Theorems 6.2.4 and 6.3.2, and their consequences. On the other hand, the
present chapter is also motivated by [4].

6.1 Closed operators

Until now we have worked with linear operators T : X → Y such that D(T ) =
X , where D(T ) is the domain of definition of T . In this chapter we consider
operators not necessarily defined for all vectors of the domain space.

Definition 6.1.1. A linear operator T from X to Y is an operator such that:

(i) The domain D(T ) of T is a vector subspace of X ;

(ii) For x, y ∈ D(T ) and scalars α,

T (x+ y) = Tx+ Ty and T (αx) = αTx.

If T is a linear operator from X to Y , then X and Y are respectively called
the domain and range spaces. At first glance, we complicate the matter by
introducing operators not defined everywhere in the domain space. It seems
that T could be regarded as an operator on D(T ) to Y . However, D(T ) is in
general not closed in X and hence is not a Banach space (with the norm of
X ), so we do not adopt this point of view. If D(T ) is dense in X , T is said to
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Closed upper and lower semi-Browder operators

be densely defined. The kernel N(T ) of T is the set of all x ∈ D(T ) such that
Tx = 0. The range R(T ) of T is defined as the set of all vectors of the form Tx
with x ∈ D(T ). The nullity and deficiency of T , denoted respectively by α(T )
and β(T ), are defined as before: α(T ) = dimN(T ) and β(T ) = dimY/R(T ).

To define ascent and descent we consider the case in which D(T ) and R(T )
are in the same space X . We can then define the iterates T 2, T 3, . . . of T .
If n > 1, D(T n) is the set {x ∈ X : x, Tx, . . . , T n−1x ∈ D(T )} and T nx =
T (T n−1x). We can then consider N(T n) and R(T n). It is well known that
N(T n) ⊂ N(T n+1) and R(T n+1) ⊂ R(T n) if n ∈ N0. We follow the convention
that T 0 = I (the identity operator on X , with D(I) = X ). Thus N(T 0) = {0}
and R(T 0) = X . It is also well known that if N(T k) = N(T k+1), then N(T n) =
N(T k) when n ≥ k. In this case the smallest nonnegative integer k such that
N(T k) = N(T k+1) is called the ascent of T and it is denoted by asc(T ). If
no such k exists we define asc(T ) = ∞. Similarly, if R(T k+1) = R(T k), then
R(T n) = R(T k) when n ≥ k. The smallest k (in the case when it exists) such
that R(T k+1) = R(T k) holds, is called the descent of T and denoted by dsc(T ).
We write dsc(T ) =∞ if R(T n+1) is always a proper subset of R(T n).

The generalized kernel and the generalized range of a linear operator T
from X to X are respectively the sets N∞(T ) = ∪∞n=1N(T n) and R∞(T ) =⋂∞
n=1R(T n). The following lemma will be used later; see [68, Lemma 3.4] and

[4, Lemma 2.1].

Lemma 6.1.2. Let T : D(T )→ X , D(T ) ⊂ X , be a linear operator.

(i) If asc(T ) <∞, then N∞(T ) ∩R∞(T ) = {0}.
(ii) If α(T ) <∞ and N∞(T ) ∩R∞(T ) = {0}, then asc(T ) <∞.

Consider the space X ×Y consisting of all ordered pairs (x, y) of elements
x ∈ X and y ∈ Y . We recall that X ×Y is a vector space with standard linear
operations and it becomes a Banach space if the norm is defined by

‖(x, y)‖ = (‖x‖2 + ‖y‖2)1/2.

Definition 6.1.3. Let T be a linear operator from X to Y . The graph G(T )
of T is the set {(x, Tx) : x ∈ D(T )}. Since T is linear, G(T ) is a subspace of
X × Y .

If the graph of T is closed in X × Y , then T is said to be closed operator.

