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β-OPEN AND β-CLOSED SETS
IN DITOPOLOGICAL TEXTURE SPACES

Ş. Dost∗, L. M. Brown and R. Ertürk

Abstract

The authors define β-open and β-closed sets in a ditopological texture
space and go on to study β-compactness and β-cocompactness, β-stability
and β-costability, and β-dicompactness.

1 Introduction

One productive area of research in general topology, which has applications to
several branches of science, is the investigation of various types of generalized open
set and generalized continuous function, and the study of their structural properties.
Early concepts in this area include semi-open sets and semi-continuity introduced
by Levine [20], and the preopen sets and (weak) precontinuity of Mashhour et al.
[21]. A topological space in which every preopen set is semi-open is called a PS-
space [3]. A fairly recent application of this concept to digital topology is the result
of R. Devi et al. [13] that the digital plane [18] is a PS-space.

Abd El Monsef et al. [2] introduced the notion of β-open set in topology, and
the equivalent notion of semi-preopen set was given independently by Andrijević
in [4], and further investigated by Ganster and Andrijević [14]. These and related
notions have since been studied by many authors. The reader is referred to Caldas
and Jafari [12], and the references therein, for further background and applications
of β-open sets.

Textures and ditopological texture spaces were first introduced by the second
author as a point-based setting for the study fuzzy sets, and this line of investigation
continues, see for example [5, 6, 8, 9, 10], and more recently [23]. On the other hand,
textures offer a convenient setting for the investigation of complement-free concepts
in general, so much of the recent work has proceeded independently of the fuzzy
setting. In particular, the notions of diuniformity and dimetric have been introduced
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in [22], while a textural analogue of the notion of proximity, called a diextremity, is
given [26].

The study of compactness in ditopological texture spaces was begun in [5], con-
tinued in [11, 24] and extended to real compactness in [25]. In this paper we place
β-compactness in a ditopological setting. All the arguments for studying proper-
ties related to β-openness and β-closedness in the topological setting apply equally
well to this case, and since bitopologies and L-topologies, for L a Hutton algebra,
are special cases of ditopologies, new concepts such as β-stability and β-costability
introduced here, may easily be specialized to these settings also.

To complete this introduction we recall various concepts from [8, 9] that will be
needed later on in this paper.

Ditopological Texture Spaces: If S is a set, a texturing S of S is a subset of P(S)
which is a point-separating, complete, completely distributive lattice containing S
and ∅, and for which meet coincides with intersection and finite joins with union.
The pair (S, S) is then called a texture.

For a texture (S, S), most properties are conveniently defined in terms of the
p-sets

Ps =
⋂
{A ∈ S | s ∈ A}

and the q-sets,
Qs =

∨
{A ∈ S | s /∈ A}.

The following are some basic examples of textures.

Examples 1.1. (1) If X is a set and P(X) the powerset of X, then (X, P(X)) is
the discrete texture on X. For x ∈ X, Px = {x} and Qx = X \ {x}.
(2) Setting I = [0, 1], I = {[0, r), [0, r] | r ∈ I} gives the unit interval texture (I, I).
For r ∈ I, Pr = [0, r] and Qr = [0, r).

(3) The texture (L,L) is defined by L = (0, 1], L = {(0, r] | r ∈ I}. For r ∈ L,
Pr = (0, r] = Qr.

(4) If (S, S), (T, T) are textures, the product texturing S ⊗ T of S × T consists of
arbitrary intersections of sets of the form (A × T ) ∪ (S × B), A ∈ S, B ∈ T, and
(S × T, S⊗ T) is called the product of (S, S) and (T, T). For s ∈ S, t ∈ T we clearly
have P(s,t) = Ps × Pt and Q(s,t) = (Qs × T ) ∪ (S ×Qt).

Since a texturing S need not be closed under the operation of taking the set
complement, the notion of topology is replaced by that of dichotomous topology or
ditopology, namely a pair (τ, κ) of subsets of S, where the set of open sets τ satisfies

1. S, ∅ ∈ τ ,

2. G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and

3. Gi ∈ τ , i ∈ I =⇒ ∨
i Gi ∈ τ ,
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and the set of closed sets κ satisfies

1. S, ∅ ∈ κ,

2. K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ and

3. Ki ∈ κ, i ∈ I =⇒ ⋂
Ki ∈ κ.

Hence a ditopology is essentially a “topology” for which there is no a priori relation
between the open and closed sets.

