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PROPERTIES OF SOME FAMILIES
OF MEROMORPHIC MULTIVALENT FUNCTIONS
INVOLVING CERTAIN LINEAR OPERATOR

M. K. Aouf and B.A. Frasin

Abstract

Making use of a linear operator, which is defined here by means of the
Hadamard product (or convolution), we introduce two novel subclasses
Qao(p, A, B, X) and Q7 .(p, A, B, \) of meromorphically multivalent functions.
The main object of this paper is to investigate the various important prop-
erties and characteristics of those subclasses of meromorphically multivalent
functions. We extend the familiar concept of neighborhoods of analytic func-
tions to these subclasses of meromorphically multivalent functions. We also
derive many results for the Hadamard products of functions belonging to the
class QF .(p, o, 3,7, \).

1 Introduction
Let >, denote the class of functions of the form :
fE) =274 a, P (peN={12..}), M
k=1
which are analytic and p-valent in the punctured unit disc U* = {z : z € C and

0 < |z] < 1} = U\{0}; where U = {2z : z € C and |2| < 1}. For functions f(z) € 3,
given by (1) and g(z) € E,, given by

g(z) =2"P+ Z br_pz" P (peN),
k=1
we define the Hadamard product (or convolution) of f(z) and g(z) by

(f*9)(z) =277+ Y an—pbi—pz" " = (g% )(2).-

k=1
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In terms of the Pochhammer symbol (6),, given by

_TO+n) [ 1 (n=0)
(@n—rw)—{ow+1y4a+n1) (n €N),

we define the function ¢(a,c; z) by

(a)

placz) =743 Wi @)
k=

)k

(zeU"aeRceR\Zy;Z, =10,—-1,-2,...}).

Corresponding to the function ¢, (a, ¢; 2), Liu [15] and Liu and Srivastava [16] have
introduced a linear operator ¢,(a,c) which is defined by means of the following
Hadamard product (or convolution) :

lpla,0)f(2) = ¢p(a,¢2) * f(z) (f(2) €Xp) . (3)

Just as in [15] and [16], it is easily verified from the definitions (2) and (3) that

2(lp(a,0)f(2)) = aly(a+1,0)f(2) = (a+p)ly(a,c) f(2) -
We also note, for any integer n > —p and for f(z) € X, that

1

bn+p1)f(z) = D" () = i

*f(z)

where D"*tP~1 f(2) is the differential operator studied by (among others) Uralegaddi
and Somanatha [25] and Aouf [7].

Let
A /
Fpacea(z) = (1=A)Ly(a,c)f(z) + ;Z(Lp(a, c)f(2)) (4)
(f € Zp;pEN;ng\<%),
so that, obviously,
_1-2) = (a)k e
Fp,a,cA( +Z |:1_)\+)\ P ) (T pR p (5)

k=1

1
PeN0sA<S),

since f(z) € 3, is given by (1). From (5), it is easily verified that

’

2Fp a,e0(2) = aFpat1,ea(2) = (@ +p)Fpaca(2) - (6)
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For fixed parameters A, B,pand A with -1 < B< A<I,peNand0 <\ < %,
we say that a function f(z) € X, is in the class Q, .(p, 4, B, A) of meromorphically p-
valent functions in U* if the function F}, , . x(z) defined by (4) satisfies the following
inequality:
PHE L oa(2) +p(1—2))
Bzpt1F (2) + Ap(1 — 2))

D,0,C,A

<1 (zeU). (7)

Let 37 denote the class of functions of the form :

f) =2+ la|*  (peN) (8)
k=p

which are analytic and p-valent in U*. Furthermore, we say that a function f(z) €
Qf .(p, A, B, \) whenever f(z) is of the form (8).

We note that the following interesting relationships with some of the special
function classes which were investigated recently :

(1) Qac(p, @A, aB,0) = S, (A, B,a) and Q;C(p, aA,aB,0) =S} (A, B, )
(a>0;-1<B<A<1;,-1<B<0and |Bal <1) (Liu [15]);

(ii) Qf ,(A,B,0) = H*(p; A, B)(0 < B < 1;—-B < A < B) (Mogra [18]);

(i) ©F ,(1, (1 — 2y0)B, (1 — 29)3,0) = Sale, B,7) (0 <@ < L3 <4 < 1,0 <
B <1) (Cho et al. [10]);

(iv) Qf ,(1.A,B,0) = X4(A,B) (-1 < B< A<1,-1< B<0) (Cho [9]).