It is straightforward to show that T is closed if and only if for any sequence
(xn) ⊂ D(T ) such that lim xn = x and limTxn = y, x belongs to D(T )
and Tx = y. The set of all closed operators from X to Y will be denoted by
C(X ,Y). In particular, C(X ,X ) = C(X ). Clearly, every T ∈ L(X ,Y) is closed:
L(X ,Y) ⊂ C(X ,Y). On the other hand, the well-known closed graph theorem
shows that T ∈ C(X ,Y) and D(T ) = X imply T ∈ L(X ,Y).

The following theorem is also well-known and it enables the introduction
of the conjugate of a linear operator.

74



6.1. Closed operators

Theorem 6.1.4. Let M be a subspace dense in X . If T is a bounded linear
map from M into Y, then there exists a unique continuous linear extension T
of T to all of X and ‖T‖ = ‖T‖.

Definition 6.1.5. Let T be a linear operator (not necessarily closed) with
domain D(T ) dense in X and range R(T ) ⊂ Y . The conjugate operator T ′ is
defined as follows: its domain D(T ′) consists of all y′ ∈ Y ′ for which y′T is
continuous on D(T ); for such a y′ we define T ′y′ = x′, where x′ = y′T is the
bounded linear extension of y′T to X .

Theorem 6.1.4 assures the existence of such an x′ which is unique, so T ′ is well
defined. It is easy to see that D(T ′) is a subspace of Y ′ and that T ′ is a closed
linear operator.

Lemma 6.1.6. Let T ∈ C(X ) be a densely defined operator and S ∈ L(X ).
Then, T − S ∈ C(X ) and (T − S)′ = T ′ − S ′.

Proof. Since D(T − S) = D(T ), T − S is densely defined and thus (T − S)′

exists. By [46, Problem 5.6, p. 164], T − S is closed. For y′ ∈ X ′, y′(T − S) is
bounded on D(T ) if and only if y′T is bounded on D(T ), and so D((T −S)′) =
D(T ′) = D(T ′ − S ′). For y′ ∈ D((T − S)′) = D(T ′ − S ′) it follows that

(T − S)′y′ = y′(T − S) = y′T − y′S,
(T ′ − S ′)y′ = T ′y′ − S ′y′ = y′T − y′S.

Since the functionals y′T − y′S and y′T − y′S coincide on D(T ), they coincide
on X . Therefore, (T − S)′ = T ′ − S ′.

The Fredholm theory can be extended to closed operators. An operator
T ∈ C(X ) is bounded below if there exists c > 0 such that

c‖x‖ ≤ ‖Tx‖ for every x ∈ D(T ).

Recall that T ∈ C(X ) is bounded below if and only if T is injective with closed
range [65, Theorem 5.1, p. 70]. Further, we also consider the following subsets
of C(X ):

Φ+(X ) = {T ∈ C(X ) : α(T ) <∞ and R(T ) is closed};
Φ−(X ) = {T ∈ C(X ) : β(T ) <∞},
Φ±(X ) = Φ+(X ) ∪ Φ−(X );

Φ(X ) = Φ+(X ) ∩ Φ−(X );

B+(X ) = {T ∈ C(X ) : T ∈ Φ+(X ) and asc(T ) <∞};
B−(X ) = {T ∈ C(X ) : T ∈ Φ−(X ) and dsc(T ) <∞};
B(X ) = B+(X ) ∩ B−(X ).
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Closed upper and lower semi-Browder operators

The classes Φ+(X ),Φ−(X ),Φ±(X ),Φ(X ),B+(X ),B−(X ) and B(X ) consist of
all upper semi-Fredholm, lower semi-Fredholm, semi-Fredholm, Fredholm, up-
per semi-Browder, lower semi-Browder and Browder operators, respectively.
As we see, in this chapter “bounded below operator” means “closed bounded
below operator”; moreover, Φ+(X ) will denote the set of all closed upper
semi-Fredholm operators, B+(X ) will denote the set of all closed upper semi-
Browder operators, etc. For closed upper and lower semi-Fredholm operators
the index is defined by ind(T ) = α(T ) − β(T ). If T ∈ Φ+(X )\Φ−(X ), then
ind(T ) = −∞, and if T ∈ Φ−(X )\Φ+(X ), then ind(T ) = +∞. The corre-
sponding spectra of T ∈ C(X ) are defined in a usual way.

