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A SYSTEM OF GENERALIZED VARIATIONAL INCLUSION
PROBLEMS INVOLVING (A, η)-MONOTONE MAPPINGS

Mohsen Alimohammady and Mehdi Roohi

Abstract

This paper deals with existence and uniqueness of the solution for a system
of variational inclusions with (A, η)-monotone mappings.

1 Introduction

It is well known that the resolvent operators technique plays a crucial role in com-
puting approximate solutions of generalized variational and quasi-variational in-
equalities, and generalized variational and quasi-variational inclusions, which come
from variational problems, optimization and control theory, operations research,
complementarity problems, mathematical programming and engineering sciences;
for more details see [1–23] and references therein. Fang and Huang [5] introduced
the concept of an H-monotone operator and the resolvent operator associated with
an H-monotone operator as a generalization of maximal monotone operators and
resolvent operator associated with maximal monotone operators. Using those con-
cepts, they studied the existence and algorithm of solutions for general variational
inclusions. Recently, as an extension of H-monotone operator, Fang and Huang in-
troduced and studied a new class of monotone operators so-called (H, η)-monotone
operators and then they studied a new system of variational inclusions involving
(H, η)-monotone operators in Hilbert spaces. Further, in [7] by the resolvent oper-
ator method associated with (H, η)-monotone operators due to Fang and Huang,
the existence and uniqueness of solutions for a new system of variational inclusions
is proved and also a new algorithm for approximating the solution of this system
of variational inclusions is constructed and the convergence of iterative sequence
generated by this algorithm is discussed. Verma announced the notion of the A-
monotone mapping and its applications to the solvability of nonlinear variational
inclusions and systems of nonlinear variational inclusions [13, 14, 16] and [17].

More recently, Verma and Zhang respectively in [18] and [23] individually intro-
duced the notion of (A, η)-monotone operators and G-η-monotone mappings, which
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they have the same definition, also, they generalized H-monotone, (H, η)-monotone
and A-monotone operators. Using the generalized resolvent operators technique,
Verma [15, 18] and Zhang [23] studied the solvability of a class of nonlinear varia-
tional inclusions involving (A, η)-monotone mappings.

At the present paper, after reviewing some basic definitions and results about
monotone operators and specially (A, η)-monotone operators, existence and unique-
ness of the solution for a system of variational inclusions with (A, η)-monotone
mappings are proved.

2 Preliminaries

To ease understanding of the material incorporated in this paper we recall some
basic definitions. For details on the following notions we refer to [1, 5, 15, 23] and
references therein.

Let H be a real Hilbert space with the norm ‖.‖ and inner product 〈., .〉 and let
η : H×H −→ H is a single valued mapping with η(x, y)+η(y, x) = 0. The mapping
η is called γ-Lipschitz continuous mapping, if there exists some γ > 0 such that
‖η(x, y)‖ ≤ γ‖x− y‖ for all x, y ∈ H. For a set-valued map T : H ( H the inverse
T−1 of T is {(y, x) : (x, y) ∈ T}. For a real number c, let cT = {(x, cy) : (x, y) ∈ T}.
If T1 and T2 are any set-valued mappings, we define T1 + T2 = {(x, y + z) : (x, y) ∈
T1, (x, z) ∈ T2}.

Definition 2.1. [5, 15] A single valued map A : H −→ H is said to be
(a) η-monotone if 〈A(x)−A(y), η(x, y)〉 ≥ 0 for all x, y ∈ H.
(b) r-strongly η-monotone if, there exists some constant r > 0 such that 〈A(x)−

A(y), η(x, y)〉 ≥ r‖x− y‖2 for all x, y ∈ H.
(c) δ-Lipschitz if ‖A(x)−A(y)‖ ≤ δ‖x− y‖ for all x, y ∈ H.