For A ∈ S we define the closure [A] and the interior ]A[ of A under (τ, κ) by the
equalities

[A] =
⋂
{K ∈ κ | A ⊆ K} and ]A[ =

∨
{G ∈ τ | G ⊆ A}.

On the other hand, suppose that (S, S) has a complementation σ, that is an invo-
lution σ : S → S satisfying A, B ∈ S, A ⊆ B =⇒ σ(B) ⊆ σ(A). Then if τ and κ
are related by κ = σ[τ ] we say that (τ, κ) is a complemented ditopology on (S, S, σ).
In this case we have σ([A]) = ]σ(A)[ and σ(]A[) = [σ(A)].

Let (S, S), (T, T) be textures. In the following definition we consider the product
texture P(S)⊗ T, and denote by P (s,t), Q(s,t), respectively the p-sets and q-sets for
the product texture (S × T, P(S)⊗ T) (c.f. Examples 1.1 (4)).

Direlation: Let (S, S), (T, T) be textures. Then

1. r ∈ P(S)⊗ T is called a relation from (S, S) to (T, T) if it satisfies

R1 r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t).

R2 r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

2. R ∈ P(S)⊗ T is called a corelation from (S, S) to (T,T) if it satisfies

CR1 P (s,t) 6⊆ R,Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R.

CR2 P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.

3. A pair (r,R), where r is a relation and R a corelation from (S, S) to (T, T), is
called a direlation from (S, S) to (T, T).

One of the most useful notions of (ditopological) texture spaces is that of difunction.
A difunction is a special type of direlation.

Difunctions: Let (f, F ) be a direlation from (S, S) to (T, T). Then (f, F ) is called
a difunction from (S, S) to (T, T) if it satisfies the following two conditions.

DF1 For s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃ t ∈ T with f 6⊆ Q(s,t) and P (s′,t) 6⊆ F .

DF2 For t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.

Image and Inverse Image: Let (f, F ) : (S, S) → (T, T) be a difunction.
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1. For A ∈ S, the image f→A and the co-image F→A are defined by

f→A =
⋂
{Qt | ∀ s, f 6⊆ Q(s,t) =⇒ A ⊆ Qs},

F→A =
∨
{Pt | ∀ s, P (s,t) 6⊆ F =⇒ Ps ⊆ A}.

2. For B ∈ T, the inverse image f←B and the inverse co-image F←B are defined
by

f←B =
∨
{Ps | ∀ t, f 6⊆ Q(s,t) =⇒ Pt ⊆ B},

F←B =
⋂
{Qs | ∀ t, P (s,t) 6⊆ F =⇒ B ⊆ Qt}.

For a difunction, the inverse image and the inverse co-image are equal, but the
image and co-image are usually not.

Bicontinuity: The difunction (f, F ) is called continuous if B ∈ τT =⇒ F←B ∈
τS , cocontinuous if B ∈ κT =⇒ f←B ∈ κS , and bicontinuous if it is both continu-
ous and cocontinuous.

On the other hand (f, F ) is open (co-open) if A ∈ τS =⇒ f→A ∈ τT (F→A ∈
τT ). Also, (f, F ) is closed (coclosed) if A ∈ κS =⇒ f→A ∈ κT (F→A ∈ κT ).

Injective- surjective difunction: Let (f, F ) : (S1, S1) → (S2, S2) be a difunction.
Then (f, F ) is called surjective if it satisfies the condition

SUR. For t, t′ ∈ T , Pt 6⊆ Qt′ =⇒ ∃ s ∈ S with f 6⊆ Q(s,t′) and P (s,t) 6⊆ F .
(f, F ) is called injective if it satisfies the condition

INJ. For s, s′ ∈ S and t ∈ T , f 6⊆ Q(s,t) and P (s′,t) 6⊆ F =⇒ Ps 6⊆ Qs′ .
If (f, F ) is both injective and surjective, then it is called bijective.

For terms from lattice theory not defined here the reader is referred to [15]. Also
[1] is our general reference for category theory.

2 β-open and β-closed sets

We begin by recalling [2] that a subset A of a topological space X is called β-open
if A ⊆ cl int cl A. Dually, A is β-closed if X \A is β-open, equivalently if it satisfies
int cl intA ⊆ A. This leads to the following analogous concepts in a ditopological
texture space.

Definition 2.1. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.

1. A is β-open if A ⊆ [
]
[A]

[
].

2. A is β-closed if ]
[

]A[
]
[ ⊆ A.

