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ASYMPTOTIC CURVATURE BOUNDS FOR
CONFORMALLY FLAT METRICS ON THE PLANE

Miodrag Mateljević, Ivan Anić and Stephen Taylor

Abstract

The decay rate of the Gauss curvature of conformally flat planer surfaces
of strictly negative curvature is studied. It is show that generically there is
an asymptotic sequence that decays faster than quadratically in the distance
from the origin. In the case that the conformal factor is of finite order, it is
shown that one can improve this decay rate.

1 Introduction

There have been many investigations into the properties of surfaces with negative
Gaussian curvature. One of the principal results in this area is due to Efimov [Ef]
which states that no surface S with Gaussian curvature K ≤ δ < 0 for any δ < 0 can
be C2 immersed into R3 so that S is complete in the induced Riemannian metric.
Establishing the optimal C2 regularity was a difficult problem (see [KM] for a brief
history). Thus Efimov’s theorem requires that any complete C2 immersed surface
S ⊂ R3 with negative Gaussian curvature K ≤ 0 must have K → 0 along some
sequence of points in S. Our main aim is to determine the rate at which such a
sequence vanishes under certain assumptions on the conformal factor of a C2 metric
on the surface without an immersion hypothesis.

Let g = eu|dz|2 be a conformally flat metric on C where {z, z̄} are the standard
local coordinates on the plane. We will often identify C with R2 via the canonical dif-
feomorphism. The Gaussian curvature of g is given by K = −e−u∆u/2 = −∆gu/2,
which can be represented by the equation

∆u + 2Keu = 0. (1.1)

Here we use the notation ∆g = gij∂i∂j = 4e−u∂z∂z̄, and ∆ denotes the Euclidean
Laplacian. In particular, the solution space of this equation for a prescribed K
represents all admissible functions that can be used to define conformally flat metrics
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on the plane with Gaussian curvature K. For instance, if we take K = 0, then any
harmonic function u defines a metric g of trivial Gaussian curvature. Throughout
this paper, we will suppose that K < 0, which by the previous equation implies
that u : C→ R is a strictly subharmonic function. We will also use the notation |z|
for the modulus of z with respect to the Euclidean metric. We note that the local
coordinates z and z̄ are in fact global since the plane is covered by one chart .

We will frequently use the following definition: If u is a subharmonic function
in C (but not harmonic), then the limit

β = lim
r→∞

I(r, u)
ln r

where I(r, u) =
1
2π

∫ 2π

0

u(reit)dt, (1.2)

exists and β ∈ (0,∞] (cf. section 2), and we say that u is of order β.
We first analyze the asymptotic behavior of K under the constraint that the

function u in the conformal factor of g is of finite order β. In section 2 we prove

Theorem 1. Let eu|dz|2 be a conformally flat metric on C with Gaussian curvature
K < 0, and suppose u is of finite order β. Then there is no triple (s, r0, C) with
s < β + 2, C > 0, and r0 > 0 such that

K(z) ≤ − C

2|z|s for all |z| > r0. (1.3)

In particular, there exists a sequence {zn} with |zn| → ∞ such that |zn|β∗+2K(zn) →
0 for any β∗ ∈ (0, β).

We later give an example to show that this theorem is false if instead one assumes
s > β + 2. It would be interesting to find a counterexample or proof for the case
s = β + 2. The proof of this theorem requires β to be finite. We next turn to the
case where β = ∞ and find a weaker result,

Theorem 2. Let eu|dz|2 be a conformally flat metric on C with Gaussian curvature
K < 0, and suppose u is of order β = ∞. Then there is no pair (r0, C) with C > 0
and r0 > 0 such that

K(z) ≤ − C

2|z|2 for all |z| > r0. (1.4)

We can combine these theorems to get a statement that is independent of β,

Corollary 1. Let eu|dz|2 be a conformally flat metric on C with Gaussian curvature
K < 0. Then there is no pair (C, r0) with C > 0, r0 > 0 such that

K(z) ≤ − C

2|z|2 for all |z| > r0. (1.5)

In particular there exists a sequence {zn} with |zn| → ∞, such that |zn|2K(zn) → 0.
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Note that the hypothesis that the metric is conforamally flat on the plane is
crucial. Without this assumption, the following example demonstrates that the
theorem is false:

Let ρ be the Poincaré metric on the unit disk and consider a diffeomorphism
ω : R2 → D where D is the unit disk, given by ω(z) = z

1+|z| . Choose a metric ρ̃ on
R2 such that ω is an isometry between (D, ρ) and (R2, ρ̃). Then Kρ̃ ≡ −1, and the
sequence conclusion of the corollary is false.

