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APPROXIMATION AND SHAPE PRESERVING
PROPERTIES OF THE NONLINEAR
FAVARD-SZASZ-MIRAKJAN OPERATOR
OF MAX-PRODUCT KIND

Barnabas Bede!, Lucian Coroianu? and Sorin G. Gal®

Abstract

Starting from the study of the Shepard nonlinear operator of max-prod
type in [6], [7], in the book [8], Open Problem 5.5.4, pp. 324-326, the Favard-
Szdsz-Mirakjan maz-prod type operator is introduced and the question of the
approximation order by this operator is raised. In the recent paper [1], by
using a pretty complicated method to this open question an answer is given
by obtaining an upper pointwise estimate of the approximation error of the
form Cwi(f;+/x/v/n) (with an unexplicit absolute constant C' > 0) and the
question of improving the order of approximation wi(f;+/z//n) is raised.
The first aim of this note is to obtain the same order of approximation but
by a simpler method, which in addition presents, at least, two advantages :
it produces an explicit constant in front of wi(f;+/z//n) and it can easily
be extended to other max-prod operators of Bernstein type. Also, we prove
by a counterexample that in some sense, in general this type of order of
approximation with respect to w1 (f;-) cannot be improved. However, for some
subclasses of functions, including for example the bounded, nondecreasing
concave functions, the essentially better order w1 (f;1/n) is obtained. Finally,
some shape preserving properties are obtained.

1 Introduction

Starting from the study of the Shepard nonlinear operator of maz-prod type in [6],
[7], by the Open Problem 5.5.4, pp. 324-326 in the recent monograph [8], the
following nonlinear Favard-Szdsz-Mirakjan maz-prod operator is introduced (here
\/ means maximum)

0
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for which by a pretty complicated method in [1], Theorem 8, the order of pointwise
approximation wy (f;v/z/+/n) is obtained. Also, by Remark 9, 2) in the same paper
[1], the question if this order of approximation could be improved is raised.

The first aim of this note is to obtain the same order of approximation but by
a simpler method, which in addition presents, at least, two advantages : it pro-
duces an explicit constant in front of w;(f;+/z//n) and it can easily be extended
to various max-prod operators of Bernstein type, see [2] — [5]. Also, one proves
by a counterexample that in some sense, in general this type of order of approxi-
mation with respect to wi(f;-) cannot be improved, giving thus a negative answer
to a question raised in [1] (see Remark 9, 2) there). However, for some subclasses
of functions, including for example the bounded, nondecreasing concave functions,
the essentially better order wq(f;1/n) is obtained. This allows us to put in ev-
idence large classes of functions (e.g. bounded, nondecreasing concave polygonal
lines on [0,00)) for which the order of approximation given by the max-product
Favard-Szasz-Mirakjan operator, is essentially better than the order given by the
linear Favard-Szasz-Mirakjan operator. Finally, some shape preserving properties
are presented.

Section 2 presents some general results on nonlinear operators, in Section 3 we
prove several auxiliary lemmas, Section 4 contains the approximation results, while
in Section 5 we present some shape preserving properties.

2 Preliminaries

For the proof of the main result we need some general considerations on the so-
called nonlinear operators of max-prod kind. Over the set of positive reals, R,
we consider the operations V (maximum) and -, product. Then (Ry,V,-) has a
semiring structure and we call it as Max-Product algebra.

Let I C R be a bounded or unbounded interval, and

CB+(I)={f:1— Ry; f continuous and bounded on I}.
The general form of L, : CBy(I) — CBy(I), (called here a discrete max-product

type approximation operator) studied in the paper will be

n

Lo(f)(x) = \/ Kn(w, ) - f(x2),

=0

or

Lo(f)(x) = \/ Kn(z,2:) - f(2:),
1=0

where n € N, f € CBy(I), K,(-,z;) € CBL(I) and x; € I, for all i. These
operators are nonlinear, positive operators and moreover they satisfy a pseudo-
linearity condition of the form

Lu(a-fVB-9)(x) =a-Ln(f)(@)V B Lu(g)(x),Va, B € Ry, f,g: 1 — Ry
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In this section we present some general results on these kinds of operators which
will be useful later in the study of the Favard-Szasz-Mirakjan max-product kind
operator considered in Introduction.

Lemma 2.1. ([1]) Let I C R be a bounded or unbounded interval,

CBi(I)={f:1I—Ry;f continuous and bounded on I},

and L, : CBy(I) — CBL(I), n € N be a sequence of operators satisfying the
following properties :

(i) if f,g € CBL(I) satisfy f < g then L,(f) < L,(g) for allm € N ;

(i) Lu(f +9) < Lu(f) + Lu(g) for all f,g € CB4(I).