A linear operator T , T : D(T ) → X , D(T ) ⊂ X , is Kato if R(T ) is closed
and N(T ) ⊂ R(Tm) for each m ∈ N. A subspace M of X is called invariant
under T if T (D(T )∩M) ⊂M . By the restriction of T to M we then mean the
operator TM from M to M defined as follows: D(TM) = M ∩D(T ), TMx = Tx
if x ∈ D(TM). If M is invariant under T and if T (D(T ) ∩M) = M , we say
that M is exactly invariant under T . The following result [45] is of crucial
importance.

Theorem 6.1.7. (Kato decomposition) Let X be a Banach space and T ∈
Φ±(X ). Then there exists d ∈ N such that T has a Kato decomposition of
degree d, i.e. there exists a pair (M,N) of two closed subspaces of X such
that:

(i) X = M ⊕N ;

(ii) T (M ∩D(T )) ⊂M , TM : M ∩D(T )→M , is a closed and Kato operator;

(iii) N ⊂ D(T ), dimN < ∞, T (N) ⊂ N and TN : N → N is a bounded and
nilpotent operator of degree d.

6.2 Closed upper semi-Browder operators

Theorem 6.2.1. Let T : D(T )→ X , D(T ) ⊂ X , be a linear operator and let
S ∈ L(X ) be such that S is bijective, S (D(T )) = D(T ), and S commutes with
T . Then

N(T − S) ⊂ R∞(T ).

Proof. Since S is bijective, S−1 exists. Let x ∈ D(T ) = S(D(T )). There
exists u ∈ D(T ) such that Su = x. Consequently, S−1x = u ∈ D(T ). From
TSu = STu we conclude that Tx = STS−1x, and hence that S−1Tx = TS−1x.

Let x ∈ N(T − S) ⊂ D(T − S) = D(T ). Then Tx = Sx ∈ D(T ) and
T 2x = T (Tx) = T (Sx) = S(Tx) = S2x ∈ D(T ). By induction we conclude

T nx = Snx ∈ D(T ) for every n ∈ N0. (6.1)

Observe that from Tx = Sx it follows that

TS−1x = S−1Tx = x = SS−1x,
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and hence S−1x ∈ N(T − S). Consequently,

(S−1)mx ∈ N(T − S) for every m ∈ N0. (6.2)

Using (6.1) and (6.2) we obtain

T n(S−1)mx = Sn(S−1)mx ∈ D(T ) for every n, m ∈ N0. (6.3)

Fix n0 ∈ N. From T n0x = Sn0x = SSn0−1x it follows that S−1T n0x =
Sn0−1x. Applying (6.1) and the fact that S−1 commutes with T we get
T n0S−1x = Sn0−1x. Continuing this method and using (6.3) we obtain
T n0(S−1)n0x = x, so x ∈ R(T n0). Since n0 is arbitrary, x ∈ R∞(T ).

The following result indicates that the space R∞(T ) is exactly invariant
under T ; see [38, Lemma 38.1] and the proof of [68, Theorem 4.1].

Lemma 6.2.2. Let T : D(T ) → X , D(T ) ⊂ X , be a linear operator with
α(T ) <∞. Then T (D(T ) ∩R∞(T )) = R∞(T ).

Let P ∈ L(X ) be a projector which commutes with T ∈ C(X ). Put X0 =
R(P ) and X1 = N(P ). Clearly,

T (Xj ∩ D(T )) ⊂ Xj for j = 0, 1.

It is easy to check that the restrictions Tj of T to Xj, j = 0, 1, are closed
operators. In addition, for a linear operator T from X to X , D(T ) ⊂ X , and
ε > 0 we define

comm−1
ε (T ) = {S ∈ L(X )−1 : S commutes with T, ‖S‖ < ε}.

The following definition is due to M. A. Goldman and S. N. Kračkovskii
[31], and it will be used in what follows.

Definition 6.2.3. Let T : D(T ) → X , D(T ) ⊂ X , be a linear operator and
S ∈ L(X ). We say that S commutes with T if:

(i) Sx ∈ D(T ) for every x ∈ D(T );

(ii) STx = TSx for every x ∈ D(T ).

