
Faculty of Sciences and Mathematics, University of Nǐs, Serbia

Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 23:2 (2009), 68–81

VISUALIZATION IN OPTIMIZATION WITH
MATHEMATICA

Predrag S. Stanimirović∗, Marko D. Petković, Milan Lj. Zlatanović

Abstract

We show how the computer algebra system in MATHEMATICA and its graph-
ical capabilities can be used in optimization. A package for teaching the
graphical solution of two-dimensional and three-dimensional linear program-
ming problem is developed.

1 Introduction

It is well-known that MATHEMATICA is the premier software system for numerical,
symbolic, and graphical computations and visualization [9, 10, 11]. It is a very high
level programming language, adaptive to various types of courses in mathematics.
MATHEMATICA is a system for doing mathematics by computer. It includes arbi-
trary precision and exact numerical computation, symbolic computation, graphics,
sound, hyperlinked documentation and interprocess communication - all integrated
together in one easy-to-use package. The MATHEMATICA computer algebra system is
an attractive medium for teaching mathematics [1]. There exists several computer
algebra systems, such as Maple, MatLab and others, and at this level it is mainly a
matter of taste which system one chooses to use. However, looking a little further
it is the authors opinion in [4] that MATHEMATICA is superior to the others for the
following reasons: MATHEMATICA as a programming language is very structured and
highly adaptive to a variety of applications, both technical and theoretical.

In teaching programming for students in mathematics courses, one of the im-
portant features for programming languages may be the ability to treat functions
as higher order functions. This feature is presented in [6] and compared with pro-
gramming language C.

Let us notice that there are no standard packages for visualization and anima-
tion of linear programming problems and the geometrical method in the package
MATHEMATICA. Furthermore, there is no such implementation, even in the most com-
plete MATHEMATICA optimization software, described in Bhatti [2]. Therefore, the

∗Corresponding author
2000 Mathematics Subject Classifications. 90C05, 68W30.
Key words and Phrases. Linear programming; Visualization; Computer graphic; Computer

Algebra System; MATHEMATICA

Visualization in optimization with MATHEMATICA 69

first goal of this work is to alleviate this deficiency. The second aim of the paper is
to extend possibilities of the programming language MATHEMATICA. With respect to
this purpose, the paper is intended to provide research and/or development results.

In the present paper we are concerned with the application of MATHEMATICA’s
symbolic computation and graphical capabilities in optimization theory. Optimiza-
tion can be done in many different programming languages such as FORTRAN,
C++, and specialty languages. MATHEMATICA is a high level programming lan-
guage that offers many advantages for optimization. Optimization capabilities in
MATHEMATICA are investigated in [5]:

- Very high precision math is standard.
- A huge library of advanced math functions is available.
- The notebook user interface is easy to use and interactive.
- Most critically for optimization, symbolic manipulation of expressions is pos-

sible.

Main disadvantage of MATHEMATICA is the slow execution. While the slow execu-
tion of the code (inherent to all interpreted programming languages and MATHEMATICA)
is a clear disadvantage, code execution is only 1.% of the total research time. In
any research, most time is spent reading, thinking and trying out the ideas. In the
computer languages that lack the visualization tools, or file import/export conver-
sion tools, researchers are forced to spend weeks, if not months, implementing those
features only at a barely functioning level. MATHEMATICA on the other hand will
allow the researchers to focus on the research most of the time.

We investigate symbolic and graphical capabilities of package MATHEMATICA in
optimization. In the second section we investigate visualization and animation of
2D and 3D linear programming problems, and describe a MATHEMATICA software for
teaching the graphical method for solving two-dimensional and three-dimensional
linear programming problems. Our software consists of two independent modu-
les Geom2D and Geom3D which are designed for visualization of 2D and 3D line-
ar programming problems. Complete software is written and fully functional in
MATHEMATICA 6.0. Some pieces of code remained compatible with MATHEMATICA
5.2. There are some compatibility issues of running program in the last version
MATHEMATICA 7.0, but there are supplied appropriate alternatives.

