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COMMUTATOR AND SELF-COMMUTATOR

APPROXIMANTS II

P. J. Maher

Abstract

We minimize the quantities (i) ‖T − (AX − XA)‖, (ii) ‖T − (X∗X −
XX∗)‖ and (iii) ‖T − (AX − XB)‖ where T is isometric and where in (i)
A is paranormal and commutes with T , in (ii) X∗ (or X) is paranormal
and commutes with T , and in (iii) A and B are paranormal and AT = TB
and TA = BT . The upshot is that these quantities are minimized when
0 = AX−XA = X∗X−XX∗ = AX−XB. To prove these results we obtain
the power norm equality for paranormal operators: if A is paranormal then
‖An‖ = ‖A‖n if n ∈ N.

1 Introduction

As in [11] and [12] we approximate an operator by a commutator AX − XA of
operators, by a self-commutator X∗X − XX∗ and, as in [4], by a ”generalized
commutator” AX − XB. There, in [4], [11] and [12] the approximation is in the
von Neumann-Schatten norm ‖·‖p, where 1 ≤ p < ∞, on the von Neumann-Schatten
classes Cp; here, the approximation is in the sup norm on L(H) (For operators on
Banach space, see the recent paper by Duggal [6]).

The pertinent concept is that of paranormality which, as is well known from [9],
is a strong generalization of hyponormality.

For self-commutator approximation with paranormal X we have to restrict our-
selves to the sup norm. Consider the more transparent hyponormal special case
of this: that is, approximation by a self-commutator X∗X −XX∗ for hyponormal
X; that is, approximation by a positive self-commutator. This topic may be re-
garded as an obvious extension of [12] since there can be no question of minimizing
‖T − (X∗X −XX∗)‖p where X∗X −XX∗ is compact and X is hyponormal. For
if X∗X −XX∗ is compact then X∗XP = (X∗X −XX∗)P is compact where P is
the orthogonal projection onto Ker XX∗ (that is, I − P is the orthogonal projec-
tion onto (KerXX∗)⊥ = (Ker X∗)⊥ = Ran X); hence X is compact and therefore,
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being hyponormal, is normal [10, Problem 206]. Thus, if X∗X −XX∗ is compact
for hyponormal X then X∗X−XX∗ = 0. The same result holds if, more generally,
X is paranormal; for, as is proved in Theorem 2.2 below, a compact paranormal
operator is normal.

Another property the paranormal operators share with the hyponormal ones is
the power norm equality: if A is paranormal then ‖An‖ = ‖A‖n if n ∈ N as is
proved in Theorem 2.1.

We use the power norm equality to obtain the approximation results here (The-
orems 3.1, 3.2 and 3.3). Theorem 3.1 says that if A is a paranormal operator
commuting with the isometry T then ‖T − (AX −XA)‖ ≥ T . Theorem 3.2 gives
a similar result about minimizing ‖T − (X∗X − XX∗)‖ for (a) paranormal X∗

commmuting with the isometry T and for (b) paranormal X commuting with T ;
Example 3.1 shows that this commutativity assumption is necessary. From Theo-
rem 3.1 we obtain - via operator matrices - Theorem 3.3, a result about minimizing
‖T − (AX −XB)‖ for paranormal A and B. Those minimization results are inter-
preted geometrically in Corollaries 3.1 and 3.4.

2 Paranormality

Definition 2.1. An operator A in L(H) is paranormal if

(A∗)∗A2 − 2λA∗A + λ2 ≥ 0

for all real λ ≥ 0.

With the definition of positivity in L(H) and the discriminant criterion for the
quadratic in λ, Definition 2.1 is easily proved to be equivalent to Definition 2.2 [3,
Theorem 4].

Definition 2.2. An operator A in L(H) is paranormal if

‖Af‖2 ≤ ‖A2f‖‖f‖
for all f in H.

The class or paranormal operators strictly contains many other classes of oper-
ators including the hyponormal operators [5, §3], [7, §1], [9]. Paranormal operators
share with the hyponormal ones the following properties given in Theorems 2.1 and
2.2 below.

Theorem 2.1 (Power norm equality). If A is paranormal, ‖An‖ = ‖A‖n where
n ∈ N.

Proof. Equality is trivial for n = 1. Proceed by induction. Now, by Definition 2.2

‖Anf‖2 = ‖A(An−1f)‖2 = ‖Ag‖2, say
≤ ‖A2g‖ ‖g‖
= ‖An+1f‖‖An−1f‖
≤ ‖An+1‖‖An−1‖‖f‖
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for all f in H. Therefore, using the induction hypothesis ‖Ak‖ = ‖A‖k for 1 ≤ k ≤
n, we get

‖An‖2 = ‖A‖2n ≤ ‖An+1‖‖A‖n−1

whence ‖A‖n+1 ≤ ‖An+1‖. Since ‖An+1‖ ≤ ‖A‖n+1 automatically the inductive
step follows.

Theorem 2.2. A compact paranormal operator is normal.