In the following theorem we give several necessary and sufficient conditions
for a closed operator to be upper semi-Browder.

Theorem 6.2.4. Let T ∈ C(X ). Then the following conditions are equivalent:

(i) T is upper semi-Browder;

(ii) T is upper semi-Fredholm, and there exists ε > 0 such that for every
S ∈ comm−1

ε (T ) with S (D(T )) = D(T ), it follows that T − S is bounded
below;
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(iii) T is upper semi-Fredholm and 0 6∈ accσap(T );

(iv) There exists a projector P ∈ F (X ) which commutes with T such that
R(P ) ⊂ D(T ), T0 is nilpotent bounded operator, and T1 is bounded below;

(v) There exists a projector P ∈ F (X ) which commutes with T such that
R(P ) ⊂ D(T ), TP is nilpotent bounded operator, and T +P is bounded below;

(vi) There exists B ∈ F (X ) which commutes with T such that T−B is bounded
below;

(vii) There exists B ∈ K(X ) which commutes with T such that T − B is
bounded below.

Proof. (i) =⇒ (ii). Suppose that T ∈ C(X ) is upper semi-Browder. Since T ∈
Φ+(X ), R(T n) is closed for every n ∈ N by [45, Lemma 543]. According to [45,
Theorem 1], there exists some ε1 > 0 such that if B ∈ L(X ) and ‖B‖ < ε1, then
T −B ∈ Φ+(X ). Let X1 = R∞(T ). X1 is a Banach space and T (D(T )∩X1) =
X1 by Lemma 6.2.2. The operator T1 from X1 to X1 induced by T is closed
with α(T1) <∞ and β(T1) = 0. From T1 ∈ Φ(X1), again by [45, Theorem 1], it
follows that there exists some ε2 > 0 such that for B ∈ L(X1), ‖B‖ < ε2 implies
T1−B ∈ Φ(X1), α(T1−B) ≤ α(T1), β(T1−B) ≤ β(T1), ind(T1−B) = ind(T1).
Set ε = min{ε1, ε2}, and let S ∈ comm−1

ε (T ) be such that S(D(T )) = D(T ).
Since S commutes with T , it follows that S(R(T n)) ⊂ R(T n) for every n ∈ N,
and so S(X1) = S(

⋂∞
n=1R(T n)) =

⋂∞
n=1 S(R(T n)) ⊂

⋂∞
n=1 R(T n) = X1. Let

S1 : X1 → X1 be the operator induced by S. The operator S1 is bounded,
‖S1‖ < ε and β(T1) = 0, so β(T1 − S1) = 0. From Theorem 6.2.1 we have

α(T − S) = α(T1 − S1) = ind(T1 − S1) = ind(T1) = α(T1).

From [4, Lemma 2.1(iii)] it follows that N(T ) ∩ R∞(T ) = {0}, and hence
α(T1) = 0. Consequently, α(T − S) = 0. Since T − S has closed range, T − S
is bounded below.

(ii) =⇒ (iii). Put S = λI with 0 < |λ| < ε.

(iii) =⇒ (iv). Suppose that T is upper semi-Fredholm and there exists ε > 0
such that T −λI is injective with closed range for 0 < |λ| < ε. From Theorem
6.1.7 it follows that there exist two closed subspaces M and N such that
X = M ⊕ N , T (M ∩ D(T )) ⊂ M , the restriction TM of T to M is a closed
and Kato operator; N ⊂ D(T ), dimN < ∞, T (N) ⊂ N and TN : N → N is
a bounded and nilpotent operator. Let P be a projector such that R(P ) = N
and N(P ) = M . Clearly, P ∈ F (X ), R(P ) ⊂ D(T ) and P (D(T )) ⊂ D(T ).
For x ∈ D(T ) there exist u ∈ N(P )∩D(T ) and v ∈ R(P ) such that x = u+ v.
Since TPx = Tv and PTx = P (Tu+Tv) = Tv, we conclude that P commutes
with T . For T0 = TN and T1 = TM , T0 is a nilpotent bounded operator and
T1 − λI is injective for 0 < |λ| < ε. Since T1 is Kato, from [45, Theorem 3, p.
297] we conclude that T1 is injective. Thus, T1 is bounded below.