2 Animation of geometrical method in linear pro-
gramming

The set of points satisfying constraints of the form Ax ≤ b, A ∈ Rm×n,x ∈ Rn,
x ≥ 0 can be represented as the intersection of a finite number of closed half-spaces.
Thus, these constraints define a convex polytope. We assume, for simplicity, that
this polytope is nonempty and bounded. In other words, the equations of constraints
define a polyhedron Ωp in Rn. Let H be a hyperplane of support of this polyhedron.
If the dimension of Ωp is less than n, then the set of all points common to the
hyperplane H and the polyhedron Ωp coincides with Ωp. If the dimension of Ωp

70 P.S. Stanimirović, M.D. Petković, M.Lj. Zlatanović

is equal to n, then the set of all points common to the hyperplane H and the
polyhedron Ωp is a face of the polyhedron. If this face is (n− 1)-dimensional, then
there exists only one hyperplane of support, namely, the carrier of this face. If
the dimension of the face is less than n − 1, then there exists an infinite number
of hyperplanes of support whose intersection with this polyhedron yields this face
[3]. The goal of our linear programming problem is to maximize a linear objective
function f(x) = cT x = c1x1 + · · ·+ cnxn on the convex polyhedron Ωp.

The set of points where the goal function f(x) have a constant value d represents
a hyperplane Hf,d = {x ∈ Rn | f(x) = d}, which can be translated in the direction
of the vector c, varying the value d. The linear programming problem is equivalent
with the problem of finding a maximal (minimal) value d satisfying Hf,d ∩ΩP 6= ∅.
It is well known that the extreme value of goal function is achieved in one of the
extreme points of the set ΩP or in each point on the edge of the set ΩP which is
parallel with the straight line f(x) = d. This method is applicable in cases n = 2
and n = 3.

2.1 2D case

Consider the the general form of linear programming (LP) problem in R2:

max f(x) = f(x, y) = cT x = c1x + c2y

s.t. ai1x + ai2y ≤ bi, i ∈ I1

ai1x + ai2y ≥ bi, i ∈ I2 (2.1)
x, y ≥ 0.

where I1 ∪ I2 = {1, . . . ,m}, I1 ∩ I2 = ∅ and aij , bi, cj are given real numbers and
m = |I1|+ |I2|. Each inequality constraint from (2.1) determines a subset Di ⊂ R2,
i = 1, . . . ,m, representing the set of points on the one side of corresponding straight
line ai1x + ai2y = bi. Therefore, the set of feasible solutions (polyhedron denoted
as ΩP in R2) is determined as the intersection

Ωp = D1 ∩D2 ∩ · · · ∩Dm ∩Dm+1 ∩Dm+2,

where subsets Dm+1, Dm+2 of R2 are derived from the conditions x ≥ 0, y ≥ 0.

Since the objective function in (2.1) is of two variables, it can be applied well
known geometrical procedure for solving the linear programming problems [7]. If
the restricting conditions in (2.1) are given in the form of inequalities, each of the
corresponding straight lines divides the area into a range which is possible for these
conditions and a range impossible for these conditions. The permissible conditions
are located in the range ΩP that is permissible for all conditions (the region of
feasible solution). The optimal solution is found by drawing the graph of the mod-
ified objective function f(x, y) = 0 and parallel shifting of this in the direction
of the gradient vector (c1, c2). The optimal solution is unique if the straight line
f(x, y) = fmax runs trough a corner point of the possible range. In minimization,
the straight line must be shifted in the opposite direction. Animation of this two

Visualization in optimization with MATHEMATICA 71

dimension case consist of parallel shifting of the line f(x, y) = 0 across the feasible
region.

Function Geom2D uses the following parameters:
1. f : the goal function;
2. g: the list of given constraints.