Then for all f,g € CB+(I), n € N and x € I we have

[Ln(f) (@) = Ln(g)(2)] < Ln([f = g])(2).

Proof. Since is very simple, we reproduce here the proofin [1]. Let f,g € CB,(I).
We have f = f—g + g<|f—gl+ g7 which by the conditions (i) — (1) Successwely
implies Lu(/)(z) < Lu(|f~g1)(@)+La(g) (x), that is Ln(f)(@)~ La(g)(®) < La(lf -
g) ().

Writing now g = g — f+ f < |f — g| + f and applying the above reasonings,
it follows L, (g)(x) — Ln(f)(z) < L,(|f — g|)(x), which combined with the above
inequality gives | Ln (f)(z) — Ln(9)(@)] < La(lf - g])(x). 0

Remarks. 1) It is easy to see that the Favard-Szdsz-Mirakjan max-product
operator satisfy the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i) it
satisfies the stronger condition

Lu(fV 9)(@) = Ln(f)(2) V Lu(9)(x), f,9 € CB(I).

Indeed, taking in the above equality f < g, f,g € CBL(I), it easily follows
Ln(f)(@) < Ly(g)(@).
2) In addition, it is immediate that the Favard-Szdsz-Mirakjan max-product
operator is positive homogenous, that is L, (\f) = AL, (f) for all A > 0.
Corollary 2.2. ([1]) Let L, : CBL(I) — CBy(I), n € N be a sequence of
operators satisfying the conditions (i)-(ii) in Lemma 1 and in addition being positive
homogenous. Then for all f € CBy(I), n € N and x € I we have

[f(z) = Ln(f)(2)] < %Ln(%)(l‘) + Ln(eo)(@) | wi(f;0)1 + f(2) - [Ln(eo)(x) — 1],

where & > 0, eg(t) = 1 for allt € I, pu(t) = [t — x| for allt € I, z € I,
wi(f;0)r = max{|f(x) — f(y)|; 2,y € I,|x —y| < 8§} and if I is unbounded then we
suppose that there exists Ly (¢z)(x) € Ry J{+o0}, for any x € I, n € N.

Proof. The proof is identical with that for positive linear operators and because
of its simplicity we reproduce it below. Indeed, from the identity

Ln(£)(@) = f(z) = [La(f) (@) = f(2) - Ln(eo) ()] + f(2)[Ln(eo)(z) — 1,
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it follows (by the positive homogeneity and by Lemma 2.1)
[f(2) = Lo (F)(2)] < |Ln(f(2))(2) = La(f () (@)| + [f(2)] - | Ln(eo) () = 1] <
Ln(1f (@) = f@)D (@) + [f ()] - | Ln(eo) () = 1].

Now, since for all ¢,z € I we have

0= @) < wr(file =l < |51t ol + 1] r(00,

replacing above we immediately obtain the estimate in the statement. O
An immediate consequence of Corollary 2.2 is the following.
Corollary 2.3. ([1]) Suppose that in addition to the conditions in Corollary 2.2,
the sequence (Ly)y, satisfies Ly, (eg) = eq, for alln € N. Then for all f € CBL(I),
n € N and x € I we have

) = Lu(D@)] = |14+ 3Ll | atsior

3 Auxiliary Results

Since it is easy to check that F,SM)(f)(O) — f(0) = 0 for all n, notice that in the
notations, proofs and statements of the all approximation results, that is in Lemmas
3.1-3.3, Theorem 4.1, Lemma 4.2, Corollary 4.4, Corollary 4.5, in fact we always
may suppose that > 0.

For each k,j € {0,1,2,...,} and z € [%, %], let us denote s, j(z) = (",f!)k,
Sn.k(T) Ef:z:| Snk(T)
My i(z) =2 Ty, o (2) = 22
k, »J( ) Sn,j(x) k, ,J( ) Sn,j(x)
It is clear that if £k > j + 1 then
sn k() (5 — )
My i(x) = — n
k,n,j (‘T) Sn,j(x)
and if £ < j — 1 then
sk (2)(z — &)
Mgy () = —————22,
k, 7]( ) Sn,j(z)

Lemma 3.1. For allk,j € {0,1,2,...,} and = € [%7 ] e have

n

Mg n,j(2) < 1.

Proof. We have two cases : 1) k > j and 2) k < j.
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1

Case 1). Since clearly the function h(z) = - is nonincreasing on [j/n, (+1)/n],

it follows
Mmeng(x) k41 >l<:—|—1_ n _k+1>1

1
Miging(@)  n  x n jH+1 j+1°
) >

)

which implies m; , () > mjt1p,,(x
Case 2). We get

Mpnj(x) _ nw
Mi—1,n,5() kK

which immediately implies

Mjin (T) 2 Mj1,0,5(T) > Mj2.0,5() > .o > Mo ;(T).