Also we note that :
Qchr,c(pa (1 - 27%)[37 (1 - 27)53 )‘) - ch(pa «, /6a Vs )‘)

Zerlel),a,c,)\(Z) +p(1 - 2)‘)
27— Do E,, () + @ha—p)(1 -2

:{f(z)EE;: < g,

1
(zGU*;0<a<p;p€N;2<7<1;0<ﬂ<1)} ~

Meromorphically multivalent functions have been extensively studied by (for
example) Mogra ( [17, 18] ), Uralegaddi and Ganigi [24], Aouf ([4, 5, 6]) , Srivastava
et al. [23], Owa et al. [19], Joshi and Aouf [13], Joshi and Srivastava [14], Aouf et
al.[8], Raina and Srivastava [20] and Yang [26].

In this paper we investigate the various important propertries and characteris-
tics of the classes Qq.c(p, A, B, A) and Qf .(p, A, B, \). Following the recent inves-
tigations by Altintas et al. [3, p.1668], we extend the concept of neighborhoods of
analytic functions, which was considered earlier by (for example) Goodman [11] and
Ruscheweyh [21], to mermorphically multivalent functions belonging to the classes
Qq.c(p, A, B, \) and Q(J{,C(p7 A, B, \). We also derive many results for the Hadamard
products of functions belonging to the class Qic(p, a, 8,7, \).
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2 Inclusion properties of the class €, .(p, A, B, \)

We begin by recalling the following result (Jack’s lemma), which we shall apply in
proving our first inclusion theorem (Theorem 1 below).

Lemma 1. ([12]) Let the (nonconstant) function w(z) be analytic in U with w(0) =
0. If |lw(z)| attains its mazimum value on the circle |z| =r < 1 at a point zy € U,
then

20w (20) = Ew(zo),

where & is a real number and £ > 1.

Theorem 1. Let a > 0, then

Qa+1,c<pa A7 B7 >\) C Qa,C(p7 A7 B7 )\) N

Proof. Let f(z) € Qq+1.c(p, 4, B, A) and suppose that

1+ Aw(z)

PR = —p(1-2)0)— 2
z p,a,c,)\(z> p( )‘)1 +Bw(z) ) (9)

where the function w(z) is either analytic or meromorphic in U, with w(0) = 0.
Then, by using (6) and (9), we have

PHE ai1ea(2) = —p(1—2)) 1+ Aw(z) _ p(1 —2))(A — B) 2w (2)

1+ Bw(z) a "(1+ Bw(z))?"
(10)
We claim that |w(z)| < 1 for z € U. Otherwise there exists a point zy € U such
that max‘\w(z)| = |w(z)| = 1. Applying Jack’s lemma, we have zow (z) =

|z[<|z0

Ew(z)(¢€ > 1). Writing w(zg) = €?(0 < 6 < 27) and putting z = z in (10), we get

Z(I))+1F1/),a+1,c,)\(2:0) +p(1—2))
BZgHF;;,aH,c,,\(ZO) + Ap(1 —2X)
la+ ¢+ aBeie]2 —|a+ B(a— f)ew|2

la+ B(a - &)et|*
€*(1 — B?) + 2a£(1 + B? + 2B cos )
ja+ Bla - &)ei??

- )

which obviously contradicts our hypothesis that f(z) € Qq41.(p, 4, B,A). Thus
we must have |w(z)] < 1(z € U), and so from (9), we conclude that f(z) €
Qq.c(p, A, B, \), which evidently completes the proof of Theorem 1. I



Properties of Some Families of Meromorphic Multivalent Functions... 39

Theorem 2. Let i1 be a complex number such that Rep > 0. If f(2) € Qq.c(p, A, B, \),
then the function

Gp’a’c’)\(z) = Zl"lj’p /tu—"—p_lesaac’)‘(t)dt (]‘1)
0

is also in the same class Qq.c(p, A, B, \).

