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EVALUATION OF A POLYNOMIAL BY MEANS

OF MATHEMATICAL SPECTRA OF M. PETROVIĆ

Jovan Madić, Vesna Veličković and Ivana Madić

Abstract

In this paper we propose new spectral methods for the exact evaluation of
polynomials with integer, fixed point real and fractional coefficients. The new
methods are based on Besout’s proposition and the division of polynomials by
the use of mathematical spectra. Some examples are given to illustrate the
presented methods. We also give the implementation of the proposed methods
in MATHEMATICA.

1 Introduction

In the field of research of minimizing the number of arithmetic operations in the
exact evaluation of polynomials, Konstantin Orlov used the spectral method. The
theory of mathematical spectra was introduced by M.Petrovich ([1]). K.Orlov ([2],
[3]) and J.Madić ([4], [5], [6]) discovered some of its practical applications.

Definition 1.1. Let

P (x) = a0x
n + a1x

n−1 + · · ·+ an, ai ∈ ZZ, i = 0, . . . , n (1)

be a polynomial with integer coefficients. The spectral rhythm H is the smallest
integer that satisfies the condition

10H > 2 · max
i=0,...,n

{|ai|}, (2)

S = P (10H) is called the spectral value, and the mathematical spectrum of
the polynomial is the ordered pair of integers (S, H).

In the spectral representation of a polynomial, each coefficient is coded by H
digits of the spectral value S. Since the coefficients can be negative, we have to
provide a double number of places, so the factor 2 appears in (2).
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The programs for the implementation of mathematical spectra as large numbers
are given in [5] (preprocessor in Fortran) and [6] (the interpreter in Lisp).

The mathematical spectrum of a polynomial is a large number. It can be used
for the representation of the polynomial in the computer memory. Solving a prob-
lem by means of mathematical spectra one performs some spectral operations on
the spectra (addition, subtraction, multiplication and division). These aggregate
operations minimize the overall number of operations.

We use the programming package MATHEMATICA for the implementation
of the proposed spectral operations. The main reason is that MATHEMATICA
supports computations with large numbers. MATHEMATICA works with exact
large numbers up to billions of digits, as well as polynomials with millions of terms
[7].

In this paper we consider an application of mathematical spectra in the evalua-
tion of polynomials. First, we propose a method for the evaluation of polynomials
with integer coefficients, and then we use the proposed method to deal with poly-
nomials with rational coefficients. In Section 2 we recall the known results that
are fundamental for the methods proposed in this paper. In Section 3 we propose
a method for the evaluation of a polynomial with integer coefficients and give its
implementation in MATHEMATICA. Section 4 deals with polynomials with fixed
point real and fractional coefficients, and also gives methods for the evaluation and
implementation in MATHEMATICA.

2 Division of polynomials by means of
mathematical spectra

Division of polynomials by means of mathematical spectra is considered in [4].
Division of two polynomials with integer coefficients gives the quotient Q(x) and

the remainder R(x) that have, in the general case, rational coefficients. Lemma 2.1
introduces an integer factor by which the dividend should be multiplied to ensure
integer coefficients of Q and R. Lemma 2.3 estimates the theoretical maximum
of the absolute value of the coefficients of Q and R. This result is used to define
the rhythm in the division process. Theorem 2.5 is used for the division of two
polynomials with integer coefficients. The proofs of the two lemmas and the theorem
can be found in [4].
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Lemma 2.1. Let A and B be the polynomials with integer coefficients given by

A(x) = a0x
n + a1x

n−1 + · · ·+ an, ai ∈ ZZ

B(x) = b0x
m + b1x

m−1 + · · ·+ bm, bi ∈ ZZ (3)
such that b0 6= 0 and n ≥ m ≥ 0.

Let f be the factor
f = bn−m+1

0 . (4)

When the polynomial f · A is divided by B, the quotient Q and the remainder R
have integer coefficients.

Remark 2.2. Instead of multiplying the dividend A by the factor f defined by (4),
we require its coefficients to have the form

ai = bn−m+1
0 · a′i, i = 0, . . . , n−m, for some integers a′i. (5)

Lemma 2.3. Let A and B be the polynomials with integer coefficients given by (3)
and let the coefficients of A be of the form (5). Let amax, bmax, qmax and rmax be
the largest coefficients by absolute value of A, B, their quotient Q and remainder
R, respectively. Then we have

|qmax| ≤ |amax| (|bmax|+ 1)n−m

|rmax| ≤ |amax| (|bmax|+ 1)n−m++1
.