Algorithm corresponding to 2D case consists the next three steps.

Step 1. Visualization of the mathematical model (2.1) in linear programming uses
the following graphical primitives:

1. the region of feasible solutions, denoted by region;
2. vertices obtained as intersections of boundary hyperplanes in ΩP , denoted by

points;
3. text corresponding to generates vertices, denoted by txt;
4. the objective function line, denoted by objective.

First we plot the constraints set (graphics constraints) applying the standard
MATHEMATICA function InequalityPlot, contained in the package
Graphics‘InequalityGraphics. It is done by the following piece of code:

var = Variables[f];
region = InequalityPlot[g, {var[[1]]}, {var[[2]]},

AspectRatio->1,DisplayFunction->Identity
];

Solving given inequality constraints we get the feasible set ΩP , denoted by h.
For this purpose we use standard function InequalitySolve from the package
Algebra‘InequalitySolve.

h = g /. {List -> And}; h = InequalitySolve[h, var];

Note that the packages Graphics‘InequalityGraphics and Algebra‘InequalitySolve
are obsolete in MATHEMATICA 7.0. Instead of the functions InequalityPlot and
InequalitySolve, in MATHEMATICA 7.0 there should be used RegionPlot and
Reduce respectively. Code for h remains the same while the code for region be-
comes:

p2 = RegionPlot @@ {And @@ g, {var[[1]], 0, mx}, {var[[2]], 0, my},
AspectRatio -> 1};

and should be moved after the code for computing mx and my.
In the following for loop we find all extreme points lying on the edges the feasible

region, using the standard function FindInstance. These extreme points are stored
in the list res, and they are obtained as intersections of each two straight lines
obtained after the transformation of constraints given as inequalities in equalities,
replacing headers LessEquaL, Equal, GreaterEqual, Greater by the function Equal.

72 P.S. Stanimirović, M.D. Petković, M.Lj. Zlatanović

g1 = g/.{LessEqual->Equal, GreaterEqual->Equal, Less->Equal,
Greater->Equal};

For[i = 1, i <= Length[g1] - 1, i++,
For[j = i + 1, j <= Length[g1], j++,

t = FindInstance[g1[[i]] && g1[[j]] && h, var];
If[t != {},
AppendTo[res, {t[[1, 1, 2]], t[[1, 2, 2]]}];
AppendTo[res2, {ReplaceAll[f, t[[1]]], t[[1]]}];
];

];
];

res2 = Union[res2]; res = Union[res];

Points contained in the list res are plotted on the graphics points.

points = ListPlot[res, PlotStyle -> {PointSize[0.025], Hue[1]}];

The graphics primitive txt displays text of the form Ai centered at the point
specified by the expression res[[i]] + res[[1]]/7:

txt = Graphics[Table[{Text["A" (Subscript[i]), res[[i]]+res[[1]]/7]},
{i,Length[res]}

]
];

The graphics primitive objective denotes the line corresponding to the equation
f == 0:

objective = Solve[f == 0, var[[2]]][[1, 1, 2]];

These graphical primitives are plotted using the following code:

mx = Max[Table[res[[i, 1]], {i, 1, Length[res]}]];
my = Max[Table[res[[i, 2]], {i, 1, Length[res]}]];

plot = Show[region, points, txt,
TextStyle -> {FontFamily -> "Times", FontSize -> 14},
AxesLabel -> TraditionalForm /@ var, AspectRatio -> 1,
PlotRange -> {{-mx/10, mx*1.1}, {-my/10, my*1.1}}];

Step 2. Animation of geometrical procedure for solving the linear programming
problem (2.1). The animation consists of the following table of graphical primitives:

(a) graphical primitives denoted by region, points and txt;
(b) straight lines objective + n, where the variable n runs through the feasible

region.
The plotted graphics are animated using the function Manipulate:

Visualization in optimization with MATHEMATICA 73

For[i = 1, i <= Length[res], i++,
n = ReplaceAll[var[[2]] - objective, res2[[i, 2]]];

];
n1 = ReplaceAll[var[[2]] - objective, res2[[1, 2]]];
n2 = ReplaceAll[var[[2]] - objective, res2[[Length[res2], 2]]];

Manipulate[Show[plot,
Plot[objective + n, {x, -mx/10, mx*1.1},

PlotStyle -> {Thickness[0.007], RGBColor[0, 0, 1]}]
], {n, n1, n2}] // Return;

Note that in MATHEMATICA 6.0 and 7.0 the same code works also with function
Animate instead of the function Manipulate. In MATHEMATICA 5.2 we need to load
the external package Graphics‘Animation‘ in order to use the function Animate.
Step 3. Program gives optimal solution, in the case of its uniqueness; otherwise,
it produces the expression which describes the set of all optimal points.

If[res2[[Length[res2],1]]==res2[[Length[res2]-1,1]],
Print["Optimal solution is given by \[Lambda]*",
res[[Length[res]]],"+(1-\[Lambda])*",res[[Length[res]-1]],
", 0<=\[Lambda]<=1"],

Print["Optimal solution is: ",res[[Length[res]]]];
];

Example 1. Applying the expression

Geom2D[8x+12y,{8x+4y<=600,2x+3y<=300,4x+3y<=360,5x+10y>=200,
y<=80+x,y>=x-40,x>=0,y>=0}]

we obtain the next animation:

Figure 1. Snapshot of the animation given by Example 1.

74 P.S. Stanimirović, M.D. Petković, M.Lj. Zlatanović

Program gives a set of graphics which contain graphical illustration of the feasible
set ΩP together with its vertices, text corresponding to vertices and the graphical
representation of the straight line Hf,d. Straight line Hf,d translates upward in the
direction of the vector c = {8, 12} across the feasible set Ωp while the condition
Hf,d ∩ Ωp 6= ∅ is satisfied.

In this case, optimal points are defined by the expression

Optimal solution is given by λ*
{

190
3

,
70
3

}
+(1-λ)*{45, 60}, 0≤ λ ≤1.

2.2 3D case

Consider the general form of the linear programming problem in R3 (3D prob-
lem):

max f(x) = f(x, y, z) = c1x + c2y + c3z

s.t. ai1x + ai2y + ai3z ≤ bi, i ∈ I1

ai1x + ai2y + ai3z ≥ bi, i ∈ I2 (2.2)
x, y, z ≥ 0.

Similarly as in the 2D case, the set of feasible solutions (polytope in R2 denoted by
ΩP) is determined as the intersection

Ωp = D1 ∩D2 ∩ · · · ∩Dm ∩Dm+1 ∩Dm+2 ∩Dm+3,

where Di ⊂ R3 is set of the solutions (half-space) of the i-th inequality in (2.2) and
Dm+1, Dm+2, Dm+3 ⊂ R3 are derived from the conditions x ≥ 0, y ≥ 0, z ≥ 0.

The standard geometrical procedure from [7], already explained in the subsection
2.2, can also be applied to solve the problem (2.2). Although, we will use slightly
different approach in order to visualize this geometrical method. Corresponding
algorithm is implemented MATHEMATICA function Geom3D which solves given 3D
problem and gives the interactive visualization of the geometrical procedure. This
function has the following parameters:

1. c: the goal function;
2. cond : the list of the constraints;
3. {x, y, z} : the list of the variables containing three elements.