We denote by βO(S, S, τ, κ), or when there can be no confusion by βO(S) or even
just βO, the set of β-open sets in S. Likewise, βC(S, S, τ, κ), βC(S) or βC will
denote the set of β-closed sets.
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We also recall from [16, 21] the notions of preopen and preclosed sets:

Definition 2.2. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.

1. A is preopen if A ⊆ ]
[A]

[
.

2. A is preclosed if
[

]A[
] ⊆ A.

We denote by PO(S, S, τ, κ), more simply by PO(S) or even just PO, the set of
preopen sets in S. Likewise, PC(S, S, τ, κ), PC(S) or PC will denote the set of
preclosed sets.

We note for future reference the following elementary facts.

Lemma 2.3. For a given ditopological texture space:

1. τ ⊆ PO ⊆ βO and κ ⊆ PC ⊆ βC.

2. PO and βO are closed under arbitrary joins.

3. PC and βC are closed under arbitrary intersections.

Proof. The results for PO and PC are proved in [16], the proofs for βO and βC
are similar and are omitted.

More generally we note that:

A ∈ PO, A ⊆ B ⊆ [A] =⇒ B ∈ βO,

A ∈ PC, ]A[ ⊆ B ⊆ A =⇒ B ∈ βC.
(2.1)

Again, the proofs are elementary and are omitted. These results say that a semi-
preopen set in the sense of Andrijevic [4] is β-open, while a semi-preclosed set is
β-closed.

Generally there is no relation between the β-open and β-closed sets, but for a
complemented ditopological space we have the following result.

Proposition 2.4. Let (S, S, σ, τ, κ) be a complemented ditopological texture space.
Then

A ∈ βC ⇐⇒ σ(A) ∈ βO.

Proof. Immediate on applying σ([B]) = ]σ(B)[ and σ(]B[) = [σ(B)] for B ∈ S.

Examples 2.5. (1) If (X, T) is a topological space then (X, P(X), πX , T, Tc) is a
complemented ditopological texture space. Here πX(Y ) = X \ Y for Y ⊆ X is
the standard complementation on (X, P(X)) and Tc = {πX(G) | G ∈ T}. Clearly
the β-open, β-closed (preopen, preclosed) sets in (X, T) correspond precisely to the
β-open, β-closed (preopen, preclosed) sets, respectively, in (X, P(X), πX ,T, Tc).

(2) For the unit interval texture (I, I) of Examples 1.1 (2), let ι be the com-
plementation ι([0, r)) = [0, 1 − r], ι([0, r]) = [0, 1 − r), and (τI, κI) the standard
complemented ditopology given by

τI = {[0, r) | r ∈ I} ∪ {I}, κI = {[0, r] | r ∈ I} ∪ {∅}.
For this space we clearly have PO = τI, PC = κI and βO = βC = I.
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We recall that a function between topological spaces is called β-continuous [2] if
the inverse image of each open set is β-open, and Mβ-continuous [17] if the inverse
image of each β-open set is β-open. This leads to the following concepts for a
difunction between ditopological texture spaces.

Definition 2.6. The difunction (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) is called:

1. β-continuous ( Mβ-continuous ) if f←B ∈ βO(S1) for all B ∈ τ2

( B ∈ βO(S2)).

2. β-cocontinuous (Mβ-cocontinuous ) if F←B ∈ βC(S1) for all B ∈ κ2

( B ∈ βC(S2)).

3. β-bicontinuous ( Mβ-bicontinuous ) if it is both β-continuous and β-cocontin-
uous ( Mβ-continuous and Mβ-cocontinuous ).

Clearly Mβ-continuity (-cocontinuity, -bicontinuity) is stronger than β-continuity
(respectively, -cocontinuity, -bicontinuity). Since Mβ-bicontinuity is clearly pre-
served by composition of difunctions and possessed by the identity difunctions,
ditopological texture spaces and Mβ-bicontinuous difunctions form a category that
we will denote by MβdfDitop. Note that Examples 2.5 (1) leads to a functor F
from the category MβTop of topological spaces and Mβ-continuous functions to
MβdfDitop defined by

F((X, T)
f−→ (Y, V)) = (X, P(X), πX , T, Tc)

(f,fc)−−−−→ (Y, P(Y ), πY , V, Vc).

Similar functors may be defined for bitopological spaces, and for Hutton spaces (c.f.
[6, 8]), but we omit the details.

In order to give useful characterizations of the above continuity properties we
need the following definition.

Definition 2.7. Let (S, S, τ, κ) be a ditopological texture space and M ∈ S.

(a) [M ]β =
⋂{A ∈ βC | M ⊆ A}.