A version of Corollary 1 is proved in [Sa] using different techniques. In [Sa],
the cases where u is of finite or infinite order are not distinguished. If u is of finite
order, Theorem 1 requires the curvature to decay faster than in the generic case
along some sequence.

Finally, we note that Corollary 1 can be rephrased to show non existence of
solutions of the Liouville equation in the plane under certain conditions.

Corollary 2. Let K(z) ≤ −C/|z|2 on R2−B(0, R) for some R,C > 0. Then there
is no solution u of the Liouville equation (1.1) on the plane.

There are also statements analogous to this corollary for both theorems.

2 Proof of Theorem 1

Let (C, eu|dz|2) be a Riemannian surface with negative Gaussian curvature, and
let |z| be the standard norm on C. Define A(s, r) = {z ∈ C|s ≤ |z| ≤ r} to be
the annulus bounded by the balls Bs(0), Br(0) where ∂Bs(0) is given the clockwise
orientation and ∂Br(0) the opposite orientation. Then for 0 ≤ r0 < r, we use the
divergence theorem to compute

1
2π

∫

A(r0,r)

(∆gu)dµ =
1
2π

∫

A(r0,r)

(4e−u∂z∂z̄u)eudxdy =
1
2π

∫

A(r0,r)

∆[u(ρ, θ)] ρdρdθ

(2.1)

=
1
2π

∫

∂A(r0,r)

(∂ru) rdθ = rI ′(r, u)− r0I
′(r0, u), (2.2)

where I(r, u) is the integral mean of u defined in the introduction, ∂r is the out-
ward unit (w.r.t. the Euclidean metric) normal vector field from A(r0, r), dµ =
i/2

√
det(g) dz ∧ dz̄ is the volume form on (C, g), and {ρ, θ} are polar coordinates

on R2. Now from equation (1.1) we see ∆u > 0 since we suppose K < 0. Therefore

rI ′(r, u)− r0I
′(r0, u) > 0, (2.3)

for any r0. In particular, letting r0 → 0 we see that rI ′(r, u) > 0. Therefore

β = lim
r→∞

I(r, u)
ln r

= lim
r→∞

rI ′(r) ∈ (0,∞], (2.4)

For the first theorem we restrict to the case where β is finite, i.e. u is of finite order.
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Suppose eu|dz|2 is a conformally flat metric with negative Gaussian curvature
K and, by way of contradiction, suppose that for a fixed r0 > 0 there is an s < β+2
and C > 0 such that,

K(z) ≤ − C

2|z|s , for |z| > r0, C > 0. (2.5)

Since r0I
′(r0) > 0, for r0 < r/2 we use equation (2.2) to compute

rI ′(r) > − 1
π

∫

A(r/2,r)

K(ρ, θ)euρdρdθ = − 1
π

∫ r

r/2

∫ 2π

0

K(ρeiθ)eu(ρeiθ)ρdρdθ

> − C

2π

∫ r

r/2

∫ 2π

0

ρ1−seu(ρeiθ)dρdθ >
C

2π

(
r − r

2

) ∫ 2π

0

(r

2

)1−s

eu(reiθ/2)dθ

=
C̃

rs−2

1
2π

[∫ 2π

0

eu(reiθ)/2dθ

]
≥ C̃

rs−2
exp

(
1
2π

∫ 2π

0

u(reiθ/2)dθ

)

where we have used Jensen’s inequality to establish the last inequality and intro-
duced a new constant C̃. Hence we find

rI ′(r) ≥ C̃

rs−2
eI(r/2,u). (2.6)

We wish to take a limit of this inequality. First we note that since u is of finite
order β, asymptotically I(r/2, u) ≈ β ln r and hence eI(r/2,u) ≈ rβ . Thus

β = lim
r→∞

rI ′(r) ≥ C lim
r→∞

r2−s+β , (2.7)

so if s < β + 2, β is not finite and we have a contradiction, which establishes
Theorem 1.