Similarly to the previous 2D case, algorithm consists of the following major
steps:

Step 1. Visualization of the set ΩP of feasible solutions.
Feasible solution set ΩP of the 3D problem (2.2) is a convex polytope in R3,

in general case. This polytope is visualized by drawing its boundary. For this
purpose we used built-in MATHEMATICA 6.0 function ContourPlot3D. Boundary of
the polytope ΩP can be characterized as the set of the solutions of inequalities from

Visualization in optimization with MATHEMATICA 75

(2.2) such that at least one inequality holds with equality sign. In other words, let
us take j-th inequality from (2.2) and treat is as the equality:

aj1x + aj2y + aj3z − bj = 0. (2.3)

It is not important whether j ∈ I1 or j ∈ I2. Consider the set of all solutions
(x, y, z) ∈ ΩP of system (2.2) such that equality (2.3) holds. Denote this set with
(∂ΩP)j . Boundary ∂ΩP of the set ΩP is obtained as the union of all (∂ΩP)j for
every j ∈ I1 ∪ I2. In other words, it holds:

∂ΩP =
⋃

j∈I1∪I2

(∂ΩP)j . (2.4)

From the last expression, it holds that the set ΩP can be drawn by drawing its
boundary, i.e. sides (∂ΩP)j for every j ∈ I1 ∪ I2. To draw a side (∂ΩP)j we will
use built-in MATHEMATICA function ContourPlot3D. It is done by the following code

feas=ContourPlot3D@@{surf,{x,0,xmax},{y,0,ymax},{z,0,zmax},
RegionFunction->Function@@{{x,y,z},region},
BoxRatios->{1,1,1},Mesh->None,Axes->False,PlotPoints->30};

Function ContourPlot3D plots the surface given by the equation of the form
F (x, y, z) = 0 where F (x, y, z) is known function. The syntax of ContourPlot3D is
the following:

ContourPlot3D[f,{x,xmin,xmax},{y,ymin,ymax},{z,zmin,zmax}]

Here f is the expression representing the function F (x, y, z) and xmin, xmax, ymin,
ymax, zmin, zmax, determine the region where surface will be plotted. To plot
more than one surface on the same graph, parameter f should be the list of the
functions (expressions) corresponding to the surfaces. In order to plot (∂ΩP)j

using ContourPlot3D, parameter f should be given by the left hand side of the
equation (2.3). Actually, we used the list of such equations, named surf . This list
is obtained from cond by replacing each inequality with the equality. This is done
by the following code:

transf={GreaterEqual->Equal,LessEqual->Equal,Greater->Equal,
Less->Equal};

surf=cond/.transf;

Bounds xmin, xmax, ymin, ymax, zmin, zmax can be obtained using built-in
MATHEMATICA functions NMinimize and NMaximize. These function provides the
solution of general linear or non-linear optimization problem. Syntax for NMinimize
is given by (see [9, 10]):

NMinimize[{f,cons},{x,y,...}]

76 P.S. Stanimirović, M.D. Petković, M.Lj. Zlatanović

Here f is expression representing a function which should be minimized, cons is the
list of constraints and {x, y, ...} is list of variables. Syntax for NMaximize is the
same. Here we plug x, y and z respectively as the function f , list of constraints in
(2.2) (parameter cond of Geom3D) as well as cons and finally {x, y, z} as the list of
variables. Calculation of xmax, for example, is done by the following code:

xmax=(NMaximize@@{{x,cond},{x,y,z}})[[1]];

Finally, let us notice that we used the option RegionFunction for plugging the
list of constraints from (2.2) into the consideration. This option is set by following
code:

RegionFunction->Function@@{{x,y,z},region}

Expression region is obtained from list cond by weakening each inequality by the
small value eps. This is done in order to avoid numerical errors which may occur
in ContourPlot3D. This is accomplished by the following code:

eps=Max[xmax,ymax,zmax]/1000;
transf1={GreaterEqual[a_,b_]->GreaterEqual[a,b-eps],
LessEqual[a_,b_]->LessEqual[a,b+eps],
Greater[a_,b_]->GreaterEqual[a,b-eps],
Less[a_,b_]->LessEqual[a,b+eps]};
region=And@@(cond/.transf1);

