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FUNDAMENTAL SIMPLICES WITH OUTER VERTICES

FOR HYPERBOLIC GROUPS

AND THEIR GROUP EXTENSIONS FOR TRUNCATIONS

Milica Stojanović

Abstract

There are investigated supergroups of some hyperbolic space groups with
simplicial fundamental domain. If the vertices of these simplices are out of
the absolute, we can truncate them by polar planes of the vertices and the
new polyhedra are fundamental ones of the richer groups. In papers of E.
Molnár, I. Prok and J. Szirmai the simplices, investigated here, are collected
in families F3, F4 and F6. We have constructed at least one new hyperbolic
space group for each truncated simplex in these families.

1 Introduction

Hyperbolic space groups are isometry groups, acting discontinuously on the hyper-
bolic 3-space with a compact fundamental domain. One possibility to describe them
is to look for the fundamental domains of these groups. Face pairing identifications
of a given polyhedron give us generators and relations for a space group by the
Poincarè Theorem [3, 4, 7].

The simplest fundamental domains are simplices and truncated simplices by
the polar planes of their vertices when they lie out of the absolute. In the pro-
cess of classifying the fundamental simplices, it is determined 64 combinatorially
different face pairings of fundamental simplices [19, 20, 10], furthermore 35 solid
transitive non-fundamental simplex identifications [10]. I. K. Zhuk [19, 20] has
classified Euclidean and hyperbolic fundamental simplices of finite volume up to
congruence. Some completing cases are discussed in [6, 9, 15, 16, 17, 18]. An algo-
rithmic procedure is given by E. Molnár and I. Prok [9]. In [10, 12, 13] the authors
have summarized all these results, arranging identified simplices into 32 families.
Each of them is characterized by the so-called maximal series of simplex tilings.
Besides spherical, Euclidean, hyperbolic realizations there exist also other metric
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realizations in 3-dimensional simply connected homogeneous Riemannian spaces,
moreover, metrically non-realizable topological simplex tilings occur as well.

If a simplex is hyperbolic with vertices out of the absolute, the simplex is not
compact and then it is possible to truncate it with polar planes of the vertices.
The new compact polyhedron (here called trunc-simplex) obtained in that way is
the fundamental domain of some larger group. It has new triangular faces whose
appropriate pairing gives new generators. Dihedral angles around the new edges
are π/2. That means there are four congruent trunc-simplices around them in the
fundamental space filling. A trivial group extension, with plane reflections in polar
planes of the outer vertices, is always possible. All the other possibilities, to equip
new pairings of triangular faces obtained by the truncations, will be considered as
well. For that purpose, the stabilizer group of the corresponding vertex figure will
be analyzed.

The Poincarè theorem will be recalled in Section 2. Descriptions of the families
F3, F4, F6 and their realizations are given in Section 3, by [10, 12, 13]. Supergroups,
obtained by trunc-simplices, are given in Section 4 for family F3 and in Section 5
for families F4, F6, by tables. For them it holds the following

Theorem 1. For the trunc-simplices of the simplices in family F3, all the maximally
possible hyperbolic space group series are given in Section 4 by their presentation
with generators and relations. For the simplices in families F4 and F6 these group
series are given in Tables in Section 5. These will be on the base of inner sym-
metries of the vertex stabilizer groups (as hyperbolic plane groups). Namely, their
normalizers, each preserving the triangulation and orbit structure of the correspond-
ing vertex stabilizer, provide the possible group extensions. We have obtained the
new hyperbolic space group series at all.

The proof will need case-by-case discussions, summarized in the Tables. The
typical steps will be illustrated only for Family 3 by simplex T42, and (briefly) by
T33. The plane methods of papers [1, 2, 14] can be applied to our spatial situations.
The final realization steps – on the base of Coxeter’s reflection supergroups, given
in the paper [13] – proceed by linear algebra with the reflection simplices as pro-
jective coordinate simplices, illustrated here, too, in section 3 (see also [11], e.g. for
analogous situation). Then the Mostow rigidity theorem guarantees uniqueness of
the metric realizations, because of compactness of the occurring orbifolds.

2 Construction of discontinuously acting isometry
groups

Generators and relations for a space group G with a given polyhedron P (a simplex
or a trunc-simplex in the considered cases) as a fundamental domain can be obtained
by the Poincarè theorem. It is necessary to consider all face pairing identifications
of such domains. Those will be isometries, which generate an isometry group G
and induce subdivision of vertices and oriented edge segments of P into equivalence
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classes, such that an edge segment does not contain two G-equivalent points in its
interior.