Since m;  j(z) = 1, the conclusion of the lemma is immediate. O
Lemma 3.2. Let z € [, 7H1].
(1) If k € {j +1,j+3,....} is such that k — Vk+1 > j, then My, j(z) >
Mp1,n,5()-
(i) If k € {1,2,...j — 1} is such that k+Vk < j, then My, , j(x) > My_1,5.j(2).
Proof. (i) We observe that

Mg j(z) _k+1 1 E_g
Mi11,n,5(2) noox kbl g

E_
Since the function g(z) = 1 - &77" clearly is nonincreasing, it follows that g(x) >

g(jzl) jzl-kkjjl for allxe[i,fgl].
Then, since the condition k—+/k + 1 > j implies (k+1)(k—7—1) > (j+1)(k—7),

we obtain

M () >k—|—1 n k—j-—1
Mk_,_l’n,j(x) - on j+1 k—j
(ii) We observe that

> 1.

Minj(x) _n
Mk—l,n,j(l‘) k Xr — k=l”

Since the function h(z) =z - mz_i is nondecreasing, it follows that h(z) > h(%) =

% ymn k+1 for all z € [J ]'H}.
Then, since the condition k4 vk < j implies j(j — k) > k(j — k + 1), we obtain
Mi (@) SR S
My—1nj(@) ~ k n j—k+1
which proves the lemma. O

Also, a key result in the proof of the main result is the following.
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k
("]f,) , we have

Lemma 3.3. Denoting sy, k(x) =
o/ (na)*
Vo
k=0

Proof. First we show that for fixed n € N and 0 < k£ we have

) 7+ 1
= sn,j(2), forall z € [‘7, H} ,j=0,1,..,.
n n

0 < spt1(x) < spi(z), if and only if z € [0, (k + 1)/n].
Indeed, the inequality one reduces to

(na)**' _ (na)*
(k+1)! = K’

0<

which after simplifications is obviously equivalent to

nggk—i—l.
n

By taking k = 0,1, .., in the inequality just proved above, we get

$n1(x) < spo(x), if and only if z € [0,1/n],

$n2(x) < sp,1(x), if and only if = € [0,2/n],

Sn,3(x) < sp2(x), if and only if = € [0,3/n],
so on,
Snk+1(2) < Spi(x), if and only if x € [0, (k + 1)/n],

and so on.
From all these inequalities, reasoning by recurrence we easily obtain :

if z € [0,1/n] then s, x(z) < spo(z), for all k=0,1,.

aey

if x € [1/n,2/n] then s, y(x) < sp1(z), for all k=0,1,.

eey

if x € 2/n,3/n] then s, x(x) < sp2(z), for all k=0,1,.

eey

and so on, in general

if z € [j/n,(j +1)/n] then s, 1(z) < sp,,5(x), forall £ =0,1,...

)

which proves the lemma. O
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4 Approximation Results

¥ FM) (f)(z) represents the nonlinear Favard-Szdsz-Mirakjan operator of max-
product type defined in Introduction, then the main result is the following.

Theorem 4.1. Let f : [0,00) — Ry be bounded and continuous on [0,00). Then
we have the estimate

FOD(f) () — F(x)] < 8un (f,

ﬁ) ,for allm € N,z € [0, 00),
where
wi(f,0) = sup{|f(z) — f(¥)[; 2,y € [0,00), |z — y[ < d}.

Proof. It is easy to check that the max-product Favard-Szasz-Mirakjan operators
fulfil the conditions in Corollary 2.3 and we have
1

FOO() ) - ) < (14 5

F,$M><som><x>> w1 (f,60), 1)

where ¢, (t) = |t — z|. So, it is enough to estimate

k! n

V ek
E(z) = FM(p,) (@) = =2 @ € [0,50).

k=0

Let « € [j/n,(j + 1)/n], where j € {0,1, ..., } is fixed, arbitrary. By Lemma 3.3 we
easily obtain

En(@) = max {M,(2)},2 € [j/n, G+ 1)/n].

=0,1,...,

In all what follows we may suppose that j € {1,2,...,}, because for j = 0 we
get E,(x) < %, for all z € [0,1/n]. Indeed, in this case we obtain My, o(z) =
(nk—:”!)k |£ — 2|, which for k = 0 gives My 0(z) =2 =z -z < a- ﬁ Also, for

any k > 1 we have %L < % and we obtain

Myola) < &

ND
So it remains to obtain an upper estimate for each My ,, ;(x) when j = 1,2,..., is
fixed, z € [j/n,(j +1)/n] and k = 0,1, ...,. In fact we will prove that

4
My pj(x) < ﬁ, forall z € [j/n,(j +1)/n],k=0,1, ..., (2)

N

which immediately will imply that

mc)k k nk—1,pk—1/2 nk-1 N
n 1

k! VR SV o

E.(z) < 4\\;5, for all z € [0,00),n €N,
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and taking 4,, = 4\\//5 in (1) we immediately obtain the estimate in the statement.