(iv) =⇒ (v). Suppose that there exists a projector P ∈ F (X ) which commutes
with T such that R(P ) ⊂ D(T ), T0 is a nilpotent bounded operator of degree
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p, and T1 is bounded below. Since ‖TPx‖ = ‖T0Px‖ ≤ ‖T‖‖P‖‖x‖ for every
x ∈ X , TP is bounded. In addition, for x ∈ X there exist u ∈ N(P ) and
v ∈ R(P ) such that x = u+ v. Then

(TP )px = (TP )(TP ) . . . (TP )(TP )︸ ︷︷ ︸
p

x = (TP )(TP ) . . . (TP )︸ ︷︷ ︸
p−1

Tv

= (TP )(TP ) . . . (TP )︸ ︷︷ ︸
p−2

TTv = · · · = T pv = (T0)pv = 0,

and so TP is nilpotent. From T ∈ C(X ) and P ∈ L(X ) it follows that
T + P ∈ C(X ). Since T0 is a nilpotent bounded operator, T0 + I0 is invertible,
where I0 is the identity operator on X0. Consequently, N(T + P ) = N(T1)⊕
N(T0 + I0) = {0} and R(T +P ) = R(T1)⊕R(T0 + I0) = R(T1)⊕R(P ). Since
R(T1) is closed and dimR(P ) < ∞, R(T + P ) is closed. Therefore, T + P is
bounded below.

(v) =⇒ (vi). Put B = −P .

(vi) =⇒ (vii). Obvious.

(vii) =⇒ (i). Let there exists B ∈ K(X ) which commutes with T such that
T − B is bounded below. Put A = T − B. Then asc(A) < ∞ and A + λB ∈
Φ+(X ) for λ ∈ [0, 1] according to [46, Chapter 4, Theorem 5.26]. Since B
commutes with A, from [31, Theorem 3] it follows that the function λ →
N∞(A+ λB)∩R∞(A+λB) is locally constant on the set [0, 1], and hence this
function is constant on [0, 1]. As asc(A) <∞, from Lemma 6.1.2(i) it follows
that N∞(A)∩R∞(A) = N∞(A)∩R∞(A) = {0}, and so N∞(A+B)∩R∞(A+
B) = {0}. It implies N∞(A+B)∩R∞(A+B) = {0}, and by Lemma 6.1.2(ii),
we get asc(A+B) <∞. Therefore, T = A+B ∈ B+(X ).

Corollary 6.2.5. Let T ∈ C(X ). Then:

σB+(T ) = σΦ+(T ) ∪ accσap(T ).

Proof. Follows from the equivalence (i)⇐⇒(iii) of Theorem 6.2.4.

Corollary 6.2.6. Let T ∈ C(X ). Then, σB+(T ) is a closed set.

Proof. From [45, Theorem 1], it follows that σΦ+(T ) is closed. Now, according
to Corollary 6.2.5, σB+(T ) is the union of two closed sets, so σB+(T ) is closed.

For T ∈ C(X ) set

FT (X ) = {F ∈ F (X ) : F commutes with T}

and
KT (X ) = {K ∈ K(X ) : K commutes with T}.
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Corollary 6.2.7. Let T ∈ C(X ). Then:

σB+(T ) =
⋂

F∈FT (X )

σap(T + F ) =
⋂

K∈KT (X )

σap(T +K).

Proof. Suppose that λ /∈
⋂

K∈KT (X )

σap(T + K). Then there exists K ∈ KT (X )

such that λ /∈ σap(T + K), that is T + K − λ is bounded below. Since −K
commutes with T − λ, from the equivalence (i)⇐⇒(vii) of Theorem 6.2.4,
it follows that T − λ ∈ B+(X ), i.e. λ /∈ σB+(T ). Therefore, σB+(T ) ⊂⋂
K∈KT (X )

σap(T +K) ⊂
⋂

F∈FT (X )

σap(T + F ).