Face pairing identifications are isometries satisfying conditions a)–c). They gen-
erate an isometry group G of a space of constant curvature.

a) For each face fg−1 of P there is another face fg and identifying isometry g which
maps fg−1 onto fg and P onto P g, the neighbour of P along fg.

b) The isometry g−1 maps the face fg onto fg−1 and P onto P g−1
, joining the

simplex P along fg−1 .

c) Each edge segment e1 from any equivalence class (defined below) is successively
surrounded by polyhedra P , P g−1

1 , P g−1
2 g−1

1 , . . . , P g−1
r ...g−1

2 g−1
1 , which fill an

angular region of measure 2π/ν, with a natural number ν. An equivalence
class consisting of edge segments e1, e2, . . . , er with dihedral angles ε(e1),
ε(e2e2), . . . , ε(er), respectively, is defined as follows.

Let us consider an edge segment, say e1, and choose one of the two faces denoted
by fg−1

1
whose boundary contains e1. The isometry g1 maps e1 and fg−1

1
onto e2 and

fg1 , respectively. There exists exactly one other face fg−1
2

with e2 on its boundary,
furthermore the isometry g2 mapping e2 and fg−1

2
onto e3 and fg2 , respectively, and

so on. We obtain a cycle of isometries g1, g2, . . . , gr according to the scheme

(
e1, fg−1

1

)
g1→ (e2, fg1) ;

(
e2, fg−1

2

)
g2→ (e3, fg2) ; . . . ;

(
er, fg−1

r

)
gr→ (e1, fgr ) (1)

where the symbols are not necessarily distinct. More precisely, we have two
essentially different cases for the scheme (1).

1. if a plane reflection mi = gi occurs then ei+1 = ei, and we turn back to e1,
then, say, e−1 comes. Furthermore, another plane reflection m−j = g−j shall
appear in the cycle. Then each edge segment comes two times in the scheme
(1), and the cycle transformation is of the form

c = g1g2 . . . gr =
(
g1 . . . gi−1mig

−1
i−1g

−1
1

) (
g−1
−1g−1

−j+1m−jg−j+1g−1

)

2. there is no plane reflection in the cycle; this will be the simpler case. (In
dimension 3 we have 5 subcases for the edges at all [7]).

In other words the segment e1 is successively surrounded by polyhedra

P, P g−1
1 , P g−1

2 g−1
1 , . . . , P g−1

r ...g−1
2 g−1

1

which fill an angular region of measure 2π/ν. In the above case 1. the following
holds

ε(e1) + · · ·+ ε(ei) + ε(e−1) + · · ·+ ε(e−1+j) = π/ν. (2)
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In case 2. we have

ε(e1) + · · ·+ ε(er) = 2π/ν. (3)

Finally, the cycle transformation c = g1g2 . . . gr belonging to the edge segment class
{e1} is a rotation, say, of order ν. Thus we have the cycle relation in both cases

(g1g2 . . . gr)
ν = 1. (4)

Throughout in this paper we shall apply the specified Poincaré theorem:

Theorem 2. Let P be a polyhedron in a space S3 of constant curvature and G be
the group generated by the face identifications, satisfying conditions a)–c). Then
G is a discontinuously acting group on S3, P is a fundamental domain for G and
the cycle relations of type (4) for every equivalence class of edge segments form a
complete set of relations for G, if we also add the relations g2

i = 1 to the occasional
involutive generators gi = g−1

i .

3 Descriptions of the considered families of
simplices, proof of the metric existence

In family F3 there are two series of fundamental simplices. The groups for them
are denoted in [10, 12, 13] by Γ33 (12u, 6v), Γ42 (6u, 3v), so the simplices will be
denoted here by T33 (12u, 6v) (Fig.5) and T42 (6u, 3v) (Fig.1). Vertices A0, A1

and A3 are in one class of equivalence (class a), while A2 is in another (class b).
There are also two classes of equivalence for edges u : {A0A1, A0A3, A1A3} and
v : {A0A2, A1A2, A2A3}.

Six series of fundamental simplices in family F4 (Fig.8,9,10) have groups denoted
by Γ10 (2u, 8v, 4w), Γ17 (2u, 4v, 2w), Γ28 (2u, 8v, 4w), Γ38 (2u, 4v, 2w),
Γ54 (u, 4v, w), Γ57 (u, 4v, 2w) in [10, 12, 13]. There are two classes of vertices
a : {A0, A1} and b : {A2, A3}. For edges there are three classes of equivalence
u : {A0A1}, v : {A0A2, A0A3, A1A2, A1A3}, w : {A2A3}.