In order to prove (2) we distinguish the following cases :

Dk=j;2) k>j+land3)k<j— 1 o

Case 1). If k = j then M;, ;(x) = |£ — z|. Since z € [Z, ZH1 it easily follows
that M;,, ;j(z) < % Now, since j > 1 we get = > %, which implies % = ﬁ . % <

Case 2). Subcase a). Suppose first that k — vk +1 < j. We get

k k k
Mpn,j(x) = mk,n,j(mxa —z) < ol < -

<

S|~

ko k—vVEk+1l VEk+1

n n n

But we necessarily have £ < 3j. Indeed, if we suppose that £ > 37, then because
g(x) = z — V& + 1 is nondecreasing, it follows j > k — vk +1 > 3j — /37 + 1,
which implies the obvious contradiction j > 35 — /37 + 1.

In conclusion, we obtain

F+1 3+ ;
My y(a) < YEEL  VETFL oVT VT
n n n Vn

taking into account that \/x > %

Subcase b). Suppose now that & — vk+1 > j. Since the function g(z) =
x —v/x + 1 is nondecreasing on the interval [0, c0) it follows that there exists k €
{1,2, ..., }, of maximum value, such that K — /k+1 < j. Then for k; = k + 1 we
get k1 — vk +1>j and

k+1 k+1 k+1

ME-H,n,j(x) = mE-‘,—l,n,j(m)(T_m)S " —x < e
E+17E—\/E+17\/E+1+1<3@
n n N n - yn

The last above inequality follows from the fact that k£ — vk +1 < j necessarily
implies k& < 3j (see the similar reasonings in in the above subcase a) ). Also, we
have ky > j 4+ 1. Indeed, this is a consequence of the fact that g is nondecreasing
and because is easy to see that g(j) < j.

By Lemma 3.2, (i) it follows that Mg, (¥) > Mg, , ;(z) > ... We thus

obtain My, ., ;(z) < 3% forany k€ {k+ 1,k +2,..., }.
Case 3). Subcase a). Suppose first that k& + vk > j. Then we obtain

|

k)§g+1_§§k+\/é+1_
n

My, - = . _r
k,n,j (z) Mk,n,j (z)(w n n n

\/E+1< Vi—2+1 1 Jj-2+1

— .Yl <9

n n vnooon

B
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ine i Vi=2+1 Vi
taking into account that NG <2 NG < 2y/x.

Subcase b). Suppose now that k++v/k < j. Let ke {0,1,2,..., } be the minimum
value such that & + \/Z > j. Then ky = k — 1 satisfies ko + ks < 7 and

E—1, _j+1 k-1
My (@) = my_y, (@) (@ = ) < -

n - n
FrvVE+l k-1 VE+2 Ve
n n -

n

Vi’
For the last inequality we used the obvious relationship k—1= ko < ko+ ko <7,

which implies k <j+1and \/24—2 <Vj+1+2<4j. Also, because j > 1 it is
immediate that ko < 75 — 1.

n

By Lemma 3.2, (ii) it follows that M |  .(z) = Mj_, nj(a;) > ... > My, ().
We thus obtain My, ;(z) < 4% for any k < j —2 and z € [, 221,

Collecting all the above estimates we get (2), which completes the proof. (I

Remark. It is clear that on each compact subinterval [0, a], with arbitrary
a > 0, the order of approximation in Theorem 4.1 is O(1/y/n). In what follows, we
will prove that this order cannot be improved. In this sense, first we observe that

ik . 1 k
M . — ki]i —_ = ki‘j -
k. () (nx) il * (na) G+DE+2)..k|n v
1 |k nx\k=71|k
> k—j - | — — = _— - -
= (nJ;) kk=3 |n x' ( k ) n *
for any k > j.

Now, for n € N and a > 0, let us denote j, = [nal, k, = [na] + [/n], z, = @
Then

Moo = (i) M ()

na — 1 v 1
na ++/n 2y/n

= e~ 1/a it follows that there

NG
: na—1
for any n > max{4,1/a}. Because nlggo (naJr\/E)

exists ng € N, ng > max{4,1/a}, such that

na — 1 vn —1-1/a
- >e ,
na++/n -

for any n > ng. Then we get

1 1
Mknvnvjn (In) Z 567171/&7'

N



64 Barnabéas Bede, Lucian Coroianu, Sorin G. Gal

Since z, < a and lim,_,o T, = a, we get x,, € [0, a] for any n € N, and combining
that with the relationship (2) in the proof of Theorem 4.1, it easily implies that
ﬁ, the order of max,¢g,q){£n(7)}, cannot be made smaller. Finally, this implies

that the order of approximation ws (f;1/4/n) on [0, a] obtained by the statement of
Theorem 4.1, cannot be improved.

