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QUASICONFORMALITY OF HARMONIC MAPPINGS
BETWEEN JORDAN DOMAINS

Miodrag Mateljevié, Vladimir Bozin and Miljan Knezevi¢

Abstract

Suppose that h is a harmonic mapping of the unit disc onto a C"* domain
D. We give sufficient and necessary conditions in terms of boundary function
that h is gq.c. We announce some new results and also outline application to
existence problem of mean distortion minimizers in the Universal Teichmiiller
space.

1 Introduction

Throughout this paper, U will denote the unit disc {z : 2| < 1}, T the unit circle,
{z : |z] = 1} and we will use notation z = re®.

By Ogh and 0,h (or sometimes by h; and hy), h}, and h; we denote partial
derivatives with respect to # and r, x and y respectively.

Every harmonic function A in U can be written in the form h = f + g, where f
and g are holomorphic functions in U. Then an easy calculation shows

Oph(2) = i(2f"(2) — 29'(2)), hl. = € f' +e®g’, hj+irh! = 2izf" and therefore
rh!. is the harmonic conjugate of hj. We also use notation p = f',q = ¢, A, =
L1+ 19l A = '] = |g'| and p, = q/p.

Let )
1—r
P.(t) =
®) 2m(1 — 2r cos(t) + r?)
denote the Poisson kernel.

If ¢ € L0, 27] and

1 27

W) = o [ PO-Du
271— 0

then the function h = P[] so defined is called Poisson integral of .
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If ¢ is of bounded variation, define Ty (z) as variation of ¥ on [0,x], and let
V(1) denote variation of ¢ on [0, 2] (see, for example, [38] p.171).
Define
h.(0) = h* (') = lirq h(re®?)
when this limit exists.
If ¢ € L0, 27] (or L[T]), then the Cauchy transform C(1)) is defined as

B 1 2 w(t)ezt
o fy z—eit

C¥)(z) dt

with its kernel _
ezt

While the Hilbert transform H (1)) is defined as
_ [T Ylet+t) —d(e—t)

HW) = | SR

where we abuse notation by extending 1 to be 27 periodic, or consider it to be
a function from L'(T). The following property of the Hilbert transform is also
sometimes taken as the definition:
If u = P[¢)] and v is the harmonic conjugate of u, then v, = H(v) a.e.

Note that, if ¢ is 27-periodic, absolutely continuous on [0, 27] (and therefore
Y € LY0,27]), then

Ry = P[] (1.1)

Hence, since rh!. is the harmonic conjugate of hj, we find

rhi. = P[H(Y)] and (1.2)
(h!)*(e?) = H(¥')() ae.

It is clear that

K(z,t)+ K(z,t) —1=P.(0 —-1).
For f: U — C, define
£.6) = £7(e") = lim f(re)

when this limit exists. For f: T — C, define f.(6) = f*(e%).

If f is a bounded harmonic map defined on the unit disc U, then f* exists a.e.,
f* is a bounded integrable function defined on the unit circle T, and f has the
following representation

f(2) = Plfl(z) = | P(rt—)f (e")dt, (1.4)
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where z = re?.

A homeomorphism f: D +— G, where D and G are subdomains of the complex
plane C, is said to be K-quasiconformal (K-q.c or k-q.c), K > 1, if f is absolutely
continuous on a.e. horizontal and a.e. vertical line in D and there is k € [0,1) such
that

| < KIf.| e onD, (L5)
where K = }%’2 ie k= Ié—jr}
Note that the condition (1.5) can be written as
A |fl+If
Dyi=~=777—"7=K 1.6
FEXTIRISIA o

where K = %’Z ie. k= %
Note that if v is 2w-periodic absolutely continuous on [0,27] (and therefore

v € LY[0,27]) and h = P[y], then

(h)*(e) = H(7')(0) ae.,

where H denotes the Hilbert transform.