Proof. From (11), we have

’

ZGpﬂ,c,)\(Z) = MFp,a,C)\(Z) — (u+ p)Gp,a,c,A(Z) . (12)
Put

1+ Aw(z)

PG = —p(l—2)\)—— 2
z Gp,a,c,)\(z) p( )1+BU)(Z) ’

(13)

where w(z) is either analytic or meromorphic in U with w(0) = 0. Then, by using
(12) and (13), we have

ZerlF;z:,a,c,A(z) = _p(l _ 2/\)1::‘_‘/812)}%2
_p(1-2))(A-B) 2w (2)
Iz "(1+ Bw(z))?"

The remaining part of the proof is similar to that of Theorem 1 and so is omit-
ted. I

Theorem 3. f(z) € Quc(p, A, B, A) if and only if

z

/t”p*le,a,C,x\(t)dt € Quire(p, 4, B, A) -
0

a
za+p

Gpa.cn(z) =

Proof. In view of the definition of G, 4. (%), we have

aFpacn(2) = (@+D)Cpaca(z) + 2Gy 00 (2) - (14)

By using (6) and (14), we have

aFpaex(2) =aGpat1,en(?)-

The desired result follows immediately. i
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3 Properties of the class QO .(p, A, B, \)

In this section we assume further that a > 0,¢ >0,-1<B<A<1,-1<B<0
and 0 <\ < %

Theorem 4. Let f(z) € X% be given by (8). Then f(z) € Qf .(p, A, B, \) if and
only if

oo

k[1+>\(k )}(1_3)(“))“1’ k| < (A= B)p(1—2)). (15)

p (C k+p

k=p

Proof. Let f(z) € Qf .(p, A, B, A) is given by (8). Then, from (7) and (8), we have

+1Fpa c)\(z) +p(1 - 2/\)
sz"‘le,a,c,/\(z) + Ap(1 —2))

>k {1 + )\(’CP%P)] (@Dk+p |ag| 24P

= ()k+p
= = < 1(z € U)16)

_ _ k=p\| (@)rt k+
(A— B)p(1 2)\)+k§ka [1+A( = )} (@i || o+

Since |Rez| < |z| (z € C), we have

5 k[ ACEE)] e o

Re —F = <1.
(A=B)p(1 =2 + 3. B [142(552)| (Sesn oy

Choose values of z on the real axis so that zP+F’ (z) is real. Upon clearing

p,a,c, A
the denominator in (16) and letting z — 1~ through real values we obtain (15).
In order to prove the converse, we assume that the inequality (15) holds true.

Then, if we let z € U, we find from (8) and (15) that

Zp+1Fp,a c, A(Z) +p(1 - 2)‘)
Bzpt1F (2) + Ap(1 —2X)

p,a,c,\
3 B [1+A(52)] {8 oy
< Ep
(4= Bt =22+ 5% i [1 4 2(52)] (g2

< 1 (2€dU={z:z€Cand |2|=1}).

Hence, by the maximum modulus theorem, we have f(z) € Qf .(p, A, B, \). This
completes the proof of Theorem 4.
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Corollary 1. If the function f(z) defined by (8) is in the class QF .(p, A, B, )),
e (A B)p(1— 22) ()i
B L AESE)| (1= B) (@)
with equality for the function f(z) given by

(A= B)p(1 = 2X)()k4p L
B [1+A(52)] (1= B)(@kn

Putting A = (1-272)fand B=(1-27)(0<a<p,0<f<1,53<y<1
and p € N) in Theorem 4, we obtain

lax| < (k>p;peN),

fE) =27+

(k>p;peN). (17)

Corollary 2. A function f(z) defined by (8) is in the class Q;C(p, a, 3,7, A) if and
only if

- k—p (@)k+p _ _
> 1 MEE)| (4287 - ) o] < 290 - @)1 - 2.

The following property is an easy consequence of Theorem 4.
Theorem 5. Let each of the functions f;(z) defined by
fi(@) =2+ arglz (G=1,2,...,m) (18)
k=p
be in the class QUf .(p, A, B,\). Then the function h(z) defined by

h(z) = ZC]fJ(Z) (C; >0 and ZCJ =1)

j=1
is also in the class QF .(p, A, B, \).

Next we prove the following growth and distortion properties for the class
Qic(p,A,B,)\).