Step 2. Visualization of the set of extreme points.
Let us recall that for a given convex set A ⊆ R3, point x ∈ A is called extremal

point if there are no points x1, x2 ∈ A as well as a real number λ ∈ (0, 1) such
that x = λx1 + (1 − λ)x2. Since the feasible set ΩP is convex polytope, extremal
points of ΩP are its nodes. Goal function f(x, y, z) reaches its optimal value in one
of these nodes. Each node is obtained by the intersection of (at least) three sides
of ΩP . It is given by the unique solution of three equations of the form (2.3). We
generate and solve every such system of three equations of the form (2.3). Solutions
satisfying other constraints from (2.2) are required extremal points. The extremal
points are generated by the following code:

allpts=Subsets[surf,{3}];
nodes={};
Do[

repl=Solve[allpts[[i]],{x,y,z}];
If [Length[Flatten[repl]]->3,
If[And@@(cond/.repl[[1]]),

AppendTo[nodes,{x,y,z}/.repl[[1]]]
];

];
,{i,Length[allpts]}
];

Visualization in optimization with MATHEMATICA 77

List allpts is the list of all three equation systems obtained from equations of the
form (2.3). Note that the list of these equations is already computed as the list surf.
Built-in MATHEMATICA function Subsets produces the list of all k-elements subsets
of the given set A (its parameters are k and A, given as list). We solve every system
and check if it has unique solution. Furthermore, if this solution satisfy conditions
cond, it is appended to the list nodes of all extremal points. After computed, these
extreme points are visualized using the following expression

ptsplot=Graphics3D[Table[{PointSize[0.02],Point[nodes[[i]]]},
{i,Length[nodes]}]];

Step 3. Interactive visualization of the goal function and the constraint set.

Finally we visualize the objective function and provide to the user possibility
to change its value continually. Such possibility is fundamental in understanding
the geometrical method of linear programming. Interactivity is obtained by built-in
MATHEMATICA function Manipulate. Hence user has the ability to change value d of
the cost function (using the slider) and see the intersection between set of feasible
solutions ΩP and the plane Hf,d = {(x, y, z)|c1x + c2y + c3z = d} which contains
the points where goal function has value d. This is done by the following code:

Manipulate[
line=ContourPlot3D@@{c->a,{x,0,2*xmax},{y,0,2*ymax},{z,0,2*zmax},
Mesh->None};

Show[ptsplot,feas,line,Boxed->False,
AxesEdge->{{-1,-1},{-1,-1},{-1,-1}},Axes->True,
PlotRange->{{0,2*xmax},{0,2*ymax},{0,2*zmax}},
LabelStyle->{FontSize->19},AxesStyle->Thickness[0.004]]

,{{a,fmin,"Goal function"},fmin,fmax},
SaveDefinitions->True

]

Example 2. Consider the following example:

Geom3D[x+y+z,{x+y+z->1,2x+y->1,x+y->1,2y+z->4/3,z+x->2/3,
x->0,y->0,z->0,y->0.6,z->0.5},{x,y,z}]

By applying the previous code we obtain the nice interactive demonstration. One
snapshot is given on the figure 2. Demonstration also provides ability to the user
to rotate image and see from different angles and points of view.

78 P.S. Stanimirović, M.D. Petković, M.Lj. Zlatanović

Figure 2. Snapshot of the interactive demonstration applied on the Example 2.

On figure 3 we showed the position of the goal function plane Hf,d and feasible
solutions set ΩP , from two different points of view, in the case when the optimal
solution is produced. It can be clearly viewed the set of all optimal points (in this
case, it is a convex quadrilateral), and also concluded that this set is convex.

Figure 3. Two positions of the goal function plane when it obtains the maximal value.

3 Conclusion

The main aim of the present paper is to develop a software for graphical repre-
sentation of the linear programming model and animation of geometrical method.
This software is useful in understanding the geometrical method of linear program-
ming. Our goal is mainly achieved using graphical primitives in MATHEMATICA in
both two-dimensional and three-dimensional graphics. In addition, we use the sym-
bolic possibilities of MATHEMATICA’s computer algebra system as well as its power in
the functional and rule-based programming.