3 Proof of Theorem 2

Our method of proof for the first theorem does not generalize to the β = ∞ case. We
will thus proceed with a slightly different strategy. Again, by way of contradiction,
suppose the hypotheses of Theorem 2 hold and that K ≤ −C/|z|2 for C > 0
and all z that satisfy |z| > r0 for some sufficiently large r0. We will use the fact
that Υ = eI(r,u) is a convex function to establish inequalities that contradict this
curvature bound. With this in mind, we first prove a lemma:

Lemma 1. Let α > 1, s > 0, and g ∈ C1(x0,∞) with x0 > 0 where g > 0,
g′ > 0 and limx→∞ g(x) = ∞. Define Eα

s = {x > x0 : xg′(x) ≥ sgα(x)}. Then
µ(Eα

s ) < ∞ where µ is the measure µ(A) =
∫

A
x−1dx with A ⊂ (x0,∞).

Proof: Using the fact that Eα
s ⊂ (x0,∞) we compute

1
α− 1

1
gα−1

=
∫ ∞

x0

g′(x)
gα(x)

dx ≥
∫

Eα
s

g′(x)
gα(x)

dx ≥ s

∫

Eα
s

dx

x
= sµ(Eα

s ) (3.1)

which proves the lemma. We will only need the following corollary:
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Corollary 3. Let α > 1, s > 0, and x0 > 0. If g, g1 satisfy the conditions of
Lemma 1, then for each x1 > x0 there exists an x > x1 such that g′(x) < sgα(x)
and g′1(x) < sgα

1 (x).

We now proceed with the proof of the theorem. Again let eu|dz|2 be a confor-
mally flat metric where now u has infinite order. Suppose K(z) ≤ −C/2|z|2 and
note from the proof of the previous theorem that rI ′(r, u) ≥ C̃ exp(I(r/2, u)). Let
γ > 1. Since I(u, r) →∞ for large r, we have

I ′(r) ≥ C̃

r
eI(r/2,u) ≥ γ

r
. (3.2)

Integrating the inequality, we see I(r, u) ≥ γ ln r+C, from which we find exp(I(r/2, u)) ≥
C̃rγ . Thus rI ′(r, u) ≥ C̃eI(r/2) ≥ C̃rγ which shows I ′(u, r) →∞.

Now from equation (2.2), we compute

(rI ′(r))′ = − r

π

∫ 2π

0

K(reiθ)eu(reiθ)dθ >
C

rπ

∫ 2π

0

eu(reiθ)dθ ≥ C

r
eI(r), (3.3)

where we used the curvature bound assumption and Jensen’s inequality. Differen-
tiating yields

r2I ′′ + rI ′ ≥ CeI , (3.4)
for r sufficiently large. Now note that

Υ′ = I ′eI , Υ′′ =
(
(I ′)2 + I ′′

)
eI . (3.5)

Since I ′ →∞, for r large enough, we have r2(I ′)2 ≥ rI ′. Therefore r2I ′′+r2(I ′)2 ≥
CeI(r) ≥ 0 which shows Υ′′ > 0, i.e. Υ is a convex function. We substitute

I ′ =
Υ′

Υ
, I ′′ =

ΥΥ′′ − (Υ′)2

Υ2
≤ Υ′′

Υ
, (3.6)

into differential inequality (3.5) to find

r2Υ′′ + rΥ′ ≥ CΥ2. (3.7)

Now note that Υ and Υ′ satisfy the hypotheses of Corollary 3. Therefore for every
α > 0 and s > 0 there is an r̃ with

r̃Υ′(r̃) < sΥα(r̃), r̃Υ′′(r̃) < s(Υ′(r̃))α. (3.8)

Combining these estimates, we find

r̃Υ′′ < s
(s

r̃
Υα

)α

=
sα+1

r̃α
Υα2

< sα+1Υα2
, (3.9)

since r̃ > 1. Now note that the inequality Υ < Υ2 (which holds for large r) implies

r̃2Υ′′(r̃) + r̃Υ′(r̃) < sα+1Υα2
(r̃) + sΥα(r̃) < (s + sα+1)Υα2

. (3.10)