There are four series of fundamental simplices in family F6 (Fig.11,12) with
group notations Γ6 (2u, 4v, 4w, 2x), Γ20 (2u, 4v, 4w, x), Γ24 (4u, 2v, 4w, x),
Γ35 (2u, 2v, 2w, x). There are three classes of equivalence for vertices a : {A0, A1},
b : {A2}, c : {A3} and four classes for edges u : {A0A1}, v : {A0A2, A1A2},
w : {A0A3, A1A3}, x : {A2A3}.

The sum of dihedral angles around edges in the same equivalence class is always
of the form 2π/ν. That is the reason to introduce parameters for each equivalence
class of edges. Parameters are denoted by the same letters as the corresponding
equivalence classes.

The simplices in family F3 can metrically be derived by [12, 13] from the
Coxeter reflection group and simplex denoted here by 3m

6 Γ (2ū, v̄) (2 ≤ ū, 3 ≤ v̄)
with diagram
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so that e.g. for T33 (12u, 6v) 2ū = 12u, v̄ = 6v.

That means that this Coxeter group is a supergroup of Γ33 (12u, 6v) by dihe-
dral group extension 3m = *3 of index 6 with 6-times smaller Coxeter simplex,
according to the parameters ū = 6u v̄ = 6v (u ≥ 1, v ≥ 1 as rotational orders at
the corresponding simplex edges). If we know (e.g. by [5, 7, 11, 13]) the linear alge-
braic construction of Coxeter simplices in projective metric space, then the bigger
simplices can also be constructed, now by hyperbolic metric, with the same letter
denotation of the parameters.

Analogous arguments hold for T42 (6u, 3v) with (u ≥ 1, v ≥ 1).

Outer vertices A0, A1, A3 and truncations occur iff 1
2 + 1

ū + 1
v̄ < 1. E.g. for T42

holds 1
2 + 1

3u + 1
3v < 1 (i.e. 1

u + 1
v < 3

2 ). Vertex A2 is outer iff 1
2 + 1

3 + 1
v̄ < 1, i.e.

for T42, 1
2 + 1

3 + 1
3v < 1 (for v > 2).

The simplices in family F4 can metrically be derived from the Coxeter re-
flection group mm2

4 Γ1 (ū, 2v̄, w̄) and simplex mm2
4 T1 (ū, 2v̄, w̄) (3 ≤ ū ≤ w̄, 2 ≤ v̄)

with diagram

so that this Coxeter group is a supergroup (by inner symmetries mm2 = *2 of
index 4) of the given group, for the corresponding rotational parameters u, v, w.

Again these facts lead to linear algebraic construction in appropriate projective
metric space, now with hyperbolic (+,+,+,-) signature. We examine parameters
(infinite series) where outer vertices occur by the above equations for vertex figures
(hyperbolic fundamental domains for vertex stabilizer groups).

Vertices A0, A1 are outer iff 1
2+ 1

ū+ 1
v̄ < 1, while A2, A3 are outer iff 1

2+ 1
ū+ 1

w̄ < 1.

Similarly, simplices in family F6 can metrically be derived from the Coxeter
reflection group m

2 Γ (2ū, 2v̄, 2w̄, x̄) (2 ≤ ū, 2 ≤ v̄ ≤ w̄, 3 ≤ x̄) and appropriate
simplex, with diagram
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Here, vertices A0, A1 are outer iff 1
ū + 1

v̄ + 1
w̄ < 1, A2 is outer iff 1

2 + 1
v̄ + 1

x̄ < 1,
A3 is outer iff 1

2 + 1
w̄ + 1

x̄ < 1.

4 The isometry groups by simplices in family F3

4.1 Simplex T42 (6u, 3v)

Face pairing isometries for T := T42 (6u, 3v) (Fig.1) are

r0 :
(

A1 A2 A3

A3 A2 A1

)
; r2 :

(
A0 A1 A3

A1 A0 A3

)
; z :

(
A0 A2 A3

A1 A2 A0

)
.