Proof. Since the paranormal operator A, say, is compact it has a countable spec-
trum (cf. [13, Theorem 1.8.2]). Isolated points of the spectrum are poles, hence
eigenvalues; further, the eigenspaces corresponding to these eigenvalues are mutu-
ally orthogonal. So if one generates the space corresponding to these eigenvalues
one obtains a diagonal operator. What is left is at best the limit point which is the
limit point of the diagonal entries. Conclusion: A is normal.

3 Approximation results

The proofs of the approximation results below use Theorem 2.1 and hinge on the
following identity: if AT = TA then

nTAn−1 = AnB −BAn +
n−1∑

i=0

An−i−1(T − (AB −BA))Ai (3.1)

for all B in L(H).
The next result is a variant of the well-known result of Anderson [1, Theorem

1.7] on minimizing ‖T − (AX −XA)‖ for normal A.

Theorem 3.1. If A is paranormal and T is an isometry such that AT = TA then

‖T − (AX −XA)‖ ≥ ‖T‖

for all X in L(H).

Proof. Let ”B” = X in (3.1). Take norms:

n‖TAn−1‖ ≤ 2‖An‖‖X‖+ ‖T − (AX −XA)‖
n−1∑

i=0

‖An−i−1‖‖Ai‖.

Since A is paranormal then, by Theorem 2.1, ‖Ak‖ = ‖A‖k for all k in N and
so the summation above equals n‖A‖n−1; and, further, since T is isometric then
n‖TAn−1‖ = n‖An−1‖ = n‖A‖n−1. Dividing through by n‖A‖n−1 gives

1 ≤ 2
n
‖A‖‖X‖+ ‖T − (AX −XA)‖.

Since this holds for all n we have ‖T − (AX −XA)‖ ≥ 1 = ‖T‖.
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This result may be expressed geometrically. Consider the linear map ∆A :
L(H) → L(H) given by

∆A = AX −XA

for fixed A and varying X. Let the linear subsets Ran ∆A and Ker ∆A be given by

Ran∆A = {Y ∈ L(H) : Y = ∆A(X) for varying X in L(H)},
Ker∆A = {X ∈ L(H) : ∆A(X) = 0}.

Let M and N be linear subsets of a normed space L, say. We say M is orthogonal
to N , denoted M⊥N , if for all m in M and n in N

‖m + n‖ ≥ ‖m‖.

For historical remarks on this asymmetric definition of orthogonality see [8, p. 93].

Corollary 3.1. If A is paranormal and T is an isometry in Ker∆A then

Ker∆A⊥Ran∆A

.

The next result generalizes a well-known result for hyponormal A [10, Problem
233].

Corollary 3.2. If A is paranormal then

‖I − (AX −XA)‖ ≥ ‖I‖

for all X in L(H).

Theorem 3.2. (a) If X∗ is paranormal and T is an isometry such that X∗T = TX∗

then
‖T − (X∗X −XX∗)‖ ≥ ‖T‖;

(b) The same conclusion holds if, instead, X is paranormal and T is an isometry
such that XT = TX.

Proof. (a) In the identity (3.1) take ”A” = X∗ and ”B” = X and proceed as in the
proof of Theorem 3.1: then

1 ≤ 2
n
‖X∗‖‖X‖+ ‖T − (X∗X −XX∗)‖ (3.2)

which gives the result.
(b) In (3.1) take ”A” = −X and ”B” = X∗. Then, because X is paranor-

mal, ‖An‖ = ‖(−X)n‖ = ‖Xn‖ = ‖X‖n = ‖A‖n and because ‖T − ((−X)X∗ −
X∗(−X))‖ = ‖T − (X∗X − XX∗)‖ we get, as in the proof of Theorem 3.1, the
inequality 3.2 above, giving the result.

The following example shows that Theorem 3.2 (b) fails if XT 6= TX.
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Example 3.1. Let H = l2, the space of square-summable sequences of complex
numbers, and let X = S, the simple unilateral shift. Then S is hyponormal and
hence paranormal: for, with f = (xn)∞1 ,

〈(S∗S − SS∗)f, f〉 = |x1|2 ≥ 0

Let T be given by T (x1, x2, x3, ...) = (x2, x1, x3, ...). Then ‖Tf‖ = ‖f‖ and
ST 6= TS. Now,

‖T − (S∗S − SS∗)‖ = sup
‖f‖=1

|〈Tf, f〉 − 〈(S∗S − SS∗)f, f〉|

= sup
‖f‖=1

|〈(x2, x1, x3, ...)(x̄1, x̄2, x̄3, ...)〉 − |x1|2|

= sup
‖f‖=1

|x2x̄1 + x1x̄2 +
∞∑

n=3

|xn|2 − |x1|2|. (3.3)

Without loss of generality suppose that Rx1 ≥ Rx2, J x1 ≥ J x2 and x2 6= 0 and
‖f‖ = 1. Then one can check that

(3.3) ≤ sup
‖f‖=1

|2|x1|2 +
∞∑

n=3

|xn|2 − |x1|2|

= sup
‖f‖=1

|‖f‖2 − |x2|2| < ‖f‖2 = 1 = ‖T‖.