Definition 2.2. [5, 15] A set-valued map T : H ( H is said to be
(a) r-strongly monotone if, there exists some constant r > 0 such that 〈u−v, x−

y〉 ≥ r‖x− y‖2 for all x, y ∈ H and all u ∈ T (x), v ∈ T (y).
(b) r-strongly η-monotone if, there exists some constant r > 0 such that 〈u −

v, η(x, y)〉 ≥ r‖x− y‖2 for all x, y ∈ H and all u ∈ T (x), v ∈ T (y).
(c) m-relaxed monotone if, there exists some constant m > 0 such that 〈u −

v, x− y〉 ≥ −m‖x− y‖2 for all x, y ∈ H and all u ∈ T (x), v ∈ T (y).
(d) m-relaxed η-monotone if, there exists some constant m > 0 such that 〈u −

v, η(x, y)〉 ≥ −m‖x− y‖2 for all x, y ∈ H and all u ∈ T (x), v ∈ T (y).

Definition 2.3. [1, 23] Suppose A,B : H −→ H are two single valued mappings. B
is said to be s-strongly monotone with respect to A if 〈B(u)−B(v), A(u)−A(v)〉 ≥
s‖x− y‖2 for all x, y ∈ H.

Definition 2.4. [1, 23] Suppose X is a nonempty set.
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(a) The map f : H×X −→ H is said to be s-strongly η-monotone with respect
to A in first argument if f(., x) is s-strongly monotone with respect to A for all
x ∈ X.

(b) The map g : X ×H −→ H is said to be s-strongly η-monotone with respect
to A in second argument if g(x, .) is s-strongly monotone with respect to A for all
x ∈ X.

Definition 2.5. [1, 23] Suppose H1 and H2 are two real Hilbert spaces.
(a) The map f : H1 ×X −→ H2 is δ-Lipschitz continuous in first argument if

f(., x) is δ-Lipschitz continuous for all x ∈ X.
(b) The map g : X × H1 −→ H2 is δ-Lipschitz continuous in second argument

if g(x, .) is δ-Lipschitz continuous for all x ∈ X.

3 Main results

Definition 3.1. [15, 18, 23] A set-valued map T : H ( H is said to be (A, η)-
monotone mapping, if it is m-relaxed η-monotone and (A + λT )(H) = H for all
λ > 0.

Example 3.2. [23] Let X = R, T (x) = 2x, A(x) = x3 and η(x, y) = y − x, for all
x, y ∈ H. Then T is (A, η)-monotone, but it is not (A, η)-accretive.

Example 3.3. [23] Let X = R, for c > 0,

T (x) =
{

[− 4√
c3

2 ,
4√

c3

2 ] x = 0
{ 1

x} x 6= 0,

A(x) = x3 and η(x, y) = xy(x− y) for all x, y ∈ H. Then T is (A, η)-monotone, but
it is not A-monotone and H-monotone.

Theorem 3.4. [23] Suppose A : H −→ H is an r-strongly η-monotone mapping
and T : H ( H is (A, η)-monotone. Then (A + λT )−1 is single-valued, where
0 < λ < r

m .

Definition 3.5. [23] Suppose A : H −→ H is an r-strongly η-monotone and T :
H ( H is (A, η)-monotone. For any λ with 0 < λ < r

m , the generalized resolvent
operator RA,η

T,λ : H −→ H is defined by RA,η
T,λ(u) = (A + λT )−1(u).

Remark 3.6. For appropriate and suitable choices of A, T and η one can obtain
many known resolvent operators considered in recent literature.

Theorem 3.7. [23] Let A : H −→ H be an r-strongly η-monotone single-valued
mapping, η : H×H −→ H be γ-Lipschitz continuous and T : H ( H be an (A, η)-
monotone mapping. Then the generalized resolvent operator RA,η

T,λ is γ
r−λm -Lipschitz

continuous for all 0 < λ < r
m .

In the rest of this paper H1 and H2 are real Hilbert spaces, ηi : Hi×Hi −→ Hi

are single valued mappings with ηi(x, y) + ηi(y, x) = 0 for all (x, y) ∈ H1 ×H2.
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Problem 3.8. Consider single valued mappings ηi : Hi ×Hi −→ Hi, Ai : Hi −→
Hi and Si : H1 × H2 −→ Hi for i = 1, 2. Also, consider set-valued mappings
Ti : Hi ( Hi. Suppose Ti is an (Ai, ηi)-monotone operator for i = 1, 2. Our
problem is finding (u, v) ∈ H1 ×H2 for which

{
0 ∈ S1(u, v) + T1(u)
0 ∈ S2(u, v) + T2(v).