(b) ]M [β =
∨{A ∈ βO | A ⊆ M}.

Where it is necessary to indicate the space involved we may write [M ]Sβ , ]M [Sβ ,
respectively.

By Lemma 2.3 we have ]M [β∈ βO, [M ]β ∈ βC, while M ∈ βO ⇐⇒ M =]M [β
and M ∈ βC ⇐⇒ M = [M ]β .

The following characterizations should be compared with those given for conti-
nuity and cocontinuity in [11].

Proposition 2.8. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be a difunction.

1. The following are equivalent:

(a) (f, F ) is Mβ-continuous.
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(b) For each A ∈ S1 we have ]F→A[S2
β ⊆ F→ ]A[S1

β .

(c) For each B ∈ S2 we have f← ]B[S2
β ⊆ ]f←B[S1

β .

2. The following are equivalent:

(a) (f, F ) is Mβ-cocontinuous.
(b) For each A ∈ S1 we have f→[A]S1

β ⊆ [f→A]S2
β .

(c) For each B ∈ S2 we have [F←B]S1
β ⊆ F←[B]S2

β .

Proof. We prove (1), leaving the dual proof of (2) to the interested reader.
(a) =⇒ (b). Take A ∈ S1. Then

f←]F→A[S2
β ⊆ f←(F→A) ⊆ A

by [8, Theorem 2.24 (2 a)]. Now f←]F→A[S2
β = F←]F→A[S2

β ∈ βO(S1) by Mβ-
continuity, so f←]F→A[S2

β ⊆ ]A[S1
β and applying [8, Theorem 2.4 (2 b)] gives

]F→A[S2
β ⊆ F→

(
f←]F→A[S2

β

) ⊆ F→]A[S1
β ,

which is the required inclusion.

(b) =⇒ (c). Take B ∈ S2. Applying inclusion (b) to A = f←B and using [8,
Theorem 2.4 (2 b)] gives

]B[S2
β ⊆]F→(f←B)[S2

β ⊆ F→]f←B[S1
β .

Hence, f←]B[S2
β ⊆ f←

(
F→ ]f←B[S1

β

) ⊆ ]f←B[S2
β by [8, Theorem 2.24 (2 a)].

(c) =⇒ (a). Applying (c) for B ∈ βO(S2) gives

f←B = f←]B[S2
β ⊆ ]f←B[S1

β ,

so F←B = f←B = ]f←B[S1
β ∈ βO(S1). Hence, (f, F ) is continuous.

The following proposition gives corresponding characterizations for β-continuity
and β-cocontinuity. We omit the proof which follows the same lines as that of
Proposition 2.8.

Proposition 2.9. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be a difunction.

1. The following are equivalent:

(a) (f, F ) is β-continuous.
(b) For each A ∈ S1 we have ]F→A[S2 ⊆ F→ ]A[S1

β .

(c) For each B ∈ S2 we have f← ]B[S2 ⊆ ]f←B[S1
β .

2. The following are equivalent:

(a) (f, F ) is Mβ-cocontinuous.
(b) For each A ∈ S1 we have f→[A]S1

β ⊆ [f→A]S2 .

(c) For each B ∈ S2 we have [F←B]S1
β ⊆ F←[B]S2 .
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3 β-compactness and β-cocompactness

We begin by recalling the definition of a β-compact topological space.

Definition 3.1. [17] Let (X, T) be a topological space. If every cover {Aj | j ∈ J}
of X by β-open sets Aj of X has a finite subcover then (X, T) is called β-compact.

We now give an analogous definition of β-compactness in ditopological texture
spaces. As expected, there is also the dual notion of β-cocompactness.

Definition 3.2. A ditopology (τ, κ) on (S, S) is called:

1. β-compact if every cover of S by β-open sets has a finite subcover.

2. β-cocompact if every cocover of ∅ by β-closed sets has a finite sub-cocover.

Here we recall that C = {Aj | j ∈ J}, Aj ∈ S is a cover of S ( a cocover of ∅ )
if

∨
C = S

( ⋂
C = ∅ )

. Since strong compactness (strong cocompactness) [16] is
defined in the same way using preopen (preclosed) sets, we have:

Proposition 3.3. For a ditopological texture space:

1. β-compact =⇒ strongly compact =⇒ compact.

2. β-cocompact =⇒ strongly cocompact =⇒ cocompact.

Proof. Immediate from Lemma 2.3 (1).

It is known from [16, Example 3.4] that compact ; strongly compact and co-
compact ; strongly cocompact, while the following example establishes that the
remaining implications also cannot be reversed in general.