Theorem 6. If a function f(2) defined by (8) is in the class QF .(p, A, B, )\), then

a,c

{(p—l—m— DI (02 [A-B)1-2))] p! T2p}r—(p+m)
(p—1)! (a)ep | (1=B) | (p—m)
< |rme) <
{(p+m—1)! (9 [A=B)1-20)] ! sz}r—<p+m>
(p—1)! (@ | (1-B) | (p—m)

0 < |zl=r<lija>c>0meNy=NU{0};peN;p>m).
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The result is sharp for the function f(z) given by

(A— B)(1 - 2))(¢)
(1-B)(a)zy

Proof. In view of Theorem 4, we have

f(z)=2"7+ 20 (peN) .

p(l_B)<a)2p > > k;p 3 % . B -
M%k!lakgkz_pk{um( ) )} (1 B)(c)kﬂ,' k| < (A=B)p(1-2)),

which yields

PiA — B)(1—2))
Blag| < (2 (peEN). (19)
Z (a)2p(1 — B)
Now, by diﬁerentlatlng both sides of (8) m times with respect to z, we have
(m) m@+m-—1)! L~ (otm) —m
Fm(e) = () Bk Z a0

(p € N,m € Ng;p > m)
and Theorem 6 follows easily from(19) and (20).

Next we determine the radii of meromorphically p-valent starlikeness of order
0(0 < § < p) and meromorphically p-valent convexity of order 6(0 < § < p) for
functions in the class Qf .(p, 4, B, \).

Theorem 7. Let the function f(z) defined by (8) be in the class QF .(p, A, B, ),

then we have :

(1) f(z) is meromorphically p-valent starlike of order 6(0 < & < p) in the disc
|z| < 71, that is,

Re{_zi(g)} >0 (Jz| <r;0<0 <p;p€eN),

where
1

(@sy F[IFAED] - B)p—6) | k+p
(©etp (A=B)p(1=2))(k +9) '

(21)

(i) f(z) is meromorphically p-valent convex of order 6(0 < § < p) in the disc
|z| < 7o, that is,

f//
Re{—(l—i—z (Z))} >0 (Jz| <re;0<0<p;peN),
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where
b
k—p — _ k+
ro = inf { Dktp Las]o-Be -9 ! (22)
) @y A-B)1 2Nk +0)
Each of these results is sharp for the function f(z) given by (17).
Proof. (i) From the definition (8), we easily get
() > (k+ p)lag||z**P
e TP k=p
zf(2) - = '
7o P20 2p—68) = 3 (k—p+20)|ax]|z|F+P
k=p
Thus, we have the desired inequality
FHONN
G P 1 (0<s<ppeN)
IO ol S <d<ppeN),
e Pt

if

— k+0

S el o < 1 (23)

k=p

Hence, by Theorem 4, (23) will be true if

e, E[TEAED] - B)
(%HZ’\HPS Ecgll::: . [(A—B)p(l}— ) (k>p;peN). (24)

The last inequality (24) leads us immediately to the disc |z| < r1, where 71 is given
by (21).

(ii) In order to prove the second assertion of Theorem 7, we find from the
definition (8) that

= (2) > (k +p)lag]|z]*+
1+ ) +p f=p
2f"(z) _ - & '
P PR 2= 8) = 3 (k= p+20)lan |z
=p
Thus we have the desired inequality
L+ 528y
<1 (0<dé<ppeN),

2" () _
1+ oy P + 26
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if

— k(k +0) kip
> gy lasl < 1 (25)

Hence, by Theorem 4, (25) will be true if

k=p

k=p —
kk+0) |z|FtP < (@)itp . ¢ {1 A )] S (k>ppeN).  (26)
p(p —9) | @k (A—B)p(1 —2)) 7
The last inequality (26) readily yields the disc |z| < rg, where 7o defined by (22),

and the proof of Theorem 7 is completed by merely verifying that each assertion is
sharp for the function f(z) given by (17). I

4 Neighborhoods

Following the earlier works (based upon the familiar concept of neighborhoods of
analytic functions) by Goodman [11] and Ruscheweyh [21], and (more recently) by
Altintas et al. ([1], [2] and [3]), Liu [15], and Liu and Srivastava [16], we begin by
introducing here the d-neighborhood of a function f(z) € ¥, of the form (1) by
means of the definition given below :

Ns(f) = {g €%pig(z)=2"+> b pz¥? and
k=1

s (14 |BN(k 1— X+ A=
L +1BI)( +p)[ A5 )} (@) bk—p — ar—p| <0,

P (A—=DB)p(1—2)) ()

1
(a>0;c>0;1§B<A§1;0§)\<2;p€N;6>0)}. (27)
Making use of the definition (27), we now prove Theorem 8 below.
Theorem 8. Let the function f(z) defined by (1) be in the class Qq.c(p, A, B, \).