Let T' be a curve of C'* class and v : R — I'* be arbitrary topological (home-
omorphic) parameterization of I' and s(p) = [, |7/(¢)|dt. It is convenient to abuse
notation and to denote by I'(s) natural parameterization.

For I'(s) = v(¢), we define n.,(¢) = il”(s(¢)) and

Ry(p,t) = (7(t) — v(9), ny ()
For 6 € R and h = P[y], define

E(6) = ()" (), (8)) = (H(/)(0).n-(8)) ae. and
v(z,0) = vy(2,0) = (rhy(2),n,(0)), z€U. (1.8)

Note that v.(t,6) = (H(7.)(t), ny(0)) a.e.

1.1 Background

To each mapping (in particular closed curve I') given by v : T — C, we associate
a function v, : R — C defined by 7.(t) = v(e®); we also call 7, : [0,27] — I'* a
parameterization of IT.

Harmonic quasiconformal (abbreviated by HQC) mappings are now very active
area of investigation (see for example [17, 19]).

Let Dy (res D3) be the family of all Jordan domains in the plane which are of
class CT* (res C%#) for some 0 < p < 1.

In [16] the following result is proved:

Theorem A. Let Q and Q; be Jordan domains, let i € (0, 1], and let f : Q +— Q
be a harmonic homeomorphism.
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Then
(a) If fis q.c. and 9Q,0Q; € Dy, then f is Lipschitz;
(b) if f is q.c., 90,00 € Dy and Q4 is convex, then f is bi-Lipschitz; and
(c) if © is the unit disk, Q; is convex, and 9Q; € C**, then f is quasiconformal
if and only if its boundary function is bi-Lipschitz and the Hilbert transform of its
derivative is in L°°.
In [17] it is proved the convexity hypothesis can be dropped if codomain is in Ds:
(b1) if f is q.c., 9Q € Dy and 9y € D, then f is bi-Lipschitz.
Similar results were announced in [32]. These extend the results obtained in [29,
13, 36, 22].

The proof of the part (a) of Theorem A in [16] is based on an application of
Mori’s theorem on quasiconformal mappings, which has also been used in [36] in
the case Q1 = Q = U, and the following lemma.

Lemma 1.1. Let T be a curve of class C** and ~y : T — I'* be arbitrary topological
(homeomorphic) parameterization of T'. Then

Ry (0,1)] < Aly((e") — ()], (1.9)
where A = A(T).

In [18], we prove a version of ”inner estimate” for quasi-conformal diffeomor-
phisms, which satisfies a certain estimate concerning their laplacian. As an appli-
cation of this estimate, we show that quasi-conformal harmonic mappings between
smooth domains (with respect to the approximately analytic metric), have bounded
partial derivatives; in particular, these mappings are Lipschitz. Our discussion in
[18] includes harmonic mappings with respect to (a) spherical and euclidean met-
rics (which are approximately analytic) as well as (b) the metric induced by the
holomorphic quadratic differential.

1.2 HQC are bi-Lipschitz

We announce some results obtained in [8] by two of the authors. The results make
use of the Gehring-Osgood inequality [10], as we are going to explain.

Let 2 be Jordan domain in Dy, 7 curve defined by 92 and h K-qch from U onto
Q and h(0) = ag. Then h is L-Lipschitz, where L depends only on K, dist(ag,0S2)
and D; constant C.,. In [8] we give an explicit bound for the Lipschitz constant.

Let h be a harmonic quasiconformal map from the unit disk onto D in class
D;. Examples show that a q.c. harmonic function does not have necessarily a C'*
extension to the boundary as in conformal case. In [8] it is proved that the corre-
sponding functions Ej,, are continuous on the boundary and for fixed 0y, vy, (2, 0o)
is continuous in z at e on U.