To prove the converse, suppose that λ /∈ σB+(T ). Then T−λ ∈ B+(X ), and
from from the equivalence (i)⇐⇒(vi) of Theorem 6.2.4, it follows that there
exists F ∈ F (X ) which commutes with T − λ such that T − λ−F is bounded
below. Then F1 = −F ∈ F (X ) commutes with T , and hence F1 ∈ FT (X ).
Moreover, T +F1−λ is bounded below, and so λ /∈ σap(T +F1). Consequently,⋂
F∈FT (X )

σap(T + F ) ⊂ σB+(T ).

In order to compare our results and the results proved in [4], we need the
following definition [44].

Definition 6.2.8. Let T : D(T ) → X , D(T ) ⊂ X , and S : D(S) → X ,
D(S) ⊂ X be linear operators. We say that S commutes with T if:

(i) D(T ) ⊂ D(S);

(ii) Sx ∈ D(T ) whenever x ∈ D(T );

(iii) STx = TSx for x ∈ D(T 2).

Remark 6.2.9. Let T : D(T ) → X , D(T ) ⊂ X , be a linear operator and
S ∈ L(X ). The following assertions hold:

(i) If S commutes with T in the sense of Definition 6.2.3, then S also commutes
with T in the sense of Definition 6.2.8;

(ii) S commutes with T in the sense of Definition 6.2.8 and T (D(T )) ⊂ D(T )
if and only if S commutes with T in the sense of Definition 6.2.3 and D(T 2) =
D(T ).

If we observe that D(S) = X and that D(T 2) ⊂ D(T ), then (i) follows im-
mediately. Further, it is easily seen that T (D(T )) ⊂ D(T ) is equivalent to
D(T 2) = D(T ). Now, (ii) is a consequence of this fact and (i).

[4, Theorem 3.2] states that if T ∈ C(X ) is upper semi-Browder then there
exists A ∈ C(X ) and B ∈ F (X ) such that T = A + B, D(A) = D(T ), A is
bounded below and B commutes with T in the sense of Definition 6.2.8; the
converse assertion holds if T (D(T )) ⊂ D(T ). According to Remark 6.2.9, the
equivalence (i) ⇐⇒ (vi) of Theorem 6.2.4 is an extension of [4, Theorem 3.2].
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6.3 Closed lower semi-Browder operators

Lemma 6.3.1. Let T ∈ C(X ) be a densely defined operator, and let S ∈ L(X ).
If S commutes with T , then S ′ commutes with T ′.

Proof. For y′ ∈ D(T ′) it follows that

‖S ′y′(Tx)‖ = ‖(y′S)(Tx)‖ = ‖(y′T )(Sx)‖ ≤ ‖y′T‖‖S‖‖x‖

for every x ∈ D(T ), and hence S ′y′ ∈ D(T ′). Therefore, S ′(D(T ′)) ⊂ D(T ′).
It remains to prove the commutativity relation. For y′ ∈ D(T ′) we have

(T ′S ′)y′ = (S ′y′)T ,

(S ′T ′)y′ = y′TS.

Since (S ′y′)Tx = (y′S)(Tx) = (y′T )(Sx) for x ∈ D(T ), (S ′y′)T = y′TS by
Theorem 6.1.4. Consequently, (T ′S ′)y′ = (S ′T ′)y′.

In the following theorem we characterize closed lower semi-Browder oper-
ators.

Theorem 6.3.2. If T ∈ C(X ), D(T ) = X and ρΦ(T ) 6= ∅, then the following
conditions are equivalent:

(i) T is lower semi-Browder;

(ii) T is lower semi-Fredholm, and there exists ε > 0 such that for every S ∈
comm−1

ε (T ) with S(D(T )) = D(T ), it follows that T − S is onto;

(iii) T is lower semi-Fredholm and 0 6∈ accσsu(T );

(iv) There exists a projector P ∈ F (X ) which commutes with T such that
R(P ) ⊂ D(T ), T0 is a nilpotent bounded operator and T1 is surjective;

(v) There exists a projector P ∈ F (X ) which commutes with T such that
R(P ) ⊂ D(T ), TP is a nilpotent bounded operator and T + P is surjective;

(vi) There exists B ∈ F (X ) which commutes with T such that T − B is sur-
jective;

(vii) There exists B ∈ K(X ) which commutes with T such that T − B is
surjective.