Example 3.4. The unit interval texture (I, I) with the natural ditopology (τI, κI)
described in Examples 2.5 (2) is easily seen to be β-compact, but we may modify
this space to produce a strongly compact space that is not β-compact as follows.

Consider the product of the texture ({a, b}, {∅, {a}, {a, b}}) and the principle
subtexture [7] of (I, I) on the set [0, 1). The resulting plain texturing of S = {a, b}×
[0, 1) is easily seen to consist of unions of sets of the form

{a, b} × [0, r], 0 ≤ r < 1, {a} × [0, s], 0 ≤ s < 1,

{a, b} × [0, r), 0 < r < 1, {a} × [0, s), 0 < s < 1,

together with ∅ and S. We define a ditopology on this texture by setting

τ = {∅} ∪ {{a} × [0, s) | 0 < s < 1} ∪ {S},
κ = {∅} ∪ {{a, b} × [0, r] | 0 ≤ r < 1} ∪ {S}.

It is easy to see that the elements of κ are β-open, whence {{a, b}× [0, 1− 1
n ] | n =

2, 3, . . .}, is a cover of S by β-open sets which has no finite subcover. Hence this
space is not β-compact. On the other hand it is clear that PO(S) = τ , so the only
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way of obtaining a covering of S by preopen sets is to include S, whence {S} is a
finite subcover and the space is strongly compact.

It is left to the interested reader to produce a modification of this example that
is strongly cocompact but not β-cocompact.

The following examples show that in general β-compactness and β-cocompactness
are independent.

Examples 3.5. Consider the texture (L,L) of Examples 1.1 (3).
(1) Define the ditopology (τ, κ) by τ = {∅, L} and κ = L. Since the only β-open

sets are ∅ and L we see that (τ, κ) is β-compact. However, it is not β-cocompact
since it is not cocompact by [11, Examples 2.2 (1)].

(2) Dually, let τ = L and κ = {∅, L}. Then the ditopology (τ, κ) is β-cocompact
but not β-compact.

On the other hand, for complemented ditopological texture spaces we do have
the equivalence of these two properties.

Proposition 3.6. Let (τ, κ) be a complemented ditopology on (S, S, σ). Then
(S, S, σ, τ, κ) is β-compact if and only if it is β-cocompact.

Proof. Suppose that (τ, κ) is β-compact and let F = {Fj | j ∈ J} be a family of
β-closed sets with

⋂
F = ∅. Clearly G = {σ(Fj) | j ∈ J} is a family of β-open sets.

Moreover,
∨

G =
∨
{σ(Fj) | j ∈ J} = σ

( ⋂
{Fj | j ∈ J}

)
= σ(∅) = S,

and so we have J ′ ⊆ J finite with
∨{σ(Fj) | j ∈ J ′} = S. Hence

⋂{Fj | j ∈ J ′} = ∅,
and we see that (τ, κ) is β-cocompact.

Likewise, if (τ, κ) is β-cocompact then it is β-compact.

Theorem 3.7. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be an Mβ-continuous
difunction. If A ∈ S1 is β-compact then f→A ∈ S2 is β-compact.

Proof. Take f→A ⊆ ∨
j∈J Gj , where Gj ∈ βO(S2), j ∈ J . Now by [8, Theo-

rem 2.24 (2 a) and Corollary 2.12 (2)] we have

A ⊆ F←(f→A) ⊆ F←
( ∨

j∈J

Gj

)
=

∨

j∈J

F←Gj .

Also, F←Gj ∈ βO(S1) since (f, F ) is Mβ-continuous, so by the β-compactness of
A there exists J ′ ⊆ J finite such that A ⊆ ⋃

j∈J′ F
←Gj . Hence

f→A ⊆ f→
( ⋃

j∈J′
F←Gj

)
=

⋃

j∈J′
f→(F←Gj) ⊆

⋃

j∈J′
Gj

by [8, Corollary 2.12 (2) and Theorem 2.24 (2 b)]. This establishes that f→A is
β-compact.
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Proposition 3.8. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be a surjective Mβ-
continuous difunction. Then if (S1, S1, τ1, κ1) is β-compact so is (S2, S2, τ2, κ2).

Proof. This follows by taking A = S1 in Theorem 2.4 and noting that f→S1 =
f→(F←S2) = S2 by [8, Proposition 2.28 (1 c) and Corollary 2.33 (1)].

As expected, we have dual results for cocompactness. We omit the proofs.