Visualization in optimization with MATHEMATICA 79

Acknowledgement: Authors wishes to thank to anonymous referee for useful
comments improving the quality of the paper. This work is supported by Serbian
Ministry of Science, projects 144011 and 144032.

4 Apendix

<< Graphics‘InequalityGraphics‘;

<< Graphics‘Animation‘;

<< Algebra‘InequalitySolve‘

Geom2D[f_, g_List] :=

Module[{plot, var, region, points, txt, objective, h, n, n1, n2, g1,

i, j, t, mx, my, res = {}, res2 = {}},

var = Variables[f];

region = InequalityPlot[g, {var[[1]]},{var[[2]]}, AspectRatio->1,

DisplayFunction->Identity];

h = g /. {List -> And}; h = InequalitySolve[h, var];

If [h == False, Print["Problem is infeasible!!!!"]; Break[];];

g1 = g /. {LessEqual -> Equal, GreaterEqual -> Equal, Less -> Equal,

Greater -> Equal};

For[i = 1, i <= Length[g1] - 1, i++,

For[j = i + 1, j <= Length[g1], j++,

t = FindInstance[g1[[i]] && g1[[j]] && h, var];

If[t != {},

AppendTo[res, {t[[1, 1, 2]], t[[1, 2, 2]]}];

AppendTo[res2, {ReplaceAll[f, t[[1]]], t[[1]]}];

];

];

];

res2 = Union[res2]; res = Union[res];

points = ListPlot[res, PlotStyle -> {PointSize[0.025], Hue[1]}];

txt = Graphics[

Table[{Text["A" (Subscript[i]), res[[i]] + res[[1]]/7]},

{i,Length[res]}]

];

objective = Solve[f == 0, var[[2]]][[1, 1, 2]];

mx = Max[Table[res[[i, 1]], {i, 1, Length[res]}]];

my = Max[Table[res[[i, 2]], {i, 1, Length[res]}]];

plot = Show[region, points, txt,

TextStyle -> {FontFamily -> "Times", FontSize -> 14},

AxesLabel -> TraditionalForm /@ var, AspectRatio -> 1,

PlotRange -> {{-mx/10, mx*1.1}, {-my/10, my*1.1}}];

If[res2[[Length[res2], 1]] == res2[[Length[res2] - 1, 1]],

Print["Optimal solution is given by \[Lambda]*", res[[Length[res]]],

"+(1-\[Lambda])*", res[[Length[res] - 1]],",

0\[LessEqual]\[Lambda]\[LessEqual]1"],

80 P.S. Stanimirović, M.D. Petković, M.Lj. Zlatanović

Print["Optimal solution is: ", res[[Length[res]]]];

];

For[i = 1, i <= Length[res], i++,

n = ReplaceAll[var[[2]] - objective, res2[[i, 2]]];

];

n1 = ReplaceAll[var[[2]] - objective, res2[[1, 2]]];

n2 = ReplaceAll[var[[2]] - objective, res2[[Length[res2], 2]]];

Manipulate[Show[plot,

Plot[objective + n, {x, -mx/10, mx*1.1},

PlotStyle -> {Thickness[0.007], RGBColor[0, 0, 1]}]

], {n, n1, n2}] // Return;

];