Proof. (i) =⇒ (ii). Let T ∈ B−(X ). Then T ′ is a closed operator and from [4,
Proposition 3.1(iii)] it follows that asc(T ′) <∞. Further, since R(T ) is closed,
R(T ′) is also closed by [30, Theorem IV.1.2], and from [30, Theorem IV.2.3,
i.] it follows that α(T ′) = β(T ) <∞. Therefore, T ′ ∈ B+(X ′).

Let S ∈ L(X ) be an arbitrary bijection with S(D(T )) = D(T ) and let
S commutes with T . Then S ′ ∈ L(X ′), ‖S ′‖ = ‖S‖, and S ′ is bijective. In
addition, by Lemma 6.3.1, S ′(D(T ′)) ⊂ D(T ′) and S ′ commutes with T ′. We
shall show that S ′(D(T ′)) = D(T ′). It is sufficient to prove D(T ′) ⊂ S ′(D(T ′)).
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Suppose that y′ ∈ D(T ′). Then there exists the unique functional z′ ∈ X ′ such
that y′ = S ′z′ = z′S. It follows that z′ = y′S−1. By Theorem 6.2.1, S−1

commutes with T , and so for x ∈ D(T ) the following holds

‖(z′T )x‖ = ‖y′
(
S−1(Tx)

)
‖ = ‖y′

(
T (S−1x)

)
‖ =

= ‖(y′T )(S−1x)‖ ≤ ‖y′T‖‖S−1‖‖x‖,

which proves that z′ ∈ D(T ′). Therefore, D(T ′) ⊂ S ′(D(T ′)).
By Theorem 6.2.4, there exists some ε > 0 such that T ′−A is bounded be-

low for every operator A ∈ L(X ′) such that A ∈ comm−1
ε (T ′) and A(D(T ′)) =

D(T ′). According to the preceding paragraph, for S ∈ comm−1
ε (T ) with

S(D(T )) = D(T ), it follows that S ′ ∈ comm−1
ε (T ′) and S ′(D(T ′)) = D(T ′).

Consequently, T ′ − S ′ is bounded below. By Lemma 6.1.6 and [30, Theorem
IV.1.2], R(T − S) is closed, and by [30, Theorem IV. 2.3, i.] we conclude that

β(T − S) = α((T − S)′) = α(T ′ − S ′) = 0.

Therefore, T − S is onto.

(ii) =⇒ (iii). Obvious.

(iii) =⇒ (iv). Suppose that T ∈ Φ−(X ) and 0 6∈ accσsu(T ). From Theorem
6.1.7 it follows that there exist two closed subspaces M and N such that
X = M ⊕ N , T (M ∩ D(T )) ⊂ M , the restriction TM of T to M is a closed
and Kato operator; N ⊂ D(T ), dimN < ∞, T (N) ⊂ N and TN : N → N is
a bounded and nilpotent operator of degree p. Let P be the projector on N
parallel to M . Then P ∈ F (X ), R(P ) ⊂ D(T ) and P (D(T )) ⊂ D(T ). In the
same way as in the proof of Theorem 6.2.4 (see (iii) =⇒ (iv)) we conclude that
P commutes with T . Clearly, T0 = TN is a bounded and nilpotent operator.
Since there exists ε > 0 such that T −λI is surjective for 0 < |λ| < ε, TM −λI
is surjective for 0 < |λ| < ε. As TM is Kato, from [45, Theorem 3, p. 297], we
conclude that T1 = TM is surjective.