The main result in [8] is

Theorem 1.2. Let Q and Q1 be Jordan domains in Dy, and let h : Q +— €y be a
harmonic q.c. homeomorphism. Then h is bi-Lipschitz.
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It seems that we use a new idea. We reduce proof to the case when Q = H.
Suppose that h(0) = 0 € ;. We show that there is a convex domain D C Q; in
D; such that 9 = 0D touch the boundary of Q4 at 0. Since there is qc extension
hy of h to C, we can apply Gehring-Osgood theorem to hy : C* — C*. This gives
estimate for argy;(z) for z near 0, where 3 = h™1(70), and we show that there is
a domain Dy C H in Dy such that h(Dg) C D. Finally, we combine the convexity
type argument and noted continuity of functions E and v to finish the proof.

2 Preliminary results

We first give an extension of Proposition 1 [31]:

Proposition 2.1. Suppose that ¢ : [0,27] — C is of bounded variation and h =
Pl).

Then

(1) i(r) = 02” |ho(2)] <V (¢) and I(r) is increasing.

(2) f',¢' € HP for every 0 <p <1

(3) hy exists a.e.

; . h*(e) — h(re®)
ity
87«}1(6 ) B Tll’rlrio 1—r
exists a.e. and (O.h)*(e") = O,.h(e) a.e. (Oph)* =1’ a.e.
(4) If ¢ is absolutely continuous, then C[Y'](z) = izf'(z) and izf'(z) is the
analytic part of Oph. Also, Cli'](2) = izg'(2)
(5) If h = P[y] is K-q.c., then hy is absolutely continuous and hl(t) # 0 a.e.

Proof. (1) If 4 is of bounded variation, then

o) = 5- | "6 - 1) dv(t)

T on

and hence
2T 1 2
I(r) = U(r, h) = / Ihy(2)] < — / P(6— 1) dT, (1)d6 .
0 2w Jy

where Ty () is total variation of ¢ on [0,z]. Thus I(r) < OQW dTy(t) = Ty(2m) =
V().

Since hy, is harmonic, |hjy| is subharmonic and therefore {(r) is increasing.

(2) Since hy € h', then the Cauchy transform Clhy] € H? for every 0 < p < 1.

We leave proof of (3) to the interested reader.

(4) Note that dy(t) = ¢'(t)dt + do(t), where o is a singular measure w.r. to
Lebesgue measure, i.e., one supported on a set of Lebesgue measure zero. If 9 is
absolutely continuous, then di(t) = ¢/ (t)dt. Hence, we find
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and therefore (4). Note that here absolute continuity of ¢ is essential.

If M C T is Lebesgue measurable, we denote |M| its Lebesgue measure.

(5) Since | f'| +|¢'| < K |ho(2)|, then f', g’ € H'. Hence, we conclude that h, is
absolutely continuous.

Let Ag = {e" : h!(t) = 0},

dh = pdz + qdz and Ey C T the set on which p*, ¢* exist and |p*| < K|q*|.

If zg € Ag N Ey, then p=q¢ =0 at z.

Since p and g are analytic on U and belong to H!, we conclude that | AgNEy| = 0.
Since T \ Ey has measure 0, we conclude that |4g| =0 O

3 Characterizations of HQC
3.1 The half plane

By H we denote the upper-half plane and ITt = {z : Rez > 0}.

The first characterizations of the HQC conditions have been obtained by Kalaj
in his thesis research.

In the case of the upper half plane, the following known fact plays an important
role, cf for example [24]:

LEMMA B. Let f be an euclidean harmonic 1 — 1 mapping of the upper half-
plane H onto itself, continuous on H, normalized by f(co) = oo and v = Imf.
Then v(z) = clmz, where ¢ is a positive constant. In particular, v has bounded
partial derivatives on H.

The lemma is a corollary of the Herglotz representation of the positive harmonic
function v (see for example [4]).

Theorem 3.1. Let h : H — H be harmonic function. Then h is orientation
preserving harmonic diffeomorphism of H onto itself, continuous on HUR such
that h(oo) = oo if and only if there is analytic function ¢ : H — I such that
lim, o P1(2) = 0o, where
(x1) h(z) = h?(2) = ®1(2) +icy +c1, ¢ > 0 and c; € R.

