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Abstract

In this paper, we study warped product anti-slant submanifolds of cosym-
plectic manifolds. It is shown that the cosymplectic manifold do not admit non
trivial warped product submanifolds in the form N⊥×fNθ and then we obtain
some results for the existence of warped products of the type Nθ×fN⊥, where
N⊥ and Nθ are anti-invariant and proper slant submanifolds of a cosymplectic
manifold M̄ , respectively.

1 Introduction

To study the manifolds with negative curvature, R.L. Bishop and B. O’Neill [1]
introduced the notion of warped product manifolds by homothetically warping the
product metric of a product manifold N1×N2 on to the fibers p×N2 for each p ∈ N1.
In fact, the warped products appears in the differential geometric studies in a natural
way. A surface of revolution is a warped product with leaves the different positions
of the rotated curve and fibers the circles of revolution. Recently, warped product
semi-slant submanifolds of Kaehler manifolds studied by B. Sahin [8]. After that
we have studied warped product semi-slant submanifolds in cosymplectic manifolds
and have shown that there exist no proper warped product semi-slant submanifolds
in the form NT ×fNθ and reversing the two factors in cosymplectic manifolds [5]. In
this paper, we study warped products of the type M = N⊥×fNθ and M = Nθ×fN⊥
which has not been attempted in [5] and obtain some new results for the existence
of warped product anti-slant submanifolds of a cosymplectic manifold M̄ .

2 Preliminaries

Let M̄ be a C∞−manifold with (1, 1) tensor field φ such that

φ2 = −I + η ⊗ ξ, (2.1)
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where I is the identity transformation, ξ a vector field and η a 1−form on M̄
satisfying φξ = η ◦ φ = 0 and η(ξ) = 1. Then M̄ is said to have an almost contact
structure. There always exists a Riemannian metric g on M̄ such that [2]

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.2)

for all vector fields X, Y on M̄ . Define the tensor Φ by Φ(X,Y ) = g(X, φY ). Then
Φ is a 2−form. If [φ, φ] + dη ⊗ ξ = 0, where [φ, φ](X, Y ) = φ2[X,Y ] + [φX, φY ] −
φ[φX, Y ] − φ[X, φY ], then the almost contact structure is said to be normal. If
Φ = dη, the almost contact structure is a contact structure. A normal almost
contact structure such that Φ is closed and dη = 0 is called cosymplectic structure.
It is well known [7] that the cosymplectic structure is characterized by

∇̄Xφ = 0 and ∇̄Xη = 0, (2.3)

where ∇̄ is the Levi-Civita connection of g. From the formula ∇̄Xφ = 0, it follows
that ∇̄Xξ = 0.

Let M be submanifold of an almost contact metric manifold M̄ with induced
metric g and if ∇ and ∇⊥ are the induced connections on the tangent bundle
TM and the normal bundle T⊥M of M , respectively then Gauss and Weingarten
formulae are given by

∇̄XY = ∇XY + h(X, Y ) (2.4)

∇̄XN = −ANX +∇⊥XN, (2.5)

for each X, Y ∈ TM and N ∈ T⊥M , where h and AN are the second funda-
mental form and the shape operator (corresponding to the normal vector field N)
respectively for the immersion of M into M̄ . They are related as

g(h(X, Y ), N) = g(ANX,Y ), (2.6)

where g denotes the Riemannian metric on M̄ as well as the one induced on M [9].
For any X ∈ TM , we write

φX = PX + FX, (2.7)

where PX is the tangential component and FX is the normal component of φX.
Similarly for any N ∈ T⊥M , we write

φN = BN + CN, (2.8)

where BN is the tangential component and CN is the normal component of φN .
If we denote the orthogonal complementary of F (TM) in TM by µ. Then we have
the direct sum

T⊥M = F (TM)⊕ µ. (2.9)

We can see that µ is an invariant subbundle with respect to φ. Furthermore the
covariant derivatives of the tensor fields P and F are defined as

(∇̄XP )Y = ∇XPY − P∇XY, (2.10)
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(∇̄XF )Y = ∇⊥XFY − F∇XY. (2.11)

for all X, Y ∈ TM .
The submanifold M is said to be invariant if F is identically zero, that is,

φX ∈ TM for any X ∈ TM . On the other hand M is said to be anti-invariant if
P is identically zero, that is, φX ∈ T⊥M , for any X ∈ TM .