Theorem 3.9. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be an Mβ-cocontinuous
difunction. If A ∈ S1 is β-cocompact then F→A ∈ S2 is β-cocompact.

Proposition 3.10. Let (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) be an a sur-
jective Mβ-cocontinuous difunction. Then if (S1, S1, τ1, κ1) is β-cocompact so is
(S2, S2, τ2, κ2).

4 β-stability and β-costability

The notion of stability for bitopological spaces was introduced by Ralph Kopperman
[19]. The analogous notion, and its dual, were given for ditopologies in [5], and
studied in greater detail in [11]. We now wish to generalize these concepts for
β-open and β-closed sets. The following definition would seem to be appropriate.

Definition 4.1. Let (τ, κ) be a ditopology on the texture space (S, S).

1. (τ, κ) will be called β-stable if every β-closed set F ∈ S \ {S} is β-compact
in S. That is, whenever Gj , j ∈ J , are β-open sets in (S, S, τ, κ) satisfying
F ⊆ ∨

j∈J Gj , there exists a finite subset J ′ of J for which F ⊆ ⋃
j∈J ′ Gj .

2. (τ, κ) will be called β-costable if every β-open set G ∈ S \ ∅ is β-cocompact
in S. That is, whenever Fj , j ∈ J , are β-closed sets in (S, S, τ, κ) satisfying⋂

j∈J Fj ⊆ G, there exists a finite subset J ′ of J for which
⋂

j∈J ′ Fj ⊆ G.

The following examples show that in general β-stability (β-costability) are un-
related to β-compactness (β-cocompactness), respectively.

Examples 4.2. Consider the texture (L, L) of Examples 1.1 (3).

(1) Let τ = {(0, r] | 0 ≤ r ≤ 1/2} ∪ {L} and κ = {(0, r] | 1/2 ≤ r ≤ 1} ∪ {∅}.
If we take r ∈ L with 1/2 < r < 1 and set A = (0, r], then [A] = A and so
][A][ = ]A[ = (0, 1/2] ∈ κ, from which we see A 6⊆ [

]
[A]

[
], that is A is not β-open.

It follows that the only β-open sets are the open sets, so (τ, κ) is β-compact because
any open cover of L must contain L. On the other hand the set F = (0, 1/2] is
closed, and hence β-closed, and it is clearly not compact so not β-compact. It
follows that (τ, κ) is not β-stable.

A dual argument shows that this space is also β-cocompact but not β-costable.

(2) Let τ = L and κ = {∅, L}. The ditopology (τ, κ) is not β-compact because
it is not compact. On the other hand (τ, κ) is β-stable because in this space every
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β-closed set is closed, and the only closed set different from L is ∅, which is trivially
β-compact.

(3) Dually, let τ = {∅, L} and κ = L. This ditopology is β-costable but not
β-cocompact.

Recalling from [16] that strong stability and strong costability are defined anal-
ogously using preopen and preclosed sets, we see from Lemma 2.3 (1) that:

Proposition 4.3. For a ditopological texture space,

1. β-stable =⇒ strongly stable =⇒ stable.

2. β-costable =⇒ strongly costable =⇒ costable.

That strong stability (strong costability) is in general strictly more powerful than
stability (costability) is known from [16], and the following example establishes that
the remaining implications also cannot be reversed in general.

Example 4.4. Consider the unit interval texture (I, I, τI, κI) with its standard
ditopology. Since PO(I) = τI, PC(I) = κI this space is strongly stable and strongly
costable because it is stable and costable [11]. On the other hand βO(I) = βC(I) = I

so, for example [0, 1) is a β-closed set that is clearly not β-compact. Hence this space
is not β-stable, and similarly it is not β-costable.

The following examples show that in general β-stability and β-costability are
independent of one another.

Examples 4.5. Consider again the texture (L,L).

(1) Let τ = L and κ = {∅, (0, 1/2], L}. Then clearly, βO(L) = L and βC(L) = κ.
Since C = {(0, 1/2 − 1/n] | n = 3, 4, 5, . . .} is a β-open cover of the β-closed set
[0, 1/2] with no finite subcover, we see that (τ, κ) is not β-stable. On the other
hand it is β-costable because βC(L) = κ is finite.

(2) Dually, let τ = {∅, (0, 1/2], L}, κ = L. Then (L, L, τ, κ) is β-stable but not
β-costable.

However, for complemented ditopological texture spaces these concepts are equiv-
alent, as we now show.

Proposition 4.6. Let (S, S, σ) be a texture with complement σ and let (τ, κ) be
a complemented ditopology on (S, S, σ). Then (τ, κ) is β-stable if and only if it is
β-costable.