If f(z) satisfies the following condition :

fz) ez

T e € Quc(p,A,B,X) (e€C,le|] <0,0>0), (28)

then
Ns(f) C Qac(p, A, B, A) . (29)
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Proof. It is easily seen from (7) that g(z) € Qqc(p, A, B, \) if and only if for any
complex number o with |o| = 1,
Zp+1Fp a,c, )\(Z) +p(1 - 2)‘)
BZp+1Fp,a,c,)\(z> + Ap(l - 2)‘)

#o (z€l), (30)
which is equivalent to

WG Ly e, (31)

P

where, for convenience,
oo
-p k—p
z Y4+ Ck—pZ%
k=1

= (1= oB)(k—p) [1 -2+ 252 ) (q) -»
o +z_:1{ Lt e } bok—r (32)

h(z)

From (32), we have

o |{(1—aB)(k:—p)[1—)\+)\(kpf’)}} (@)

(B—A)p(1—2\)o

(1+|B[)(k +p) [1—/\+)\(%)] (@ | :
(A - B)p(1 -2 0, FpEN0<A<).

IN

Now, if f(2) = 27P+ 3 ap_pz" P € %, satisfies the condition (28), then (31) yields
k=1

G805 e cvisno,
By letting
o) =+ 3 by € Ni(f),
so that - -
’[9(2)—£(p ,;bk D — )yt
gl )

< 4 (zeU,6>0).



46 M. K. Aouf and B.A. Frasin

Thus we have (31), and hence also (30)for any o € C such that |o| = 1, which
implies that g(z) € Qq.(p, A, B,A). This evidently proves the assertion (29) of
Theorem 8. 1

We now define the d-neighborhood of a function f(z) € ¥ of the form (8) as
follows

Ni(f)=XgeX,:g(z)=2""+ Z |br|2* and
k=p

= (4B [LACSE] (o),
Z  (A-Bpl-2) (e 10 = laxl| < 6,

1
(a>0;c>0;—1§B<A§1;0§)\<2;p€N;§>O)}.

Theorem 9. Let the function f(z) defined by (27) be in the class Q;+17c(p,
A,B/)\),-1<B< A<, —1§B§0,0§)\<% and p € N, then

2p
Ni'(f) € QP A BN (0= 5.

The result is sharp.

Proof. Making use the same method as in the proof of Theorem 8, we can show
that [cf. Eq. (32)]

h(z) = z_p—i-chzk
k=p

- i (1 - oB)k [1 + A(%)}
k=p

(@)k+p Sk
(B—A)p(l—-2N)o  ()ksp

Thus, under the hypothesis - 1< B<A<1,-1<B<0,0<)< % and p € N, if
f(z) € Uy (p, A, B, \) is given by (8), we obtain

o0

‘(f*h)(z) _ 1+ch|ak|zk+p
z7P P
S 1oy 1~ B [1+A(%)} (@)k+p
LA B - (O ™
o (1 -— k=p
N a (1- B)k {1+A( - )] (0t Disp 1

2 1- a+2p k=p (A=B)p(1-2X) ~ (k+p
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Also, from Theorem 4, we obtain
[LELCIER—

_— :6
a+2p a+2p

z— P

The remaining part of the proof of Theorem 9 is similar to that of Theorem 8, and
we skip the details involved.
To show the sharpness, we consider the functions f(z) and g(z) given by

(A=B)A1=2)) ()2

f(z)=2"P+ - B) et

X e Q;"Jrl’c(p, A, B, )
and

’

(A-B)1=2%) (I (A-B)A =215 ()
(1-B)  (a+1)y (1-B) (a)2p

g(z) =27+

where § > § = a?f;p. Clearly, the function g(z) belongs to N;(f). On the other

hand, we find from Theorem 4 that g(z) is not in the class Qg‘,c(p,A, B, ). Thus
the proof of Theorem 9 is completed. I

Next we prove the following result.