Remark 3.9. By a suitable choices of A1, A2, S1, S2, η1, η2, T1 and T2 one can
obtain many known and new classes of variational inequalities and variational in-
clusions as special cases of the Problem 3.8.

Theorem 3.10. Suppose Ai : Hi −→ Hi is an ri-strongly ηi-monotone operator
and Ti : Hi ( Hi is an (Ai, ηi)-monotone operator for each i = 1, 2. Define
F : H1×H2 −→ H1, G : H1×H2 −→ H2 and Q : H1×H2 −→ H1×H2 respectively
by F (u, v) = RA1,η1

T1,λ [A1(u) − λS1(u, v)], G(u, v) = RA2,η2
T2,µ [A2(v) − µS2(u, v)] and

Q(u, v) = (F (u, v), G(u, v)) for all (u, v) ∈ H1×H2. Then the following statements
are equivalent.

(a) (u, v) ∈ H1 ×H2 is a solution of Problem 3.8,
(b) u = RA1,η1

T1,λ [A1(u)− λS1(u, v)] and v = RA2,η2
T2,µ [A2(v)− µS2(u, v)],

(c) (u, v) is a fixed point of Q.

Proof. It is an immediate consequence of Definition 3.5.

Lemma 3.11. Suppose X is a nonempty set and A : H −→ H is θ-Lipschitz
continuous operator. Also, suppose that S : H × X −→ H is s-strongly monotone
with respect to A in first argument and δ-Lipschitz continuous in first argument.
Then for any λ > 0 we have

‖A(u)−A(v)− λ(S(u, x)− S(v, x))‖ ≤
√

θ2 − 2λs + λ2δ2‖u− v‖.

Proof. Clearly,

‖A(u)−A(v)− λ(S(u, x)− S(v, x))‖2 = 〈A(u)−A(v)− λ(S(u, x)− S(v, x)),
A(u)−A(v)− λ(S(u, x)− S(v, x))〉
= ‖A(u)−A(v)‖2 − 2λ〈S(u, x)− S(v, x), A(u)−A(v)〉
+λ2‖S(u, x)− S(v, x)‖2.

Since A is θ-Lipschitz continuous, S is s-strongly monotone with respect to A in
first argument and δ-Lipschitz continuous in first argument, so ‖A(u) − A(v) −
λ(S(u, x) − S(v, x))‖2 ≤ (θ2 − 2λs + λ2δ2)‖u − v‖2. Therefore, ‖A(u) − A(v) −
λ(S(u, x)− S(v, x))‖ ≤ √

θ2 − 2λs + λ2δ2‖u− v‖.
Lemma 3.12. Suppose η1 : H1 × H1 −→ H1 is γ1-Lipschitz continuous, A1 :
H1 −→ H1 is an r1-strongly η1-monotone and θ1-Lipschitz continuous operator
and T1 : H1 ( H1 is an (A1, η1)-monotone mapping. Also, suppose that S1 : H1 ×
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H2 −→ H1 is s1-strongly monotone with respect to A1 in first argument, δ1-Lipschitz
continuous in first argument and ξ1-Lipschitz continuous in second argument. Then
F defined as in Theorem 3.10 satisfies in

‖F (u, v)− F (u′, v′)‖ ≤ γ1

r1 − λm

√
θ2
1 − 2λs1 + λ2δ2

1‖u− u′‖+
λγ1ξ1

r1 − λm
‖v − v′‖.