Relations for the isometry group are obtained by Theorem 2 and the presentation
is

Figure 1: The simplex T42 (6u, 3v)

Γ42(6u, 3v) = (r0, r2, z − r2
0 = r2

2 = (z2r0)v = (r2z
−1r2r0r2z)u = 1, 1 ≤ u, 1 ≤ v).
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Considering vertex figures on a symbolic 2-dimensional surface (plane) around
the vertices, we can glue a fundamental domain for the stabilizer subgroup, e.g.
ΓA3 of vertex A3 and also ΓA2 of vertex A2. Transformations z and r0 map vertex
A3 onto A0 and A1 respectively, so that the inverse mapping z−1 carries the vertex
domain TA0 into T z−1

A0
the neighbour of TA3 along fz−1 , and similarly with T

r−1
0

A1
=

T r0
A1

(since r2
0 = 1). We left the letter f from the face symbols in our figures. That

means that TA3 and T
r−1
0

A1
have a joint edge corresponding to the joint face fz−1 of

simplex T and fz−1 of simplex T z−1
and similarly, TA3 and T r0

A1
have a joint edge

corresponding to fr0 = f−1
r0

of T and T r0 . One fundamental domain for Γ(A3)
(Fig.2) is

PA3 := T z−1

A0
∪ TA3 ∪ T r0

A1

Figure 2: The fundamental domains PA2 and PA3

and the generators for Γ(A3), obtained from PA3 , are

r2 : fr2 → fr2 ; zr2r0 : (fr2)
z−1 → (fr2)

r0 ; z2r0 : (fz−1)z−1 → (fz)
r0 .

In the diagram for PA3 the minus sign in notations u−, v− means that edges in
these classes are directed to the vertex, the plus sign in diagram for PA2 means the
opposite direction. Fundamental domain for PA2 is given in Fig.2 and the generators
are

r0 : fr0 → fr0 ; z : fz−1 → fz.

When parameters u, v are such that simplex T is hyperbolic and that the vertices
either in the first or in the second equivalence class are out of the absolute (see Sect.
3), it is possible to truncate the simplex by polar planes of these vertices. Then
we get a compact trunc-simplex (possibly with 8 faces, as octahedron) denoted
by O42 := O. If we equip O with additional face pairing isometries, it will be
a fundamental domain for a group Gi(O42, 6u, 3v) which will be a supergroup of
Γ42(6u, 3v). A trivial group extension with plane reflections in polar planes of the
outer vertices is always possible. For vertices A0, A1, A3 the new relations (Fig.3),
which are necessary to add to those of group Γ42(6u, 3v) are as follows

(m3r2)2 = m3zm0z
−1 = m3r0m1r0 = m0r2m1r2 = m0zm1z

−1 = m2
0 = m2

1 = m2
3 = 1
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Figure 3: The trunc-simplex O with trivial group extension

where mi denotes the reflection in the polar plane of vertex Ai.
For vertex A2 these relations with a trivial extension are (Fig.3)

(m2r0)2 = m2zm2z
−1 = m2

2 = 1.

There is one further possibility to equip the new triangular faces corresponding to
outer vertices A0, A1, A3 with face pairing isometries. New additional face pairings
of O for vertices A0, A1, A3 have to satisfy the following criteria. Polar plane of
A3 and so stabilizer Γ(A3) will be invariant under these new transformations, fixing
A3, and exchanging the half spaces obtained by the polar plane. Thus, fundamental
domain PA3 is divided into two parts, and the new stabilizer of the polar plane will
be a supergroup for Γ(A3), namely of index two. Inner symmetries of the PA3 -tiling
give us the idea how to introduce the new generators. If r3 is the new half-turn
mapping the vertex figure TA3 onto itself and T r0

A1
onto T z−1

A0
, but exchanging the

half-spaces, then the new generators for Gi(O42, 6u, 3v) will be r3 and z = r0r3z
and the new relations are (Fig.3, by Poincaré theorem 2)

(r3r2)2 = r3r0zz−1 = zr2zr2 = (zz)2 = r2
3 = 1.

The new generators r3 and z, moreover the new relations can be derived by PA3

and its side pairing above (Fig.2) in standard way. Similarly, for the outer vertex
A2, it is possible to equip a new triangular face with the new half-turn r2, so that
the new relations are (Fig.4)

(r2r0)2 = r2zr2z = r2
2 = 1.
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Figure 4: The trunc-simplex O with non-trivial group extension

Remark 1. Truncations of vertices in different equivalence classes can indepen-
dently be combined; even there are possibilities to truncate only one or none of
classes of equivalence. So there may be 8 possibilities to create supergroups of
Γ42(6u, 3v) in this way. For all cases of the maximally 4 supergroup series with
compact fundamental domains, the notation Gi(O42, 6u, 3v) i = 1, 2, 3, 4 can be
used, for simplicity.