Theorem 10. Let f(z) € X, be given by (1) and define the partial sums s1(z) and
sn(z) as follows :

51(2) =277 and sp(2) =277 + z_: ar—pz" P (n € N\{1}).
k=1

Suppose also that

1+ B)k+p) [1= A+ 2(5D)] (o)

- - k
2 dulowypl < 1| di = A= B~ 2 gep (33)
Ifa>0,c>070§)\<% and p € N. Then we have
(i) f(2) € Qa,c(p; A, B, A)
(ii)Re{Sf((ZZ))}>1—d1 (z€ U;n eN). (34)
and
n(z dy
(iii) Re { Sf((z))} > 7 T (z€UjneN). (35)

The estimates in (34) and (35) are sharp for each n € N.
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Proof. (i) It is not difficult to see that
2P eQc(p,A,B,N) (peN).
Thus, from Theorem 8 and the hypothesis (33) of Theorem 10, we have
Ni(27P) C Qqe(p, A, B,A) (pEN),

which shows that f(z) € Qq¢(p, A, B, \) as asserted by Theorem 10.
(ii) For the coefficients dj given by (33), it is not difficult to verify that

1
di41 > dp > 1 (a>c>0;0§>\<§;keN).

Therefore, we have

n—1 0o oo
Z |ak—p| + dn Z |ak—p| < demkfp‘ <1, (36)
k=1 k=n k=1
where we have used the hypothesis (33) again.
By setting
dn Y ap—pz*

f(Z) 1 k=n
hi(z) = dn {—(1—)} S T
$n(2) - n—1 R
Z ap—pZ
k=1

and applying (36), we find that

o0
dn Y lak—pl
k=n

<

< — g <1 (z€l),
2-23 lak—p| —dn D |ar—p|
k=1 k=n

hl(z) — 1’

which readily yields the assertion (34) of Theorem 10. If we take

_ P _
fle) === (37)
then 1(2) )
z 2" _
Sn(z)—l—d—nﬁl—%aszﬁl ,

which shows that the bound in (34) is the best possible for each n € N.
(iii) Just as in Part (ii) above, if we put

ha(z) = (1+dn)(8;((;))_1indn)

(14+dy) > ap—pz"
k=n

= 1—

)

o0
L+ Y ap_p2k
k=1
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and make use of (36), we can deduce that

(14 d2) 3 Jox-y)

N

ha(z) — 1 ’

ha(e) 71 <1 (z€0),

- n—1 [e%s)
2-2 k; lak—p| + (1 — dn) kz: lak—pl

which leads us immediately to the assertion (35) of Theorem 10
The bound in (35) is sharp for each n € N, with the extremal function f(z)
given by (37). The proof of Theorem 10 is thus completed. N

5 Convolution properties for the class Q; .(p,a, 5,7, \)

For the functions f;(2)(j = 1,2) defined by (18) we denote by (fi ® f2)(z) the
Hadamard product (or convolution) of the functions fi(z) and fa2(z), that is,

(1®f2)(2) =277+ lar|lak2]2" .

k=p

Throughout this section, we assume further that a > ¢ > 0.

Theorem 11. Let the functions f;(z)(j = 1,2) defined by (18) be in the class
Qj,c(pvavﬁv’yv)‘)f then (fl ®f2)(z) € Qj,c(pvé-aﬁa’y’)‘)7 where

2 —a)’(1=2) (s
p(14+28y—-08) (a)p

The result is sharp for the functions f;(z)(j = 1,2) given by

26y(p—a)(1=2)) (S2p , . _ . o
PLF257 =) (a)g,° U LEPEN. (38)

Proof. Employing the technique used earlier by Schild and Silverman [22], we need
to find the largest ¢ such that

¢=p

filz) =2""+

(
K

267(p — )(1—2X) (Drer |ag1||ar,2| <

k=p

for f;(z) € Q;C(p,a,ﬁ,% A)(j =1,2). Since f;(z) € Qj’c(p,a,ﬁ,'y,)\)(j =1,2),
we readily see that

o k [1 + A(k,.%p)} (14267 = 5) (a)es |
267(p — a)(1—2)) Ores lap;] <1(j=1,2).