A version of this result is proved in [13].

Let h = v+ iv. By Lemma B, u = Re® and v = cy, where ¢ > 0 and & is
analytic function in HL

Since @} = i®’ and

h(z) = h?(2) = (®(2) + ®(2))/2 + icy + c1, we find
hy(2) = (i®'(2) +19'(2))/2 +ic = (i¢p — i¢) /2 + ic = —Im ¢(z) + ic

Hence

(X1) hi(z) = Re¢(z) and hy(2) = —Im¢(z) + ic. Since h, = (h, —ih})/2 =
#/2 + ¢/2 is analytic, —h; is harmonic conjugate of h, and therefore

(X2) hy, = H(h,) =Im¢(z) — ic,
where h, denotes the restriction of A on R.
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By HQCy(H) (respectively HQCE(H)) we denote the set of all qc (respectively
k-qc¢) harmonic mappings h of H) onto itself for which h(o0) = co.

Theorem 3.2. Let x : R — R be a homeomorphism and h = P[x].

The following condition are equivalent

(Al) h € HQCy(H)

(A2) there is analytic function ¢ : H — T such that ¢(H) is relatively
compact subset of IIT and h = h?.

Proof. Suppose (Al). We can suppose that h is K-qc and ¢ = 1 in the representation
(*1). Since v(z) = Imh(z) =y, we have A\, > 1/K. Let 2o € H and define the curve
L ={z:®1(z) = P1(20)} and denote by Iy the unit tangent vector to the curve L
at zp. Since |dh.,(lo)| < 1, we have A, < K on H. Hence absolute values of partial
derivatives of h are bounded from above and below by two positive constants. Thus,
by (X1) and (X2), ¢ is bounded on H.

In particular, (A1) implies that h is bi-lipschitz.

Hence there two positive constants s; and sy such that

s1 < X'(z) < 89, ace.

Since x'(z) = Re¢*(x) a.e. on R and ¢ is bounded on H, we find

s1 < Red(z) < 59, z € Hj

and (A2) follows.

We leave to the reader to prove that

(A2) implies (A1) and

using equation (3.1) below to prove

(A1) implies (A2).

It is clear that the conditions (A1) and (A2) are equivalent to

(A3) there is analytic function ¢ € H*°(H)

and there two positive constants s; and so such that s; < Re¢(z) < sq9, z € H.

Since x'(z) = Re¢*(z) a.e. on R and Hx' = Im ¢*(x) — ic a.e. on R, we get
characterization in terms of Hilbert transform:

(A4) x is absolutely continuous, and there two positive constants s; and s such
that s1 < x/(x) < s9, a.e. and Hx' is bounded.

A similar characterization holds for smooth domains and in particular in the
case of the unit disk; see Theorems 3.6 and 3.4 below.

From the proof of Theorem 3.3 below, cf [24], it follows that if we set ¢ = 1
in the representation (1), then h = h?* € HQC¥(H) if and only ¢(H) is in a disk
By, = B(ay; Ry,), where a = $(K + 1/K) = 35 and Ry, = L(K — 1/K) = 2.
First, we need to introduce some notation:

For a € C and r > 0 we define B(a;r) = {z: |z — a| < r}. In particular, we write
U, instead of B(0;r).
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Theorem 3.3 ([24], the half plane euclidian-qch version). Let f be a K-qc euclidian
harmonic diffeomorphism from H onto itself. Then [ is a (1/K, K) quasi-isometry
with respect to Poincaré distance.

For higher dimension version of this result see [31, 33, 2].