Proof. Let (τ, κ) be β-stable, let G be a β-open set with G 6= ∅ and D a β-closed
cocover of G. Set K = σ(G). Then K is β-closed and satisfies K 6= S. Hence K is
strongly compact. Let C = {σ(F ) | F ∈ D}. Since

⋂
D ⊆ G we have K ⊆ ∨

C, i.e.
C is an β-open cover of K. Hence there exists F1, F2, . . . , Fn ∈ D so that

K ⊆ σ(F1) ∪ σ(F2) ∪ . . . ∪ σ(Fn) = σ(F1 ∩ F2 ∩ . . . ∩ Fn).
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This gives F1 ∩ F2 ∩ . . . ∩ Fn ⊆ σ(K) = G, so G is β-cocompact in S. Hence (τ, κ)
is β-costable.

The proof that β-costable implies β-stable is the dual of the above, and is omit-
ted.

Next let us investigate the preservation of β-stability and β-costability under
surjective difunctions.

Theorem 4.7. Let (S1, S1, τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces
with (S1, S1, τ1, κ1) β-stable, and (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) an Mβ-
bicontinuous surjective difunction. Then (S2, S2, τ2, κ2) is β-stable.

Proof. Take K ∈ βC(S2) with K 6= S2. Since (f, F ) is β-cocontinuous, f←K ∈
βC(S1). Let us prove that f←K 6= S1. Assume the contrary. Since f←S2 = S1,
by [8, Lemma 2.28 (1 c)] we have f←S2 ⊆ f←K, whence S2 ⊆ K by [8, Corol-
lary 2.33 (1 ii)] as (f, F ) is surjective. This is a contradiction, so f←(K) 6= S1. Hence
f←(K) is β-compact in (S1, S1, τ1, κ1) by β-stability. As (f, F ) is Mβ-continuous,
f→(f←K) is β-compact for the ditopology (τ2, κ2) by Theorem 3.7, and by [8,
Corollary 2.33 (1)] this set is equal to K. This establishes that (S2, S2, τ2, κ2) is
β-stable.

Theorem 4.8. Let (S1, S1, τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces
with (S1, S1, τ1, κ1) β-costable, and (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) an Mβ-
bicontinuous surjective difunction. Then (S2, S2, τ2, κ2) is β-costable.

Proof. This is dual to the proof of Theorem 4.7, and we omit the details.

5 β-dicompactness

We end by generalizing the notion of β-dicompact space.

Definition 5.1. A ditopological texture space will be called β-dicompact if it is
β-compact, β-cocompact, β-stable and β-costable.

As a consequence of Propositions 3.8, 3.10 and Theorems 4.7, 4.8 we may state
the following:

Theorem 5.2. β-dicompactness is preserved under a surjective Mβ-bicontinuous
difunction.

To give non-trivial characterizations of β-dicompactness, we adapt the following
definitions from [5].

Definition 5.3. Let (τ, κ) be a ditopology on (S, S).

1. A set D ⊆ S × S is called a difamily on (S, S). A difamily D satisfying
D ⊆ βO×βC is β-open, co-β-closed, one satisfying D ⊆ βC×βO is β-closed,
co-β-open.
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2. A difamily D has the finite exclusion property (fep) if whenever (Fj , Gj) ∈ D,
j = 1, 2, . . . , n we have

⋂n
j=1 Fj *

⋃n
j=1 Gj .

3. A β-closed, co-β-open difamily D with
⋂{F | F ∈ domD} * ∨{G | G ∈

ranD} is said to be bound in (S, S, τ, κ).

4. A difamily D = {(Gj , Fj) | j ∈ J} is called a dicover of (S, S) if for all
partitions J1, J2 of J (including the trivial partitions) we have

⋂

j∈J1

Fj ⊆
∨

j∈J2

Gj .

Theorem 5.4. For a ditopological texture space (S, S, τ, κ) the following are equiv-
alent:

1. (S, S, τ, κ) is β-dicompact.

2. Every β-closed, co-β-open difamily with the finite exclusion property is bound.

3. Every β-open, co-β-closed dicover has a sub-dicover which is finite and co-
finite.

Proof. (1) =⇒ (2) Suppose that (1) holds, but that we have a β-closed, co-β-open
difamily B = {(Fj , Gj) | j ∈ J} with the fep, which is not bound in (S, S, τ, κ). Let
F =

⋂
i∈I Fi. Then F is β-closed by Lemma 2.3 (3), and F ⊆ ∨

i∈I Gi since B is not
bound. According as F 6= S or F = S we may use β-stability or β-compactness,
respectively, to show the existence of a finite subset J1 of J with F ⊆ ⋃

j∈J1
Gj .