Proof. According to Theorem 3.7 and Lemma 3.11,

‖F (u, v)− F (u′, v′)‖ = ‖RA,η
T,λ(A(u)− λS(u, v))−RA,η

T,λ(A(u′)− λS(u′, v′))‖
≤ γ1

r1 − λm
‖A(u)− λS(u, v)− (A(u′)− λS(u′, v′))‖

≤ γ1

r1 − λm
(‖A(u)−A(u′)− λ(S(u, v)− S(u′, v))‖+ λ‖S(u′, v)− S(u′, v′)‖)

≤ γ1

r1 − λm

√
θ2
1 − 2λs1 + λ2δ2

1‖u− u′‖+
λγ1ξ1

r1 − λm
‖v − v′‖.

Similar to Lemma 3.11 and Lemma 3.12, one can deduce the following lemmas.

Lemma 3.13. Suppose X is a nonempty set and A : H −→ H is θ-Lipschitz
continuous operator. Also, suppose that S : X × H −→ H is s-strongly monotone
with respect to A in second argument and δ-Lipschitz continuous in second argument.
Then for any µ > 0 we have

‖A(u)−A(v)− µ(S(x, u)− S(x, v))‖ ≤
√

θ2 − 2µs + µ2δ2‖u− v‖.

Lemma 3.14. Suppose η2 : H2 × H2 −→ H2 is a γ2-Lipschitz continuous, A2 :
H2 −→ H2 is an r2-strongly η2-monotone and θ2-Lipschitz continuous operator
and T2 : H2 ( H2 is an (A2, η2)-monotone mapping. Also, suppose that S2 :
H1 × H2 −→ H2 is s2-strongly monotone with respect to A2 in second argument,
δ2-Lipschitz continuous in second argument and ξ2-Lipschitz continuous in first ar-
gument. Then G defined as in Theorem 3.10 satisfies in

‖G(u, v)−G(u′, v′)‖ ≤ µγ2ξ2

r2 − µm
‖u− u′‖+

γ2

r2 − µm

√
θ2
2 − 2µs2 + µ2δ2

2‖v − v′‖.

Theorem 3.15. Suppose H1 and H2 are two real Hilbert spaces. Also, suppose for
i = 1, 2,

(a) ηi : Hi ×Hi −→ Hi is γi-Lipschitz continuous mapping,
(b) Ai : Hi −→ Hi is an ri-strongly ηi-monotone and θi-Lipschitz continuous

operator,
(c) Ti : Hi ( Hi is (Ai, ηi)-monotone operator,
(d) Si : H1 × H2 −→ Hi is δi-Lipschitz continuous in i’th argument and si-

strongly monotone with respect to Ai in i’th argument,
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(e) S1 is ξ1-Lipschitz continuous in second argument and S2 is ξ2-Lipschitz con-
tinuous in first argument. If

{
γ1

r1−λm

√
θ2
1 − 2λs1 + λ2δ2

1 + µγ2ξ2
r2−µm < 1, 0 < λ < r1

m
λγ1ξ1

r1−λm + γ2
r2−µm

√
θ2
2 − 2µs2 + µ2δ2

2 < 1, 0 < µ < r2
m ,

then Problem 3.8 has a unique solution.

Proof. Let F,G and Q be defined as in Theorem 3.10. Equipped H1 × H2

with ‖(u, v)‖× = ‖u‖ + ‖v‖ for all (u, v) ∈ H1 × H2. It is well known that (H1 ×
H2, ‖(., .)‖×) is a Banach space. Set

k := max{ γ1

r1 − λm

√
θ2
1 − 2λs1 + λ2δ2

1 +
µγ2ξ2

r2 − µm
,

λγ1ξ1

r1 − λm

+
γ2

r2 − µm

√
θ2
2 − 2µs2 + µ2δ2

2}.

On the other hand, ‖Q(u, v) − Q(u′, v′)‖× = ‖F (u, v) − F (u′, v′)‖ + ‖G(u, v) −
G(u′, v′)‖. It follows from Lemma 3.12 and Lemma 3.14 that ‖Q(u, v)−Q(u′, v′)‖× ≤
k‖(u, v)−(u′, v′)‖× and hence by assumption Q is a contraction map. Now, Banach
Contraction Theorem implies that Q has a unique fixed point. That Problem 3.8
has a unique solution follows from Theorem 3.10.
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