Geom3D[c_,cond_,{x_,y_,z_}]:=

Module[{region,transf,surf,surf1,transf1,eps,feas,line,xmax,ymax,zmax,ret,

fmax,allpts,nodes,repl,i,ptsplot,temena},

xmax=(NMaximize@@{{x,cond},{x,y,z}})[[1]];

ymax=(NMaximize@@{{y,cond},{x,y,z}})[[1]];

zmax=(NMaximize@@{{z,cond},{x,y,z}})[[1]];

fmax=(NMaximize@@{{c,cond},{x,y,z}})[[1]];

transf={GreaterEqual->Equal,LessEqual->Equal,Greater->Equal,Less->Equal};

eps=0.001;

transf1={GreaterEqual[a_,b_]->GreaterEqual[a,b-eps],

LessEqual[a_,b_]->LessEqual[a,b+eps],

Greater[a_,b_]->GreaterEqual[a,b-eps],

Less[a_,b_]->LessEqual[a,b+eps]};

surf=cond/.transf;

region=And@@(cond/.transf1); allpts=Subsets[cond/.transf,{3}];

Off[Solve::"svars"];

nodes={};

Do[repl=Solve[allpts[[i]],{x,y,z}];

If [Length[Flatten[repl]]==3,

If[And@@(cond/.repl[[1]]),

AppendTo[nodes,{x,y,z}/.repl[[1]]]

];

];

,{i,Length[allpts]}

];

ptsplot=Graphics3D[Table[{PointSize[0.02],Point[nodes[[i]]]},{i,Length[nodes]}]];

On[Solve::"svars"];

feas=ContourPlot3D@@{surf,{x,0,xmax},{y,0,ymax},{z,0,zmax},

RegionFunction->Function@@{{x,y,z},region},

BoxRatios->{1,1,1},Mesh->None,Axes->False,PlotPoints->30};

ret=Manipulate[line=ContourPlot3D@@{c==a,{x,0,2*xmax},{y,0,2*ymax},{z,0,2*zmax},

Mesh->None};

Show[ptsplot,feas,line,Boxed->False,AxesEdge->{{-1,-1},{-1,-1},{-1,-1}},Axes->True,

PlotRange->{{0,2*xmax},{0,2*ymax},{0,2*zmax}},

LabelStyle->{FontSize->23},AxesStyle->Thickness[0.004]]

,{a,0,1.5*fmax},SaveDefinitions->True

]//Return;

];

Visualization in optimization with MATHEMATICA 81

References

[1] P. Abbott, Teaching Mathematics Using Mathematica, Proceedings of the 2nd Asian
Technology Conference in Mathematics (1997), 24-40.

[2] M.A. Bhatti, Practical optimization methods with Mathematica applications, Springer-
Verlag, New York, 2000.

[3] E. K.P. Chong, S.H. Zak, An Introduction to Optimization, John Wiley and Sons,
Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 2001.

[4] Jonassen, T.M., Mathematica as a teaching tool for a large audience of students,
International Arctic Seminar 2002, Murmansk, Russia, May 2002.

[5] C. Loehle, Global optimization using Mathematica: A test of software tools, Mathe-
matica in Education and Research (2006), 139-152.

[6] H. Ohtsuk, Computer Technology in Mathematical Reasearch and Teaching, Third
Asian Technology Conference in Mathematics, August 24-28, (1998), University of
Tsakuba, Japan, Paper Presentations.

[7] M. Sakaratovitch, Linear programming, Springer-Verlag, New York, 1983.

[8] K. Schittkowski, Multicriteria Optimization -User’s Guide-, http://www.klaus-
schittkowski.de, November 2004.

[9] S. Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge University
Press, 1999.

[10] S. Wolfram, Mathematica Book, Version 5, Wolfram Media, 2003.

[11] K. Zotos, Performance comparison of Maple and Mathematica, Appl. Math. Comput.
188 (2007), 1426–1429.

Predrag S. Stanimirović,
University of Nǐs, Faculty of Science and Mathematics,
E-mail: pecko@pmf.pmf.ni.ac.yu

Marko D. Petković,
University of Nǐs, Faculty of Science and Mathematics,
E-mail: dexterofnis@gmail.com

Milan Lj. Zlatanović,
University of Nǐs, Faculty of Science and Mathematics,
E-mail: zlatmilan@yahoo.com