Proof. We first show that, by pre composition with a linear fractional transfor-
mation, we can reduce the proof to the case f(oco) = oo. If f(00) # oo, there
is the real number a such that f(a) = co. On the other hand, there is a conformal
automorphism A of H such that A(co) = a. Since A is an isometry of H onto itself
and fo A is a K-qc euclidian harmonic diffeomorphism from H onto itself, the proof
is reduced to the case f(c0) = 0.
It is known that f has a continuous extension to H (see for example [25]).
Hence, by Lemma B, f = u + icImz, where c is a positive constant. Using the lin-
ear mapping B, defined by B(w) = w/¢, and a similar consideration as the above,
we can reduce the proof to the case ¢ = 1. Therefore we can write f in the form
f=u+ilmz = }(F(2) + 2 + F(z) — z), where F is a holomorphic function in H.
Hence,

Fl(z) -1 1)

=T o FE= H. 1

,LLf(Z) F/(Z)—‘rl an (Z) 1_Mf(Z)’ z € (3 )

Define k£ = % and w = S¢ = % Then, S(U,) = B, = Bl(ay; Ry), where
ar = 2K +1/K) = %j’;z and Ry = (K — 1/K) = 2.

Since f is k-qc, then p1f(2) € Uy, and therefore F'(z) € By, for z € H. This yields,
first,

K+1>|F'(2)+1|>1+1/K, K—-1>|F'(2)-1>1-1/K,

and then, 1 < Ay(z) =
So we have A\f(z) > Af(2)/K > 1/K.
Thus, we find
1/K < Ap(z) < Af(2) < K. (3.2)

Let A denote the hyperbolic density on H.
Since A\(f(z)) = A(2), z € H, using (3.2) and the corresponding versions of 3A and
3B for H, cf [24], we obtain

e e 2) < () S 2) < TR a1, 2,

It also follows from (3.2) that

1
T |zo — 21| < |f(22) — f(21)] S K |22 — 21|, 21,20 € H.

We leave to the reader to prove this inequality as an exercise.
This estimate is sharp (see also [22] for an estimate with some constant ¢(K)). O
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3.2 The unit disc

Suppose that h is an orientation preserving diffeomorphism of H onto itself, con-
tinuous on H U R such that h(co) = oo and x the restriction of h on R. Recall
h € HQCy(H) iff there is analytic function ¢ : H — IT* such that ¢(H) is relatively
compact subset of It and x/(z) = Re ¢*(z) a.e.

We give similar characterizations in the case of the unit disk and for smooth domains
(see below).

Theorem 3.4. Let ¢ be a continuous increasing function on R such that ¥(t +
2m) — h(t) = 2m, y(t) = ¥ and h = P[y]. Then h is q.c. if and only if

1. essinfyy’ >0

2. there is analytic function ¢ : U — IIT such that ¢(U) is relatively compact
subset of 1T and ¢'(x) = Re ¢*(e'®) a.e.

In the setting of this theorem we write h = h?. The reader can use the above
characterization and functions of the form ¢(z) = 2 + M (z), where M is an inner
function, to produce examples of HQC mappings h = h? of the unit disk onto itself
so the partial derivatives of h have no continuous extension to certain points on the
unit circle. In particular we can take M(z) = exp £, cf [7].

In the next subsection we extend the above theorem to smooth domains. Note
that the proof that a HQC mapping between the unit disk and D; domain is bilip-
shitz is more delicate than in the case of the upper half plane. Instead of Lemma
B we use Theorem A and Theorem 1.2.

3.3 HQC and convex smooth codomains
We need the following result related to convex codomains.

Theorem 3.5 ([31]). Suppose that h is a euclidean harmonic mapping from U
onto a bounded convexr domain D = h(U), which contains the disc B(h(0); Rp) .
Then

(1) d(h(2),0D) > (1 — |2|)Ro/2, z€U.

(2) Suppose that w = h*(e") and hi = h!. (') exist at a point ¢’ € T, and there
exists the unit inner normal n = n,, at w = h*(e') with respect to OD.

Then E = (h},ny,) > co, where cg = £2.
(3) In addition to the hypothesis stated in the item (2), suppose that b exists at
the point €. Then |Jy| = |(hi, N)| = |(h},n)||N| > co|N|, where N = ih/, and the
Jacobian is computed at the point €% with respect to the polar coordinates.