In what follows we will prove that for some subclasses of functions f, the order
of approximation wi(f;+/x/y/n) in Theorem 4.1 can essentially be improved to

wi(f;1/n).
For this purpose, for any k,j € {0,1,..., }, let us define the functions fy . ; :

(L, 2] - R,
Sp.klx 1l .
Fuonsa) = @) () = 250 (R) £ g (£)).
] we can write

n Sn,;(x) n

Then it is clear that for any j € {0,1,...,} and = € |

EM(f) (@) = \/ fomi(2).
k=0

Also, we need the following auxiliary lemmas.
Lemma 4.2. Let f : [0,00) — [0,00) be bounded and such that

EM(f)(x) = max{fjn;(x), fi+1,n,(@)} for all z € [j/n, (j + 1)/n].
Then )
FEO() @) = )] < (£33 ) for al € [j/m, G+ )l

where wy (f;0) = max{|f(x) — f(y)|;x,y € [0,00), |z —y| < 0} < o0.

Proof. We distinguish two cases :

Case (i). Let = € [j/n,(j + 1)/n] be fixed such that F,(LM)(f)(x) = fin;(T).
Because by simple calculation we have 0 < x — % < % and fjn ;(z) = f(2), it
follows that

FEO(1)@) - fla)] < (£).

Case (ii). Let 2 € [j/n,(j + 1)/n] be such that F\" (f)(z) = fjp1.m(x). We
have two sujl:}cases :

(itq) jals )(f)(m) < f(x), when evidently f;, ;(x) < fijt1,n,;(z) < f(z) and we
immediately get

FOD () @)~ 1@)| = |frermy(@) — F@)
= F() — fraans(@) < f(@) — F(/n) < <f; 1) .

(iy) FS"(f)(x) > f(z), when

FM(f)(@) = f(@)] = fis1mi(@) — f(@) = mjgp1n, (l‘)f(ﬂ) — f(=)

n
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< S0 - pw).

Because 0 < ZEL — o < L it follows f(ZE1) — f(x) < wy (f; L), which proves the
lemma. t
Lemma 4.3. If the function f : [0,00) — [0,00) is concave, then the function
g:(0,00) = [0,00),g(z) = @ is nonincreasing.
Proof. Let z,y € (0,00) be with  <y. Then

x y—x x y—x x
) =1 (= 0) = Zp) + L2 0) 2 2ro)
f( ) > JW) O
Corollary 4 4. f;/” [0,00) — [0,00) is bounded, nondecreasing and such that
the function g : (0,00) — [0,00), g(x) = fi,) is nonincreasing, then

FM () (x) —f(ac)‘ <w; (f; i) , for all z € [0, 00).

Proof. Since f is nondecreasing it follows (see the proof of Theorem 5.4 in the
next section)

FOD(f \/f,mj , forall x € [j/n,(j + 1)/n].
k>3

Let 2 € [0,00) and j € {0,1,...,} such that = € [, ZH]. Let k € {0,1,...,} be with
k > j. Then
_ _ J! kr1ojp k10 (n)j! k—j
k+1
f(H,11 ) < f(

=3 1=

Since g(z) is nonincreasing we get ) that is fEEL) < ErLlg(ky From

z < % it follows

G+ 1)!
(k+1)!

It is immediate that for k > j 4+ 1 we have fin j(z) > fit1,n,;(2). Thus we obtain

fj+1,n,j(x) > fj+2,n,j($) > .2 fn,j,n(x) > ..

k+1 .k j+1

(na)h7 - 3 f(ﬁ) = frn,(@)

frring(z) <

that is

FM(f)(x) = max{fjn;(2), fi1n (@)}, for all @ € [j/n, (j + 1)/nl,
and from Lemma 4.2 we obtain
FO() @)~ )] <o (£55)

n
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U
Corollary 4.5. Let f : [0,00) — [0,00) be a bounded, nondecreasing concave
function. Then

FEO(7)(@) = f@)] S (£i) o alt € [0.00),

Proof. The proof is immediate by Lemma 4.3 and Corollary 4.4. O

Remarks. 1) If we suppose, for example, that in addition to the hypothesis in
Corollary 4.5, f : [0,00) — [0, 00) is a Lipschitz function, that is there exists M > 0
such that |f(z) — f(y)| < M|z — y|, for all z,y € [0,00), then it follows that the
order of uniform approximation on [0, c0) by F,(LM)( f)(@) is L, which is essentialy
better than the order ﬁ obtained from Theorem 4.1 on each compact subinterval
[0, a] for f Lipschitz function on [0, co).