The next result deals with minimizing ‖T − (AX − XB)‖ ≥ ‖T‖. It reduces to
Theorem 3.1 if A = B.

Theorem 3.3. If A and B are paranormal and T is an isometry such that AT =
TB and TA = BT then

‖T − (AX −XB)‖ ≥ ‖T‖.

Proof. On H⊕H, let T =
(

0 T
T 0

)
, A =

(
A 0
0 B

)
and X =

(
0 X
0 0

)
. Then

T is isometric on H⊕H (since T is isometric on H) and AT = T A (since AT = TB

and TA = BT ). Further, A is paranormal on H ⊕ H: for, with f =
(

f1

f2

)
, on

using the paranormality of A and B we get

‖Af‖4 = ‖
[

A 0
0 B

] [
f1

f2

]
‖4 = (‖Af1‖2 + ‖Bf2‖2)2

≤ (‖A2f1‖‖f1‖+ ‖B2f2‖‖f2‖)2
= ‖A2f1‖2‖f1‖2 + ‖B2f2‖2‖f2‖2 + 2‖A2f1‖‖f1‖‖B2f2‖‖f2‖
≤ (‖A2f1‖2 + ‖B2f2‖2)(‖f1‖2 + ‖f2‖2) (3.4)

= ‖
[

A2 0
0 B2

] [
f1

f2

]
‖2‖

[
f1

f2

]
‖2 = ‖A2f‖2‖f‖2
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so that ‖Af‖2 ≤ ‖A2f‖‖f‖ as desired (The inequality (3.4) comes from 0 ≤
(‖A2f1‖‖f2‖ − ‖B2f2‖‖f1‖)2). Therefore, A and T satisfy Theorem 3.1 and so
‖T − (AX −XA)‖ ≥ ‖T ‖ whence

‖T − (AX −XA)‖ ≥ ‖T‖.

Let the linear map ∆A,B : L(H) → L(H) and the linear subsets Ran ∆A,B and
Ker∆A,B be given by, for fixed A and B,

∆A,B(X) = AX −XB,

Ran∆A,B = {Y ∈ L(H) : Y = ∆A,B(X) for varying X in L(H)},
Ker∆A,B = {X ∈ L(H) : ∆A,B(X) = 0}.

Theorem 3.3 can be expressed geometrically as follows.

Corollary 3.3. If A and B are paranormal and T is an isometry such that T ∈
Ker∆A,B ∩Ker∆B,A then Ker∆A,B ∩Ker∆B,A⊥Ran∆A,B.

It is proved in [2, Theorem 1.5] that if A and B are normal and T is such that
AT = TB then

||T − (AX −XB)|| ≥ ||T ||. (A− F )

Geometrically: if A and B are normal and if Ker ∆A,B 6= {0} then

Ker∆A,B⊥Ran∆A,B .

This last result, (A-F), together with the rest of this paper, prompts the following
questions.

Question 1. Can the condition in Theorems 3.1, 3.2 and 3.3 (and in Corollaries
3.1 and 3.3) that T is isometric be dropped?

Question 2. More generally, can the condition of normality in (A-F) be weak-
ened to that of paranormality?

Acknowledgement I thank Professor B. P. Duggal for very helpful conversa-
tions about paranormality and for giving me his proof of Theorem 2.2.

References

[1] J. Anderson, On normal derivations, Proc. Amer. Math. Soc., 38 (1973), 135
– 140.

[2] J. Anderson, C. Foias, Properties which normal operators share with normal
derivations and related operators, Pac. J. Math., 61 (1975), 313 - 325.

[3] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33
(1972), 169 - 178.



Commutator and self-commutator approximants II 7

[4] S. Bouali, S. Cherki, Approximation by generalized commutators, Acta Sci.
Math. (Szeged), 63 (1997), 273 - 278.

[5] B.P. Duggal, Riesz projections for a class of Hilbert space operators, Lin. Alg.
App., 407 (2005), 140 - 148.

[6] B.P. Duggal, On self-commutator approximants (to appear).

[7] B.P. Duggal, I.H. Jeon, On p-quasihyponormal operators (to appear).

[8] N. Dunford, J.T.Schwartz, Linear operators, Part I, Interscience, New York,
1958.

[9] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001.

[10] P.R.Halmos, A Hilbert Space Problem Book, 2nd ed., Springer-Verlag, New
York, 1982.

[11] P.J. Maher, Commutator approximants, Proc. Amer. Math. Soc., 115 (1992),
995 - 1000.

[12] P.J. Maher, Self-commutator approximants, Proc. Amer. Math. Soc., 134
(2007), 157 - 165.

[13] J.R. Ringrose, Compact Non-self-adjoint operators, Van Nostrand Reinhold,
London, 1971.

Department of Economics and Statistics Middlesex University Hendon Campus
The Burroughs London NW4 4BT England

E-mail: p.maher@mdx.ac.uk