If D is of C1# class, using the result that the function E is continuous [8], we
find
(4) |E| = co.

Theorem 3.6. Suppose that C1'* domain D is convex and denote by ~ positively
oriented boundary of D. Let hg : T — y be an orientation preserving homeomor-
phism and h = Plhy).

The following conditions are then equivalent
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a) h is K-gc mapping

b) h is bi-Lipschitz in the Euclidean metric

¢) the boundary function h, is bi-Lipschitz in the Euclidean metric and Cauchy
transform C[h.] of its derivative is in L.

d) the boundary function h, is absolutely continuous, essinf |hl| > 0 and Cauchy
transform C[h}] of its derivative is in L.

e) the boundary function h is bi-Lipschitz in the Euclidean metric and Hilbert
transform HI[h.] of its derivative is in L.

f) the boundary function hy is absolutely continuous, esssup|hl| < +oo, essinf || >
0 and Hilbert transform H[h}] of its derivative is in L.

Note that here, by our notation, (hg)« = h. and hg = h* .

Proof. By the fundamental theorem of Rado, Kneser and Choquet, A is an orienta-
tion preserving harmonic mapping of the unit disc onto D.

If D is C*“, it has been shown in [8] that a) implies b) even without hypoth-
esis that D is a convex domain. Note that an arbitrary bi-Lipschitz mapping is
quasiconformal. Hence the conditions a) and b) are equivalent.

Hilbert transform of a derivative of HQC boundary function will be in L*°, and
hence a) implies e).

Recall, we use notation p = f/,q=g', Ap, = |f'| +19'|, \n = || — |4'].

If h, is absolutely continuous, since hj(z) = i(zf'(z)—z¢'(2)), we find C[h,](z) =
izf'(z). Tt follows that a) implies ¢) and d).

Since bi-Lipschitz condition implies absolute continuity, ¢) implies d) and e).

Let us show d) implies a).

Hypothesis C[h!] € L* implies that f’ € L and therefore since h is orientation
preserving and |f’| > |¢’|, we find ¢’ € L°°.

This shows that Aj, is bounded from above.

We will show that [p*| is bounded from above, A} = |p*|(1 — |©*|) is bounded
from below, and therefore that (1 — |u*|) is bounded from below.

Let N =ih! and N = n|N|.

Since D is a convex domain | f’| and (h%, n) are bounded from below with positive
constant (for an outline of proof see [30, 31]).

Condition C[h}] € L* implies that f’ € H*. Hence, since |f’| is bounded from
below with positive constant, it follows that Aj is bounded from above and below
with two positive constants.

By assumption d), |h}| is bounded essentially from below. Since, J, = Ap\p
and by Theorem 3.5
Jp = (b2, N) = (b2, mIN| = co| N,
where n = ny,, and N = n|N| and N = ¢/, we conclude that A} is bounded from
above and below with two positive constants. It follows from A = [p*|(1 — |u*]),
that (1 — |u*|) is bounded from below with positive constant ¢; and therefore k3 =
(1 =¢1) > |p*]- By maximum principle, ||u||e < k1.

Note that hypothesis d) implies that |h}| is bounded from above and therefore
the boundary functions h, is bi-Lipschitz. Thus, we have that a) and b) follow from
d).
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Lets prove that f) implies d). This will finish the proof, since e) implies f) and
we have already established that d) implies a).

Since the boundary function h, is absolutely continuous, recall that, by (1.1),
we have
doh(z) = PIR)(2) = i(21'(2) — 29/ (),
and, by (1.2), that its harmonic conjugate is
2f'(2) + 29'(2) = rhL(2) = PH(WL)]
Thus if h, is Lipschitz and H(h,) is bounded, then dgh and irh.(z) are bounded
on U so by adding these two together we conclude that hy + irh] = 2izf’ = 2C[h}]
is bounded and therefore Cauchy transform C[h] is bounded, and d) follows.
Note that we have here |f’| is bounded and therefore all partial derivatives of h are
bounded, and
H(hl) = zp* 4+ zq* a.e. on T, where p= f' and ¢ = ¢'. O

A version of the part (a) equivalent to (f) of the main characterization has been
stated in [16].