2) It is known that for the linear Favard-Szasz-Mirakjan operator given by

> nx k
Faf)w) = e 3 P fm),

k=0

the best possible uniform approximation result is given by the equivalence (see [10]),

1Fn(f) = fll ~ wi(f;1//n), where ||f|| = sup{|f(z)[; = € [0,00)} and wF(f;0) is

the Ditzian-Totik second order modulus of smoothness on [0, 00) given by

w3 (f;8) = sup{sup{| f(z + ho(2)) = 2f () + f(z — he(x))|;2 € [h*,00)}, h € [0, 6]},

with p(x) = /z, 6 < 1.

Now, if f is, for example, a nondecreasing concave polygonal line on [0, 00),
constant on an interval [a,00), then by simple reasonings we get that wj (f;d) ~ ¢
for 6 < 1, which shows that the order of approximation obtained in this case by
the linear Favard-Szdsz-Mirakjan operator is exactly ﬁ On the other hand, since

such of function f obviously is a Lipschitz function on [0,00) (as having bounded
all the derivative numbers) by Corollary 4.5 we get that the order of approxima-
tion by the max-product Favard-Szasz-Mirakjan operator is less than %, which is
essentially better than ﬁ In a similar manner, by Corollary 4.4 we can produce
many subclasses of functions for which the order of approximation given by the
max-product Favard-Szasz-Mirakjan operator is essentially better than the order
of approximation given by the linear Favard-Szasz-Mirakjan operator. Intuitively,
the max-product Favard-Szész-Mirakjan operator has better approximation prop-
erties than its linear counterpart, for non-differentiable functions in a finite number
of points (with the graphs having some ”corners”), as for example for functions
defined as a maximum of a finite number of continuous functions on [0, 00).

3) Since it is clear that a bounded nonincreasing concave function on [0, c0)
necessarily one reduces to a constant function, the approximation of such functions
is not of interest.
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5 Shape Preserving Properties

In this section we will present some shape preserving properties. First we have the
following simple result.
Lemma 5.1. For any arbitrary bounded function f : [0,00) — Ry, the maz-

product operator F,gM)(f)(m) is positive, bounded, continuous on [0, 00) and satisfies
EM(1)(0) = £(0).

Proof. The positivity of Fy(LM)(f)(iE) is immediate. Also, if f(z) < K for all
x € [0,00) it is immediate that F(M)(f)( ) < K, for all z € [0, 00).

From Lemma 3.3, taking into account that s, ;((j +1)/n) = s, ;+1(( +1)/n),

we immediately obtain that the denominator is a continuous function on (0,00).
Also, since s, i(z) > 0 for all z € (0,00), n € N, k € {0,1,..., }, it follows that the

denominator v Sn.i(z) > 0 for all z € (0,00) and n € N.

To prove kti?e continuity on [0,00) of the numerator let us denote h(z) =
\/ snk(x)f(k/n), and for each m € N, hy,(z) = \/ Snok(x)f(k/n). Tt is clear
that for each m € N, the function h,,(z) is contlnuous on [0,00), as a maximum

of finite number of continuous functions. Also, fix a > 0 arbitrary and consider
x € [0,a]. First, since

0 < h(z) = max { \/ Sn.k(x) f(k/n), \/ snk(x)f(k/n)} <

k=m+1
\/ Sn, k k/n) \/ Sn,k(x)f(k/n)a
k=m+1

it follows that for all m € N we have

0 < h(z) — hm(z) < §7 Surn(x)f(k/n) < \7 (”C‘,)kK, for all z € [0, ],
k=m+1 k=m+1 k

where 0 < f(x) < K for all z € [0, oo)
Now, fix e > 0. Since STS"“:ES) w4y there exists an index ko > 0 (independent

of x), such that 2% < ¢, for all k > ky. Choose now m = kq. It is immediate that

k+1
\ (na) K<e- M , which implies that
k=m+1
K ko
0<h(z)—hp(z)<e- (nict), for all x € [0,a] and m > ko.

This implies that the numerator h(x) is the uniform limit (as m — o) of a sequence
of continuous functions on [0, a], A, (z), m € N, which implies the continuity of h(z)

n [0,a]. Because a > 0 was chosen arbitrary, it follows the continuity of h(x) on
[0, 00).
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As a first conclusion, we get the continuity of Fr(LM)( f)(x) on (0, 00).

To prove now the continuity of £\ (f)(z) at = 0, we observe that s, (0) =0
=1

for all k € {1,2,...,} and s, (0) = 1 for k¥ = 0, which implies that \/ s, i(x)
k=0

in the case of x = 0. The fact that FéM)(f)(x) coincides with f(z) at « = 0
immediately follows from the above considerations, proving the theorem. O
Remark. Note that because of the continuity of F,(LM)(f)(x) on [0, 00), it will
suffice to prove the shape properties of F7§M) (f)(x) on (0, 00) only. As a consequence,
in the notations and proofs below we always may suppose that = > 0.
As in Section 4, for any k,j € {0,1,...,}, let us consider the functions fi  ; :
[£,4H) LR

n’> n ?