k=p
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Therefore, by the Cauchy-Schwarz inequality, we obtain

- [1 : )\(k’%p)} AH209 =5 (a)isy
kz:;) 26v(p — a)(1 —2X) ' (C)ktp lak1]lag2| < 1. (39)

This implies that we only need to show that

L 1
m . |ak,1||ak,2 < m . |a;€71|\ak,2| (k- > p)

or, equivalently, that

Viaalloal < E=5 02 0)

Hence, by the inequality (39), it is sufficient to prove that

26v(p — a)(1 = 2X) . (C)kp (p—¢) k _ 40
st G =67 *20 @
It follows from (40) that
C<p 267(p — a)®(1—2)) (Oktp (k> p).

E[re A 28— ) @
Now, defining the function ¢(k) by

Qﬁ(k) =p— 257(1]:__ a)Q(l — 2)‘) ) (C)k+P (k > p) .
k[1+AdER)) (14287 - 8) @k

268v(p — a)?(1 = 20)  (C)k4p
(1+28y=08) " (@rtp
(k+ Dtk +p) [T+ ML) ket k+p) [14+7(52)] )
>
Mk+nm+k+pw1+M%$ﬂh+A@%jﬂ

fora>c>0,—1§B<A§1,—1§B§0,0§)\<%andpéN‘ Then we
see that ¢(k) is an increasing function of k(k > p). Therefore, we conclude that

20— a)(1-2)) (a
p(1+28y—=0) "(a)s

which evidently completes the proof of Theorem 11. i

C(<ep)=p
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Theorem 12. Let the function f1(z) defined by (18) be in the class Q7 .(p, a1, 8,7, \).

Suppose also that the function fa(z) defined by (18) be in the class Q;Ctp, g, 8,7, A),
then (f1 ® f2)(2) € QF .(p, 7, 8,7, ) where

_28y(p—on)(p—a2)(1 —20) (c)ap
p(1+ 28~ — ) (a)2p

The result is sharp for the functions f;(z)(j = 1,2) given by

T=p

267(p —a1)(1 —2)) (¢)2p P
p(1+26y—-03)  (a)y

fi(z) =27P + (p eN)

and
267(p — a2)1 = 22) (c)ap ,

L) = Ty =B (@)

(peN).

Theorem 13. Let the functions fj(z)(j = 1,2) defined by (18) be in the class
Qic(p,a,ﬁ,’y,A), Then the function h(z) defined by

o0
Wz) =277+ (laral* + lak2l*)2"
k=p

belongs to the class Qic(p,g,ﬂ,'y, A), where

AP —a)’(1-2))  (0)z
p(1+26y—06)  (a)y

This result is sharp for the functions f;(z)(j = 1,2) defined by (38).

§=p

Proof. Noting that

2

o (k|1+AER)| (1+28y-8) (4,
Z( LeaEn)] 0+ <>k+p) "

207(p — ) (1 = 2X) " (©rtp

k=p
2

o k1A (14267 - 8) (), |
= ( 28v(p — a)(1 — 2X) Ot || <1 (G =1,2),

k=p

E[Lacs) (1+2/6’vﬂ)r(

(@)k+p
(C)k+p

o) 1 2
> 5 ) anal? +lanal) < 1.
k=p

20y(p — ) (1 = 2X)
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Therefore, we have to find the largest ¢ such that

) k[1+A(%)} (1+289=5) (a)e,,
b8 = AR P02 (@ 2P

that is, that

f<p_ 46y(p — )*(1 = 2X) (C)k4p k> p).

k [1 + )\(%)} 1+26y— ) (@rtp

Now, defining a function ¥ (k) by

(k) =p— 4B~ (p — a)*(1 - 2)) (©)k+p (k>p).

k [1 + )\(%)} 1+20y—8) (@rip B

We observe that W(k) is an increasing function of k(k > p). Thus, we conclude

that
APy —a)’(1—2X) (c)2p
p(L+268y—08) (a)y’

which completes the proof of Theorem 13. |

§<¥(p) =
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