Definition 2.4. Let (SA,H) and (SB, H) be the spectra of the sequences of integers
ai, i = 0, . . . , n and bj , j = 0, . . . , m according to the same rhythm H defined as the
smallest integer that satisfies the condition

10H > 2 · amax · (bmax + 1)n−m+1 (6)

where amax = maxi{|ai|}, bmax = maxi{|bi|}, n ≥ m ≥ 0, b0 6= 0, and ai are of the
form (5). We define

SQ =
SA

SB
and SR = SA− SB · SQ. (7)

The ordered pair (SQ, H) is called the spectral quotient and the ordered pair
(SR, H) is called the spectral remainder of the spectral division (SA, H) by
(SB,H).

Theorem 2.5. Let A and B be the polynomials with integer coefficients given by
(3) and let the coefficients of A be of the form (5). Let (SA,H) and (SB, H) be
their spectra according to the rhythm H obtained from (6).
Let (SQ′,H) and (SR′,H) be their spectral quotient and spectral remainder given
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by (7). They determine the polynomials Q′ and R′.
If Q and R are the quotient and the remainder of the division of A by B, and
(SQ,H) and (SR, H) their spectra, respectively, then we have

1.SQ = SQ′, SR = SR′ if dg(R′) < dg(B)
2.SQ = SQ′ + 1, SR = SR′ − SB if dg(R′) = dg(B), SR′ · SB > 0
3.SQ = SQ′ − 1, SR = SR′ + SB if dg(R′) = dg(B), SR′ · SB < 0

where dg(P ) denotes the degree of polynomial P .

3 Evaluation of polynomials with integer coeffi-
cients

For the evaluation of polynomials with integer coefficients we apply Besout’s propo-
sition. It states that the value of a polynomial P for the argument x = r is equal
to the remainder of the division of P by the binomial B with B(x) = x− r, that is,

P (r) = P (x)−Q(x) ·B(x), B(x) = x− r, Q(x) =
P (x)
x− r

.

The spectral analogon is given in the next proposition. The mathematical spec-
trum (SP, H) is the coded value of the polynomial P . The mathematical spectrum
(SB, H) of the binomial B is the coded value of the argument r (this is some kind
of complement of the desired value r).

B(x)|x=10H = (x− r)|x=10H = 10H − r.

Proposition 3.1. Let (SP,H) and (SB,H) be the spectra of the polynomial P in
(1) and the binomial B with B(x) = x− r, both with integer coefficients.
Let SQ′ = SP/SB and SR′ = SP −SQ′ ·SB be their spectral quotient and spectral
remainder.
The joint rhythm H is the smallest integer that satisfies the condition

10H > 2 · amax · (bmax + 1)n (8)

where amax = max{|ai|} and bmax = max{|bi|, |r|}.
Then the value P(r) of the polynomial P at r is

1.P (r) = SR′, if dg(R′) = 0
2.P (r) = SR′ − SB if dg(R′) = 1, SR′ > 0
3.P (r) = SR′ + SB if dg(R′) = 1, SR′ < 0

Proof. We apply Theorem 2.5. Now we have B(x) = x− r, that is, b0 = 1, so the
factorization (5) is obsolete. Here m = 1, so the (6) reduces to (8). Also, dg(B) = 1,
so dg(R′) < dg(B) reduces to dg(R′) = 0. By Besout’s proposition P (r) is equal to
the remainder of the division of P (x) by B(x) = x− r, that is, equal to SR, which
we compute in the same way as in Theorem 2.5. ¤
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Remark 3.2. From Proposition 3.1 we can see that we perform the following op-
erations

(1) calculation of the appropriate rhythm,

(2) calculation of the mathematical spectra (SP, H) and (SB,H),

(3) one division of spectral values and the determination of the remainder of this
division (operations with large numbers),

(4) determination of the degree of a simple binomial,

(5) one addition or subtraction of spectral values (optional).

Example 3.3. We illustrate Proposition 3.1 by calculating the value of the polyno-
mial

P4(x) = −23x4 + 7x3 − 74x2 + 2x− 9 for x = −7.

The spectral values of polynomials P4(x) and B(x) = x + 7, with the appropriate
rhythm H = 6 are

SP =-22 999993 000073 999998 000009
SB = 1 000007.

The spectral quotient and remainder are

SQ =SP/SB =- 22 999832 001249 991248
SR =SP − SQ · SB = -61273.

Therefore, the value of the polynomial is P4(−7) = SR = −61273.

Implementation of the method given in Proposition 3.1
Input: Polynomial poly in the form of list

Integer r, value of the argument
Output:Value of the polynomial poly(x) for x = r

Since all the computations need polynomial coefficients, rather than the polynomial
itself, we represent the polynomial in the form of list. The following function makes
the list from the polynomial coefficients. To compute the spectrum, we need that
the starting coefficient be the one with the higher exponent, so we reverse the order
of the elements in the list.