We shall always consider ξ to be tangent to the submanifold M . There is
another class of submanifolds that is called the slant submanifold. For each non
zero vector X tangent to M at x, such that X is not proportional to ξx, we denote
by 0 ≤ θ(X) ≤ π/2, the angle between φX and TxM is called the slant angle. If
the slant angle θ(X) is constant for all X ∈ TxM − 〈ξx〉 and x ∈ M then M is said
to be slant submanifold [4]. Obviously if θ = 0, M is invariant and if θ = π/2, M
is an anti-invariant submanifold. A slant submanifold is said to be proper slant if
it is neither invariant nor anti-invariant submanifold.

We recall the following result for slant submanifold.

Theorem 2.1 [4] Let M be a submanifold of an almost contact metric manifold M̄ ,
such that ξ ∈ TM . Then M is slant if and only if there exists a constant λ ∈ [0, 1]
such that

P 2 = λ(−I + η ⊗ ξ). (2.12)

Furthermore, if θ is slant angle, then λ = cos2 θ.
Following relations are straightforward consequence of equation (2.12)

g(PX,PY ) = cos2 θ[g(X, Y )− η(X)η(Y )] (2.13)

g(FX,FY ) = sin2 θ[g(X,Y )− η(X)η(Y )] (2.14)

for any X, Y tangent to M.

3 Warped Product Submanifolds

Let (N1, g1) and (N2, g2) be two Riemannian manifolds and f , a positive differ-
entiable function on N1. The warped product of N1 and N2 is the Riemannian
manifold N1 × fN2 = (N1 ×N2, g), where

g = g1 + f2g2. (3.1)

A warped product manifold N1× fN2 is said to be trivial if the warping function f
is constant.We recall the following general formula on a warped product [2].

∇XV = ∇V X = (X ln f)V, (3.2)

where X is tangent to N1 and V is tangent to N2.
Let M = N1 × fN2 be a warped product manifold, this means that N1 is

totally geodesic and N2 is totally umbilical submanifold of M , respectively.
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For warped product submanifolds of cosymplectic manifolds, we recall the fol-
lowing lemma.

Lemma 3.1 [5]. Let M = N1 × fN2 be a proper warped product submanifold of
a cosymplectic manifold M̄ , with ξ ∈ TN1, where N1 and N2 are any Riemannian
submanifolds of M̄ , then

(i) ξ ln f = 0,

(ii) g(h(X, Y ), FZ) = g(h(X,Z), FY ),

(iii) g(h(X, Z), FW ) = g(h(X, W ), FZ)

for any X, Y ∈ TN1 and Z, W ∈ TN2.
In the following section we shall investigate warped product submanifolds of

a cosymplectic manifold with slant factor.

4 Warped Product Submanifolds with Slant Fac-
tor

The study of semi-slant submanifolds of almost contact metric manifolds was intro-
duced by J.L. Cabrerizo et.al [3]. A semi-slant submanifold M of an almost contact
metric manifold M̄ is a submanifold which admits two orthogonal complementary
distributions D1 and D2 such that D1 is invariant under φ and D2 is slant with
slant angle θ 6= 0 i.e., φD1 = D1 and φZ makes a constant angle θ with TM for
each Z ∈ D2. In particular, if θ = π

2 , then a semi-slant submanifold reduces to
a contact CR-submanifold. For a semi-slant submanifold M of an almost contact
metric manifold, we have

TM = D1 ⊕D2 ⊕ {ξ}.
Then he defined anti-slant submanifolds as a particular class of bi-slant subman-
ifolds. The submanifold M is said to be anti-slant submanifold of M̄ if D1 is an
anti-invariant distribution of M i.e., φD1 ⊆ T⊥M and D2 is slant with slant angle
θ 6= 0.