Fuonata) =mans@)f () = 2487 (B) < Ly 1 (2]

n 5,5 () n

For any j € {0,1,...,} and = € [%, jj;l] we can write

EM (@) =\ fin.g(@).
k=0

Lemma 5.2. If f : [0,00) — R, is a nondecreasing function then for any
k,j€{0,1,....,} withk<jandzxe€ [%, %] we have fi . ;(x) > fr_1n,(2).

Proof. Because k < j, by the proof of Lemma 3.1, case 2), it follows that
Mk (T) = Mig—1n,j(z). From the monotonicity of f we get f(£) > f(E1).

Thus we obtain
k k—1
Min,j(2)f <n> > Mg_1m,(x)f (n)’

which proves the lemma. O

Corollary 5.3. If f : [0,00) — Ry is nonincreasing then fi n ;(x) > fri1,n,j(x)
for any k,j € {0,1,...,00} with k > j and x € [, %]

Proof. Because k > j, by the proof of Lemma 3.1, case 1), it follows that
Mk (T) = Mig1n,j(z). From the monotonicity of f we get f(£) > f(EEL).

Thus we obtain
k k+1
Mi,n,j () f (n> > mk+1,n,j(l’)f< - >v

which proves the corollary. O
Theorem 5.4. If f : [0,00) — Ry is nondecreasing and bounded on [0, 00) then
F,SM)(f) is nondecreasing (and bounded).
Proof. Because F,EM)( f) is continuous (and bounded) on [0, c0), it suffices to
J

prove that on each subinterval of the form [n, %}, with j € {0,1,..., }, Fr(lM)(f) is
nondecreasing.
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Solet j € {0,1,....,} and z € [%, %] Because f is nondecreasing, from Lemma
5.2 it follows that

fimi(@) > ficini(@) > fi—ami(@) > .. > fon;(x).

But then it is immediate that

FM(f) (@) = \/ fomi(@),
k>j
Jj+1

for all z € [%, =], Clearly that for & > j the function f . ; is nondecreasing and

since F7(LM) (f) is defined as supremum of nondecreasing functions, it follows that it
is nondecreasing. O
Corollary 5.5. If f : [0,00) — Ry is nonincreasing then Fr(LM)(f) is nonin-
creasing.
Proof. By hypothesis, f implicitly is bounded on [0, 00). Because FM (f) is
continuous and bounded on [0, 00), it suffices to prove that on each subinterval of
the form [£, 2] with j € {0,1,...,}, FS™)(£) is nonincreasing.

n’> n .
Solet j € {0,1,...,}and x € [Z, It1] Because f is nonincreasing, from Corollary

5.3 it follows that !

fing (@) > fiv1n5(@) > fivoni(x) > ..

But then it is immediate that

J
FEM (@) =\ funi(@),
k>0
for all z € [, 2H].

o Clearly that for k < j the function f . ; is nonincreasing and
since F,(LM)( f) is defined as the maximum of nonincreasing functions, it follows that
it is nonincreasing. O
In what follows, let us consider the following concept generalizing the mono-
tonicity and convexity.
Definition 5.6. Let f : [0,00) — R be continuous on [0,00). One says that f

is quasi-convex on [0, c0) if it satisfies the inequality
fOz+ (1= XNy) <max{f(z), f(y)}, for all z,y € [0,00) and X € [0,1].

(see e.g. the book [8], p. 4, (iv) ).

Remark. By [9], the continuous function f is quasi-convex on the bounded
interval [0,a], equivalently means that there exists a point ¢ € [0, a] such that f
is nonincreasing on [0, ¢] and nondecreasing on [c,a]. But this property easily can
be extended to continuous quasiconvex functions on [0, c0), in the sense that there
exists ¢ € [0,00] (¢ = 0o by convention for nonincreasing functions on [0, 00)) such
that f is nonincreasing on [0, ¢] and nondecreasing on [¢,00). This easily follows
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from the fact that the quasiconvexity of f on [0,00) means the quasiconvexity of f
on any bounded interval [0, a], with arbitrary large a > 0.

The class of quasi-convex functions includes the both classes of nondecreasing
functions and of nonincreasing functions (obtained from the class of quasi-convex
functions by taking ¢ = 0 and ¢ = oo, respectively). Also, it obviously includes the
class of convex functions on [0, 00).

Corollary 5.7. If f : [0,00) — R4 is continuous, bounded and quasi-convex on
[0,00) then for allm € N, F,(LM)(f) is quasi-convex on [0,00).