4.2 Simplex T33 (12u, 6v)

For T := T33(12u, 6v), the face pairing isometries are (Fig.5):

m0 :
(

A1 A2 A3

A1 A2 A3

)
; r2 :

(
A0 A1 A3

A1 A0 A3

)
; z :

(
A0 A2 A3

A1 A2 A0

)
,

and the tiling group is

Γ33(12u, 6v) = (m0, r2, z −m2
0 = r2

2 = (m0r2zr2z
−1r2m0r2zr2z

−1r2)u =

(m0z
−2m0z

2)v = 1, 1 ≤ u, 1 ≤ v).

One fundamental domain for the stabilizer group Γ(A0) of the vertex A0 (Fig.7)
is

PA0 := T z
A3
∪ TA0 ∪ T z−1

A1

and the generators are then
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Figure 5: T33 (12u, 6v) Figure 6: The trunc-simplex O

Figure 7: PA2 and PA0

r2z
−1 : fr2 → (fr2)

z−1

; z−1r2z : (fr2)
z → (fr2)

z ;

zm0z
−1 : (fm0)

z−1 → (fm0)
z−1

; z−1m0z : (fm0)
z → (fm0)

z
.

The generators for Γ(A2) are

m0 : fm0 → fm0 ; z : fz−1 → fz.

Since parameters u, v are such that the simplex is hyperbolic with outer vertices,
then after truncating the simplex by polar planes of such vertices, a new trunc-
simplex O := O33 may have plane reflections as face pairing isometries to the new
faces. For the class of vertices A0, A1, A3, new relations are (Fig.6)

m0r2m1r2 = (m3r2)2 = m3zm0z
−1 = m0zm1z

−1 = (m1m0)2 = (m3m0)2 =

m2
0 = m2

1 = m2
3 = 1,

and for A2

(m2m0)2 = m2zm2z
−1 = m2

2 = 1.

The polyhedron O may also have a half-turn as a new isometry for the face
obtained after truncating vertex A2. Then the new relations are

(r2m0)2 = r2zr2z = r2
2 = 1
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For the class of vertices A0, A1, A3, there are no other possibilities for face pairing
with isometries, except trivial group extension. That means Gi(O33, 12u, 6v), i =
1, 2 are the possible two group extensions for Γ33(12u, 6v).

5 The isometry groups for simplices in families F4
and F6

For the 6 simplices (Fig.8,9,10) in family F4 and 4 simplices (Fig.11,12) in family
F6 our results are arranged in tables. The following data are given:

1. Notation for isometry group of each of the simplices, by [10, 13]; number of
group extensions.

2. Face pairing isometries.

3. Presentation of isometry group.

4. New relations for each of the trunc-simplices, if the additional pairing isome-
tries are plane reflections (trivial face pairings). There are arranged in the
following way

• If the original simplex is in family F4, than:
a) Relations for class of vertices A0, A1,
b) Relations for class of vertices A2, A3.

• If the original simplex is in family F6, than:
a) Relations for class of vertices A0, A1,
b) Relations for class of vertex A2,
c) Relations for class of vertex A3.

5. One of the fundamental domains for each class of vertices (if there are more
then one vertex in the class) and generators for stabilizer group of vertices
based on that domain.

6. If the stabilizer groups of vertices have nontrivial normalizing symmetries,
there exist non-trivial face pairing isometries for trunc-simplices. There are
given relations sorted by classes of vertices as before.

More precisely, for Γ(A0) in cases of simplices Γ10 and Γ28 there are no other
symmetries, while in cases of Γ17 and Γ38 there are half-turns mapping one vertex
figure to another. For fundamental domains of Γ(A2) in cases of Γ10, Γ17, Γ28 there
are half-turns, respectively, with the same property. Fundamental domain of Γ(A2)
in case Γ38, and both Γ(A0) and Γ(A2) in cases Γ54 and Γ57 have:

I: the half-turn mapping one vertex figure to another;
II: the half-turn mapping each vertex figure to itself;
III: point-reflection mapping one vertex figure to another.

In all cases appearing in family F6, fundamental domains for each class of vertices
have one half-turns as additional symmetry.
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FAMILY 4

Figure 8: Γ10(2u, 8v, 4w) and Γ17(2u, 4v, 2w)

Figure 9: Γ28(2u, 8v, 4w) and Γ38(2u, 4v, 2w)

Figure 10: Γ54(u, 4v, w) and Γ57(u, 4v, 2w)
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FAMILY 6

Figure 11: Γ6(2u, 4v, 4w, 2x) and Γ20(2u, 4v, 4w, x)

Figure 12: Γ24(4u, 2v, 4w, x) and Γ35(2u, 2v, 2w, x)
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E-mail: milicas@fon.rs