In this section we study warped product anti-slant submanifolds of cosymplec-
tic manifolds. If the manifolds Nθ and N⊥ are slant and anti-invariant submanifolds
of a cosymplectic manifold M̄ , then their warped product anti-slant submanifolds
may be given by one of the following forms:

(i) N⊥ × fNθ,

(ii) Nθ × fN⊥.

For the warped product of the type (i), we have

Theorem 4.1. There do not exist non-trivial warped product submanifolds M =
N⊥× fNθ of a cosymplectic manifold M̄ such that ξ ∈ TN⊥, where N⊥ and Nθ are
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anti-invariant and proper slant submanifolds of M̄ , respectively.

Proof. Let M = N⊥× fNθ be a warped product anti-slant submanifold of a cosym-
plectic manifold M̄ and for any X ∈ TNθ and Z ∈ TN⊥, we have

(∇̄Xφ)Z = ∇̄XφZ − φ∇̄XZ.

As M̄ is cosymplectic, then the left hand side of the above equation is zero, that is

∇̄XφZ = φ∇̄XZ.

Using (2.4), (2.5), (2.7) and (2.8), we obtain

−AFZX +∇⊥XFZ = P∇XZ + F∇XZ + Bh(X, Z) + Ch(X,Z).

Equating the tangential components and then using (3.2), we get

(Z ln f)PX = −AFZX −Bh(X,Z). (4.1)

Taking the product with PX in (4.1) and making use of formula (2.13), we obtain

(Z ln f) cos2 θ‖X‖2 = −g(AFZX, PX)− g(Bh(X, Z), PX).

Then from (2.2) and (2.6), we get

(Z ln f) cos2 θ‖X‖2 = −g(h(X, PX), FZ) + g(h(X, Z), FPX). (4.2)

As θ 6= π/2, interchanging X by PX in (4.2) and taking account of equations (2.12)
and (2.13), we deduce that

(Z ln f) cos4 θ‖X‖2 = cos2 θg(h(X,PX), FZ)− cos2 θg(h(PX,Z), FX),

or,
(Z ln f) cos2 θ‖X‖2 = g(h(X,PX), FZ)− g(h(PX, Z), FX). (4.3)

Adding equations (4.2) and (4.3), we get

2(Z ln f) cos2 θ‖X‖2 = g(h(X,Z), FPX)− g(h(PX, Z), FX). (4.4)

The right hand side of the above equation is zero by Lemma 3.1 (iii), then

(Z ln f) cos2 θ‖X‖2 = 0. (4.5)

As Nθ 6= {0} proper slant, it follows from equation (4.5) that Z ln f = 0. Also, as
ξ ∈ TN⊥ then by Lemma 3.1 (i), we have ξ ln f = 0. This means that f is con-
stant on N⊥. This completes the proof. ¤

Now, the other case, i.e., the warped product of the type Nθ × fN⊥ with
ξ ∈ TNθ is dealt in the following.
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Theorem 4.2. Let M = Nθ × fN⊥ be a warped product submanifold of a cosym-
plectic manifold M̄ such that ξ ∈ TNθ. Then

g((∇̄XF )Z, FX) + g((∇̄PXF )Z,FPX) = sin2 θg(h(X, PX), FZ),

for all X ∈ TNθ and Z ∈ TN⊥.

Proof. For any X ∈ TNθ and Z ∈ TN⊥, we have

g(φ∇̄XZ, φX) = g(∇̄XZ,X)− η(X)η(∇̄XZ).

Using (2.4), (3.2) and the fact that ξ is tangent to Nθ, we obtain by orthogonality
of two distributions that

g(φ∇̄XZ, φX) = (X ln f)g(Z, X) = 0.