Proof. If f is nonincreasing (or nondecreasing) on [0,00) (that is the point
¢ = o0 (or ¢ = 0) in the above Remark) then by the Corollary 5.5 (or Theorem 5.4,
respectively) it follows that for all n € N, F,(LM)( f) is nonincreasing (or nondecreas-
ing) on [0, 00).

Suppose now that there exists ¢ € (0,00), such that f is nonincreasing on [0, ¢|
and nondecreasing on [c,00). Define the functions F,G : [0,00) — R4 by F(z) =
f(z) for all z € [0,¢], F(z) = f(c) for all € [¢,00) and G(z) = f(c) for all
x €10,¢], G(z) = f(z) for all z € [¢, 00).

It is clear that F' is nonincreasing and continuous on [0, 00), G is nondecreasing
and continuous on [0,00) and that f(x) = max{F(x),G(x)}, for all z € [0, c0).

But it is easy to show (see also Remark 1 after the proof of Lemma 2.1) that

Fr(LM)(f)(a:) = maX{FT(LM)(F)(x),F,(LM)(G)(J:)}, for all € [0, 00),

where by the Corollary 5.5 and Theorem 5.4 , FT(LM)(F)(x) is nonincreasing and
continuous on [0, 00) and F,(LM)(G)(:E) is nondecreasing and continuous on [0, 00).
We have two cases : 1) FT(,M)(F)<.’E) and Fy(lM)(G)(x) do not intersect each other ;
2) FT(LM)(F)(QL‘) and Fr(LM)(G)(J?) intersect each other.

Case 1). We have max{F,(LM) (F)(x), 7(1M)(G)(x)} = g™ (F)(z) for all z €
[0,00) or maX{Fr(LM) (F)(ac),F,EM)(G)(x)} = F,g,M)(G)(LU) for all € [0,00), which
obviously proves that F,SM)( f)(z) is quasi-convex on [0, 00).

Case 2). In this case it is clear that there exists a point ¢’ € [0, 00) such that
F7(1M)( f)(z) is nonincreasing on [0, ¢'] and nondecreasing on [¢, 00), which by the

considerations in the above Remark implies that F,EM)( f)(z) is quasiconvex on

[0,00) and proves the corollary. O

It is of interest to exactly calculate FT(LM)(f) for f(z) = eg(x) = 1 and for
f(x) = e1(x) = x. In this sense we can state the following.

Lemma 5.8. For all z € [0,00) and n € N we have FéM)(eo)(x) =1 and
D) _
n(e1)(x) = x.
Proof. The formula F},(eg)(z) = 1 is immediate by the definition of £ () (x).
To find the formula for F,ELM)(el)(ac), we observe that

\/ Sn,k(x); = \/ sn’k(m)ﬁ =zx- \/ Spp—1(z) =2 \/ sn,(2),
k=0 k=1 k=1 §=0
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which implies

V suy(@)
FM(en)(@) =2+ S =

V sni(a)

k=0

O

Also, we can prove the interesting property that for any arbitrary function f,

the max-product Bernstein operator FM (f) is piecewise convex on [0, 00). In this
sense the following result holds.

Theorem 5.9. For any function f : [0,00) — [0, 00), Fy(LM)(f) is convex on any
interval of the form [L, 1] 5 =0,1,...,.

Proof. For any k,j € {0,1,...,} let us consider the functions f »_; : [%, %] —

R,
k. jlnx)k=7 Kk
frni(x) = mk,n,j(af)f(g) = Tf(ﬁ)'

Clearly we have

F,,(LM)(f)(:L‘) = \/ fk,n,j(z)v
k=0

for any j € {0,1,...,} and z € [£, £EL],

n’> n
We will prove that for any fixed j, each function fi , j(z) is convex on [Z, %],
which will imply that F,SM)( f) can be written as a supremum of some convex func-
tions on [Z, 2t1].
Since f > 0 and fi n, (2) = j!"}clzﬂ ~akI L f(k/n), it suffices to prove that the
functions gy ; : [0,1] — Ry, gk,j(x) = 2*77 are convex on [£, %]

For k = j, g;; is constant so is convex.

For k = j+ 1 we get gj+1,;(x) = x for any x € [%, %], which obviously is
convex. o
For k = j — 1 it follows g;_1 j(z) = L for any = € [Z,21]. Then gj_1 j(z) =

2 >0 forany z € [%,%]
If k> j +2 then gy (z) = (k— j)(k —j — )2¥ 772 > 0 for any x € [Z, ZH1].

If k <j—2then gy ;(x) = (k—j)(k—j— DaF=7=2 >0, for any x € [£, 2],

n’ n
Since all the functions g, ; are convex on [£, Z-1] we get that £ (f) is convex
on [Z, %] as maximum of these functions, proving the theorem. O
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