PolyCoeffList[poly_] := Module[{l},

l = Reverse[CoefficientList[poly, x]];

Return[l]];

First, we need a function that computes the joint rhythm H of the given poly-
nomial and the binomial B with B(x) = x− r. We use the formula in (8).

PolyBinRhythm[a_List, b_List] := Module[{n, lim, H = 1},

n = Length[a] - 1;

lim = 2*Max[Abs[a]]*(Max[Abs[b]] + 1)^n;

While[10^H <= lim, H++];

Return[H]];
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Then we compute the spectra of poly and B(x), according to the joint rhythm
H. The spectral value codes each coefficient by H digits, so it appears as a number
in the basis 10H . A negative coefficient appears to ”borrow” 1 from the previous
digit. If the first coefficient is negative, the spectral value itself is negative.

Spectrum[a_List, H_Integer] := Module[{basis, S},

basis = Power[10, H];

S = FromDigits[a, basis];

Return[S]];

We also need to know the degree of the polynomial which corresponds to the
spectral remainder (SR′,H). Here we use the fact that the maximum degree of R′

is 1 and the absolute value of the first coefficient is less than or equal 1.

SimpleBinomialDegreeFromSpectrum[{S_, H_}] :=

Module[{digits, degree},

If[S < 10^H/2, degree = 0, degree = 1];

Return[degree]];

Now we are ready to perform the method given in Proposition 3.1.

Proposition1[poly_List, r_Integer] :=

Module[{H, SP, SB, SQp, SRp, signSRp, dgRp, result},

H = PolyBinRhythm[poly, {1, -r}];

SP = Spectrum[poly, H];

SB = Spectrum[{1, -r}, H];

SQp = IntegerPart[SP/SB];

SRp = SP - SB*SQp;

If[SRp >= 0, signSRp = 1, signSRp = -1];

dgRp = SimpleBinomialDegreeFromSpectrum[{SRp, H}];

If[dgRp == 0,

result = SRp,

If[dgRp == 1,

If[signSRp > 0,

result = SRp - SB,

result = SRp + SB],]];

Return[result]]

4 Evaluation of polynomials with rational coeffi-
cients

We consider two cases, polynomials with fixed point real coefficients and with frac-
tional coefficients. We reduce both cases to the one with integer coefficients by
multiplying the polynomials by an appropriate factor.
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4.1. Evaluation of polynomials with fixed point real coefficients

The next proposition deals with the case of polynomials with fixed point real
coefficients and argument.

Proposition 4.1. Let the coefficients of the polynomial P be real numbers with
maximum k decimal places and let the value of the argument be a real number r
with l decimal places.
Let (SP ′,H) and (SB′,H) be the spectra of the polynomials

P ′(x) = 10l·n · 10k · P (x)
B′(x) = 10l · (x− r)

with the joint rhythm H.
Let SQ′ = SP/SB and SR′ = SP − SQ′ · SB be the spectral quotient and spectral
remainder of the spectra (SP ′,H) and (SB′,H).
Then the value of the polynomial P (r) is

1. 10−l·n · 10−k · SR′, if dg(R′) = 0
2. 10−l·n · 10−k · (SR′ + SB′) if dg(R′) = 1, SR′ > 0
3. 10−l·n · 10−k · (SR′ − SB′) if dg(R′) = 1, SR′ < 0

Proof. We reduce this case to the case of integer coefficients, by multiplying each
coefficient of P (x) by 10 to the power l ·n+k, which is the maximal possible number
of decimal places, and B(x) by 10l. Then we apply Proposition 3.1. ¤

Example 4.2. We illustrate Proposition 4.1 by calculating the value of the polyno-
mial P2 with

P2(x) = x2 − 3x + 4 for x = 0.3.

By appropriate transformations of the polynomials P2 and B with B(x) = x− 0.3
we get

P ′2(x) = 102 · P2(x)= 100x2 − 300x + 400
B′(x) = 10l ·B(x) = 10x− 3.

The spectral values of the polynomials P ′2 and B′ with the joint rhythm H = 5 are

SP ′2 =99 99700 00400
SB′ = 9 99997.

The spectral quotient and remainder are

SQ′ = SP ′2/SB′ =9 99973
SR′ = SP ′2 − SQ′ · SB′= 00319.