As M̄ is cosymplectic, then the above equation takes the form

g(∇̄XφZ, φX) = 0.

Then from (2.5) and (2.7), we get

−g(AFZX, PX) + g(∇⊥XFZ,FX) = 0,

i.e., g(∇⊥XFZ, FX) = g(AFZX, PX).

By (2.6), we obtain

g(∇⊥XFZ, FX) = g(h(X,PX), FZ). (4.6)

On the other hand, we have

∇⊥XFZ = (∇̄XF )Z + F∇XZ. (4.7)

Taking the product with FX in (4.7) and using (3.2), we obtain that

g(∇⊥XFZ, FX) = g((∇̄XF )Z, FX) + (X ln f)g(FZ, FX).

Thus from (2.2) and orthogonality of two distributions, we get

g(∇⊥XFZ, FX) = g((∇̄XF )Z, FX). (4.8)

Then by (4.6) and (4.8), we obtain

g((∇̄XF )Z,FX) = g(h(X, PX), FZ). (4.9)

As θ 6= π/2, then substituting X by PX in (4.9) and taking account of equation
(2.12), we deduce that

g((∇̄PXF )Z, FPX) = − cos2 θg(h(X, PX), FZ). (4.10)

Thus the result follows from equations (4.9) and (4.10) on their addition. ¤

From the above theorem, we have the following consequences:
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(i) If θ = 0, i.e. M is a CR-warped product submanifold of a cosymplectic
manifold M̄ , then

g((∇̄XF )Z, FX) = −g((∇̄PXF )Z,FPX)

for all X ∈ TNT and Z ∈ TN⊥.

(ii) If θ = π/2, i.e. M is anti-invariant submanifold of a cosymplectic manifold
M̄ , then from Theorem 4.2, we obtain

g((∇̄UF )V, FU) = 0

for all U, V ∈ TM .

Theorem 4.3. Let M = Nθ × fN⊥ be a proper warped product submanifold of a
cosymplectic manifold M̄ such that ξ is tangent to Nθ. Then (∇̄XF )Z lies in the
invariant normal subbundle for each X ∈ TNθ and Z ∈ TN⊥.

Proof. For a cosymplectic manifold M̄ , we have

∇̄UφV = φ∇̄UV,

for all U, V ∈ TM̄ . Now, for any X ∈ TNθ and Z ∈ TN⊥ by above relation we get

∇̄XφZ = φ∇̄XZ.

Using (2.4), (2.5), (2.7) and (2.8) we obtain that

−AFZX +∇⊥XFZ = P∇XZ + F∇XZ + Bh(X, Z) + Ch(X,Z).

From the normal components of the above equation and formula (3.2) gives

∇⊥XFZ = (X ln f)FZ + Ch(X, Z). (4.11)

Taking the product in (4.11) with FW for any W ∈ TN⊥, we get

g(∇⊥XFZ, FW ) = (X ln f)g(FZ,FW ) + g(Ch(X,Z), FW ),

= (X ln f)g(φZ, φW ) + g(φh(X, Z), φW ).

Then from (2.2) we obtain

g(∇⊥XFZ,FW ) = (X ln f)g(Z, W ). (4.12)

Also, on taking the product in (4.7) with FW for any W ∈ TN⊥ and using (3.2),
we deduce that

g(∇⊥XFZ,FW ) = g((∇̄XF )Z, FW ) + (X ln f)g(Z,W ). (4.13)

From equations (4.12) and (4.13), it follows that

g((∇̄XF )Z,FW ) = 0, (4.14)

for any X ∈ TNθ and Z, W ∈ TN⊥. Since N⊥ 6= {0} is a Riemannian and anti-
invariant submanifold, then (4.14) implies that (∇̄XF )Z ∈ µ, for all X ∈ TNθ and
Z ∈ TN⊥. This proves the theorem completely. ¤
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