Theorem 3.7 ([16]). Let f : T — « be an orientation preserving homeomorphism
of the unit circle onto the Jordan convex curve v = 9 € CLF,
Then h = P[f] is a quasiconformal mapping if and only if

0 < essinf |f'(o)], (3.3)
esssup | f'(p)| < oo (3.4)
and
esssup |H(f")(¢)| < oo, (3.5)
@
where

H(f)e) = [ HEE =

denotes the Hilbert transformations of f’.

The hypothesis that f is absolutely continuous function was omitted in [16], but
it seems to be needed to justify the proof from that paper.

Indeed, it is easy to find an example of a function f satisfying conditions (3.3),
(3.4) and (3.5), such that the corresponding harmonic map h = P[f] is not q.c., cf
[7].

Our characterization works only for convex domains. If all conditions are kept,
but convexity is dropped, then there can be found examples of maps which are
not HQC, cf [7]. We can get HQC characterization of general harmonic maps to
CY @ domains, if we set apart the condition which depends on the convexity of the
domain as one of the requirements.

Theorem 3.8. Suppose that D is CY'® domain. Let h be a harmonic orientation
preserving map of the unit disc onto D and homeomorphism of U onto D. The
following conditions are equivalent
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al) h is K-gc mapping
a2) the boundary function h, is absolutely continuous, esssup|hl| < +oo, Hh! €
L™ and so = essinf|(HR.,ih})| > 0.

We only outline the proof of the this theorem.

Proof. Put u = pp. Clearly a2) implies essinf|h,| > 0. We leave to the reader to
check that

2zp* = H(h!) —ih), 2z¢* = H(R,) +ihl, J = (h:,ih},) = (H(Rh,),ih},) >0 a.e.
on T and J;, > 0 on U. Hence |p| < 1 and AJA; = JF > s > 0. Similarly like in
the proof of the main characterization theorem a2) implies |u*|oo = k < 1 and so
we have al). The converse is straightforward. 0

4 Application to the Universal Teichmiiller space

For ¢ = £ + in we use notation |d¢|?> = d¢ dn. Here we apply our characterization
to the problem of minimizing functional

QR IEQR,
KD = RO 1RO ™

over all quasiconformal maps f : U — U with the same boundary condition, i.e.
belonging to the same class in the Universal Teichmiiller space. Existence of mini-
mizers of functional K in Teichmiiller spaces has been of considerable recent interest.
For instance, in [28] it has been proved that minimizers do not exist in the case of
punctured disc.

From results in [3], it follows that the minimizer will exist in the Universal
Teichmiiller class if and only if the inverse map on the boundary induces harmonic
quasiconformal map, i.e. if P[f~!] is quasiconformal. Applying our results, we get
the following characterization, cf also [3]:

Theorem 4.1. Let f : T — T be a homeomorphism of T, that satisfies the M-
conditon i.e. that has quasiconformal extension to U. Then in the Universal Te-
ichmiiller class of f there is minimiser of the functional K if and only if

bl) f is bi-Lipschitz and H[(f~1)'] € L>(T) or

b2) f is bi-Lipschitz and C[(f~1)'] € L*(T)

Also, we can get the result about minimisers of K functional of maps from the
convex C*® domains to the unit disc.

Theorem 4.2. Let D be a convex C1* domain and f : D — T an orientation
preserving homeomorphism that has quasiconformal extension to D. Then func-
tional K is minimised in the class of all gc maps with the same boundary condition
if and only if

b1) f is bi-Lipschitz and H[(f~1)'] € L>(T) or

b2) f is bi-Lipschitz and C[(f~1)'] € L*°(T)

Note that with the second type of condition we can have more general codomains,
applying our theory.
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