The value of the polynomial is P2(0.3) = 10−2 · SR′ = 3.19.
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Implementation of the Proposition 4.1

Input: Polynomial poly in the form of a list
Integer k, maximum of decimal places of poly coefficients
Real r, value of the argument
Integer l, maximum of decimal places of r

Output:Value of the polynomial poly(x) for x = r

Proposition2[poly_List, k_Integer, r_Real, l_Integer] :=

Module[{n, p, b, H, Sp, Sb, SQp, SRp,

signSRp, dgRp, result, res},

n = Length[poly] - 1;

p = Power[10, l*n]*Power[10, k]*poly;

b = IntegerPart[Power[10, l]*{1, -r}];

H = PolyBinRhythm[p, b];

Sp = Spectrum[p, H];

Sb = Spectrum[b, H];

SQp = IntegerPart[Sp/Sb];

SRp = Sp - Sb*SQp;

If[SRp >= 0, signSRp = 1, signSRp = -1];

dgRp = SimpleBinomialDegreeFromSpectrum[{SRp, H}];

If[dgRp == 0,

result = Power[10, -l*n]*Power[10, -k]*SRp,

If[dgRp == 1,

If[signSRp > 0,

result = Power[10, -l*n]*Power[10, -k]*(SRp - Sb),

result = Power[10, -l*n]*Power[10, -k]*(SRp + Sb)],]];

res = N[result, IntegerLength[IntegerPart[-99.56]] + l];

Return[res]]

4.2. Evaluation of polynomials with fractional coefficients

The case of polynomials with fractional coefficients and argument is given in the
next proposition.

Proposition 4.3. Let the coefficients of the polynomial P (x) and the argument
x = r be the fractions

ai =
pi

qi
, qi > 0, i = 0, . . . , n

r =
p

q
, q > 0.

Let

P ′ = qn · LCM · P
B′= q ·B with B(x) = x− r

be the transformed polynomials P and B and their spectra be (SP ′, H) and (SB′,H)
with the joint rhythm H.
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Let (SQ′,H) and (SR′,H) be the spectral quotient and the spectral remainder of
these spectra.
Then the value P (r) of the polynomial P at r is

1. q−n · (LCM)−1 · SR′, if dg(R′) = 0
2. q−n · (LCM)−1 · (SR′ + SB′) if dg(R′) = 1, SR′ > 0
3. q−n · (LCM)−1 · (SR′ − SB′) if dg(R′) = 1, SR′ < 0

where LCM denotes the least common multiplier of the denominators qi, i =
0, . . . , n.

Proof. We reduce this case to the case of integer coefficients, by multiplying each
coefficient of P by qn · LCM , and B by q. Then we apply Proposition 3.1. ¤

Example 4.4. We illustrate Proposition 4.3 by calculating the value of the polyno-
mial P2 with

P2(x) =
2
3
x2 − 1

1
x +

3
5

for x =
3
4
.

By appropriate transformations of the polynomials P2 and B with B(x) = x − 3
4

with LCM = 30, we get

P ′2(x) = 42 · 30 · P2(x)= 320x2 − 240x + 288
B′(x) = 4 ·B(x) = 4x− 3.

The spectral values of the polynomials P ′2(x) and B′(x), with the joint rhythm
H = 5 are
SP ′2 =319 99760 00288
SB′= 3 99997.

The spectral quotient and remainder are

SQ′ = SP ′2/SB′ =80 00000
SR′ = SP ′2 − SQ′ · SB′= 288.

The value of the polynomial is

P2(
3
4
) = 4−2 · 30−1 · 288 =

288
16 · 30

=
3
5
.

Implementation of Proposition 4.3

Input: Polynomial poly in the form of a list,
fractional coefficients
Fraction r, value of the argument

Output:Value of the polynomial poly(x) for x = r

Proposition3[poly_List, r_Rational] :=

Module[{n, p, q, qi, lcm, Pp, Bp, H, SPp, SBp,

SQp, SRp, signSRp, dgRp, result},
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n = Length[poly] - 1;

p = Numerator[r];

q = Denominator[r];

qi = Denominator[poly];

lcm = Apply[LCM, qi];

Pp = Power[q, n]*lcm*poly;

Bp = {q, -p};

H = PolyBinRhythm[Pp, Bp];

SPp = Spectrum[Pp, H];

SBp = Spectrum[Bp, H];

SQp = IntegerPart[SPp/SBp];

SRp = SPp - SBp*SQp;

If[SRp >= 0, signSRp = 1, signSRp = -1];

dgRp = SimpleBinomialDegreeFromSpectrum[{SRp, H}];

If[dgRp == 0,

result = Power[q, -n]*Power[lcm, -1]*SRp,

If[dgRp == 1,

If[signSRp > 0,

result = Power[q, -n]*Power[lcm, -1]*(SRp - SBp),

result = Power[q, -n]*Power[lcm, -1]*(SRp + SBp)],]];

Return[result]]
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