Fixing α =
√

2 and s + sα+1 = C we find

r̃2Υ′′(r̃) + r̃Υ′(r̃) < CΥ2(r̃), (3.11)

which contradicts inequality (3.7). Therefore K > −C/2|z|2, which proves the
theorem.
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4 Examples and Discussion

We now give several examples which provide intuition for the theorems and demon-
strate their limitations. If g = eu|dz|2 is a metric on C one can choose u to be
different subharmonic functions so that g satisfies the negative Gaussian curvature
condition that is relevant to the theorems. First, consider u = a + b|z|2n where
b, n > 0. Then ∆u = 4bn2|z|2(n−1) > 0 and u is of infinite order, i.e. β = ∞.
We compute K = −C|z|2(n−1)e−b|z|2n

where C > 0, which satisfies the asymptotic
curvature bound of our second theorem. We can also generalize this example by
taking a superposition over n, i.e.

ũ = a + b

∫ Λ

0

|z|2αdα. (4.1)

is also a subharmonic function of infinite order whose associated metric satisfies the
asymptotic curvature bounds of Theorem 2.

Now consider u = ln([c + |z|2a]1/b) for 0 < a, b, c < ∞. Then

∆u =
4a2c|z|2a−2

b(c + |z|2a)2
> 0, (4.2)

and β = 2a/b. In particular,

K = − C|z|2a−2

(c + |z|2a)2−b−1 , (4.3)

and thus asymptotically we have

K ≈ −C|z|(2a−2)−(4a+2a/b) =
−C

|z|β(b+1)+2
. (4.4)

Since a > 0 can be made arbitrarily small, this example shows Theorem 1 is false
for s > β + 2. However, note that

lim
z→∞

|z|β+2K(z) = 0 ,

i.e. the sequence statement in the theorem remains valid in this case. It would be
interesting to find an example where u is a finite number β and

lim inf
z→∞

|z|β+2K(z) > 0 .

The properties of solutions to the prescribed Gauss curvature equation on the
plane were studied in [CN1, CN2]. Specifically, suppose K ≤ 0 in R2 and K(z) ∼
−|z|−l near ∞ for some constant l > 2. Then for each α ∈ (0, l−2

2 ), (1.1) possesses
a unique solution

uα(z) = α ln |z|+ O(1), near∞. (4.5)

The function U given by

U(x) = sup{u(x)|u is a solution of (1.1) in R2}
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is well-defined on R2 and is also a solution of (1.1) in R2. Moreover, if u is an
arbitrary solution of (1.1) in R2, then either u ≡ U or u ≡ uα for some α ∈ (0, l−2

2 ).
Let u be an arbitrary solution of (1.1) in R2. Then either u ≡ U or u ≡ uα

for some α ∈ (0, l−2
2 ). If l−2

2 > α > β, then uα > uβ in R2. Furthermore, the
asymptotic behavior of the maximal solution U near ∞ is given by

U(z) =
l − 2

2
ln |z| − ln(ln |z|) + O(1) . (4.6)

Since U is of order β = l−2
2 , we have |z|β+2K(z) → 0 when z →∞.

It is interesting to note the constraints Corollary 1 puts on metrics of constant
negative curvature. Given a C2 metric g on R2 there is C2,α diffeomorphism w =
φ(z) from R2 onto R2 or D such that g is conformally flat in the w, w̄ coordinates
c.f. [J]. If g = eu(w,w̄)|dw|2 on the plane, and has constant negative curvature,
then Corollary 1 requires u(z, z̄) cannot be defined on the entire complex plane.
One interesting implication of this statement is that there is no model of hyperbolic
geometry that can be defined on the entire plane.

Finally, we note that there is no analogue of Corollary 1 in higher dimensions.
Consider a conformally flat metric g = u4/(n−2)δ, where δ is the Euclidean metric,
with u > 0 on Rn for n ≥ 3. Then the scalar curvature Rg of g is given by

Rg = −4
n− 1
n− 2

u
n−2
n+2 ∆gu. (4.7)

Thus if we take u(x) = |x|2, then we see that Rg(x) → −∞ in any direction as
|x| → ∞, so Corollary 1 does not generalize.
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