(iv) =⇒ (v). Suppose that there exists a projector P ∈ F (X ) which commutes
with T such that R(P ) ⊂ D(T ), T0 is nilpotent bounded operator of degree
p and T1 is surjective. We can now proceed analogously to the proof of the
implication (iv) =⇒ (v) of Theorem 6.2.4. Consequently, we obtain that TP
is a nilpotent bounded operator. From R(T + P ) = R(T1) ⊕ R(T0 + I) =
N(P )⊕R(P ) = X , we see that T + P is a surjection.

(v) =⇒ (vi). Put B = −P .

(vi) =⇒ (vii). Obvious.

(vii) =⇒ (i). Let there exists B ∈ K(X ) which commutes with T such that
T−B is surjective. Put A = T−B. The operator B′ is compact and commutes
with T ′. The operator T − B is surjective, so it has closed range. From [30,
Theorem IV.1.2] and Lemma 6.1.6 we see that R(T ′−B′) is also closed and by
[30, Theorem IV.2.3], α(T ′−B′) = β(T −B) = 0. It follows that the operator
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T ′−B′ is bounded below and from Theorem 6.2.4 it follows that T ′ ∈ B+(X ′).
Using again [30, Theorem IV.1.2] and [30, Theorem IV.2.3, i.] we deduce that
R(T ) is closed and β(T ) = α(T ′) < ∞, so T ∈ Φ−(X ). According to [4,
Proposition 3.1], dsc(T ) = asc(T ′) <∞, and hence T ∈ B−(X ).

Corollary 6.3.3. Let T ∈ C(X ), D(T ) = X and ρΦ(T ) 6= ∅. Then

σB−(T ) = σΦ−(T ) ∪ accσsu(T ).

Proof. Note that ρΦ(T ) 6= ∅ implies ρΦ(T − λ) 6= ∅ for all λ ∈ C. What is
more, T − λ is closed and densely defined for every λ ∈ C. Now, the result
follows from the equivalence (i) ⇐⇒ (iii) of Theorem 6.3.2.

Corollary 6.3.4. Let T ∈ C(X ), D(T ) = X and ρΦ(T ) 6= ∅. Then, σB−(T ) is
closed.

Proof. Notice that σΦ−(T ) is closed [45, Theorem 1] and apply Corollary 6.3.3.

Corollary 6.3.5. Let T ∈ C(X ), D(T ) = X and ρΦ(T ) 6= ∅. Then

σB−(T ) =
⋂

F∈FT (X )

σsu(T + F ) =
⋂

K∈KT (X )

σsu(T +K).

Proof. Suppose that λ /∈
⋂

K∈KT (X )

σsu(T + K). Then there exists K ∈ KT (X )

such that λ /∈ σsu(T +K), that is T +K−λ is surjective. Since −K commutes
with T − λ, D(T − λ) = D(T ) = X , ρΦ(T − λ) 6= ∅, from Theorem 6.3.2
((i) ⇐⇒ (vii)) it follows that T − λ ∈ B−(X ), i.e. λ /∈ σB−(T ). Therefore,
σB−(T ) ⊂

⋂
K∈KT (X )

σsu(T +K) ⊂
⋂

F∈FT (X )

σsu(T + F ).

To prove the opposite inclusion, suppose that λ /∈ σB−(T ). Then T − λ ∈
B−(X ), and since D(T − λ) = X and ρΦ(T − λ) 6= ∅, from Theorem 6.3.2
((i) ⇐⇒ (vi)) it follows that there exists F ∈ F (X ) which commutes with
T − λ such that T − λ − F is surjective. Then F1 = −F ∈ F (X ) commutes
with T and hence F1 ∈ FT (X ). Moreover, T + F1 − λ is surjective, and so
λ /∈ σsu(T + F1). Consequently,

⋂
F∈FT (X )

σsu(T + F ) ⊂ σB+(T ).
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iga, Zagreb (1981).

[52] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory,
Oxford University Press (2000).

[53] D. C. Lay, Spectral analysis using ascent, descent, nullity and defect,
Math. Ann. 184 (1970), 197–214.

[54] R. A. Lubansky, Koliha-Drazin invertibles form a regularity, Math. Proc.
Roy. Ir. Acad. 107A (2007), 137–141.
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