Now let G =
⋃

j∈J1
Gj . By Lemma 2.3 (2), G is a β-open set. Also,

⋂
j∈J Fj ⊆ G.

Hence, according as G 6= ∅ or G = ∅, we may use β-costability or β-cocompactness,
respectively, to show that

⋂
j∈J2

Fj ⊆ G for some finite subset J2 of J . Since now⋂
j∈J1∪J2

Fj ⊆
⋃

j∈J1∪J2
Gj we have a contradiction to the fact that B has the fep.

(2) =⇒ (3) Suppose that C = {(Gi, Fi) | i ∈ I} is a β-open, co-β-closed dicover
with no finite, co-finite sub-dicover. As in the proof of [5, Theorem 3.5] we consider
the set F of functions f satisfying

(a) dom f is a set of finite subsets of I.

(b) ∀J ∈ dom f , f(J) = (f1(J), f2(J)) ∈ P??
J .

(c) J1, . . . , Jn ∈ dom f =⇒ J1 ∪ . . . ∪ Jn ∈ dom f .

(d) J, K ∈ dom f , J ⊆ K =⇒ fl(J) = J ∩ fl(K), l = 1, 2.

Here

P??
J = {(J1, J2) ∈ P?

J | ∀K finite, J ⊆ K ⊆ I, ∃ (K1,K2) ∈ P?
K

with J ∩Kl = Jl, l = 1, 2}.
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where

PJ = {(J1, J2) | J = J1 ∪ J2, J1 ∩ J2 = ∅}, and

P?
J = {(J1, J2) ∈ PJ |

⋂

j∈J1

Fj 6⊆
∨

j∈J2

Gj}.

Exactly as in the proof of [5, Theorem 3.5] it may be verified that F contains an
element g satisfying

⋃
dom g = I.

Now consider the family B = {(⋂j∈g1(J) Fj ,
⋃

j∈g2(J) Gj) | J ∈ dom g}. It is
easy to show that B has the fep. Also

⋂
j∈g1(J) Fj is β-closed by Lemma 2.3 (3)

since each Fj is β-closed, and likewise
⋃

j∈g2(J) Gj is β-open. Hence by (2) we have

⋂

J∈dom g

(
⋂

j∈g1(J)

Fj) 6⊆
∨

J∈dom g

(
⋃

j∈g2(J)

Gj).

Let I1 =
⋃{g1(J) | J ∈ dom g}, I2 = I \ I1. Then (I1, I2) is a partition of I, and

I2 ⊆
⋃{g2(J) | J ∈ dom g}. This gives us

⋂

J∈dom g

(
⋂

j∈g1(J)

Fj) =
⋂

i∈I1

Fi ⊆
∨

i∈I2

Gi ⊆
∨

J∈dom g

(
⋃

j∈g2(J)

Gj),

which is a contradiction.

(3) =⇒ (1) First take β-open sets Gi, i ∈ I, with S =
∨

i∈I Gi. For i ∈ I let
Fi = ∅. Then C = {(Gi, Fi) | i ∈ I} is a β-open, co-β-closed dicover, so has a finite,
co-finite sub-dicover {(Gj , Fj) | j ∈ J}. For the partition J1 = ∅, J2 = J of J ,

S =
⋂

j∈J1

Fj ⊆
⋃

j∈J2

Gj ,

whence S =
⋃

j∈J Gj , and (S, S, τ, κ) is β-compact. That (S, S, τ, κ) is β-cocompact
is proved in an analogous way.

To establish β-stability, let F 6= S be β-closed and Gi, i ∈ I, be β-open sets
with F ⊆ ∨

i∈I Gi. Define C = {(S, F )} ∪ {(Gi, ∅) | i ∈ I}. It is clear that C

is a β-open, co-β-closed dicover, and hence has a finite, co-finite sub-dicover C1.
If C1 = {(Gj , ∅) | j ∈ J}, J finite, then the fact that C1 is a dicover implies⋃

j∈J Gj = S, whence F ⊆ ⋃
j∈J Gj . On the other hand, if (S, F ) ∈ C1 then we

again obtain F ⊆ ⋃
j∈J Gj , as required. That (S, S, τ, κ) is β-costable can be proved

in a similar way.

Hence (S, S, τ, κ) is β-dicompact.
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