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SOME PROPERTIES

OF K-CONTACT RIEMANNIAN MANIFOLDS

ADMITTING A SEMI-SYMMETRIC

NON-METRIC CONNECTION

J. P. Jaiswal and R. H. Ojha

Abstract

In this paper we present an investigation of differential geometric structures
arising on immersed manifolds in K-contact Riemannian manifolds admitting
semi-symmetric non-metric connection. Some properties of semi-symmetric
non-metric connection in K-Contact Riemannian manifolds are also obtained.

1 Introduction

In 1992, Agashe and Chafle [4] defined a semi-symmetric non-metric connection in
a Riemannian manifold. Recently Chaubey [1] defined a new semi-symmetric non-
metric connection in an almost contact metric manifold. The paper is organized
as follows: In Section 2, we give brief introduction about K-Contact Riemannian
manifolds. In Section 3, we first give some formulae for semi-symmetric non- metric
connection which we use later. Then we have shown that a K-Contact Riemannian
manifold admitting a semi-symmetric non-metric F -connection B̃ is completely in-
tegrable. In Section 4, we have studied the induced connection on the submani-
fold. At first it is shown that the induced connection on the almost contact metric
submanifold of almost contact metric manifold with a semi-symmetric non-metric
connection is also a semi-symmetric non-metric. Finally we have proved that the
submanifold is totally geodesic (totally umbilical) with respect to the induced Rie-
mannian connection D∗ if and only if it is totally geodesic (totally umbilical) with
respect to the induced semi-symmetric non-metric connection B̃∗.
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2 Preliminaries

Let there exist an odd dimensional differentiable manifold Mn, (n = 2m + 1), of
differentiability class C∞, a vector valued linear function F , a 1-form A and a
vector field T , satisfying

¯̄X + X = A(X)T, (2.1)

A(X̄) = 0, (2.2)

where

X̄ = F (X),

for arbitrary vector field X, then Mn is said to be an almost contact manifold and
the system {F, A, T} is said to give an almost contact structure to Mn. By virtue
of (2.1) and (2.2), we find that

A(T ) = 1, (2.3)

T̄ = 0, (2.4)

and

rank{F} = n− 1.

If the associated Riemannian metric g of type (0, 2) in Mn satisfies the following
condition

g(X̄, Ȳ ) = g(X, Y )−A(X)A(Y ), (2.5)

for arbitrary vector fields X, Y in Mn, then (Mn, g) is said to be an almost contact
metric manifold and the structure {F, A, T, g} is called an almost contact metric
structure to Mn, [3].

Putting T for X in (2.5) and then using (2.3) and (2.4), we find that

A(X) = g(X,T ). (2.6)

If we define
′F (X, Y ) = g(X̄, Y ), (2.7)

then
′F (X,Y ) +′ F (Y,X) = 0. (2.8)

For a K-Contact Riemannian manifold, we have

DXT = X̄, (2.9)

where D is the Riemannian connection [3].
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3 Semi-Symmetric non-metric Connection

Here we consider a semi-symmetric non-metric connection B̃ on (Mn, g) given by
[1]

B̃XY = DXY +′ F (X, Y )T. (3.10)

The torsion tensor S of the connection B̃ and the Riemannian metric g of the type
(0, 2) satisfy the following conditions

S(X,Y ) = 2′F (X,Y )T, (3.11)
(B̃Xg)(Y, Z) = −A(Y )′F (X,Z)−A(Z)′F (X, Y ). (3.12)

Also curvature tensor with respect to the semi-symmetric non-metric connection in
K-Contact Riemannian manifold is given by

R(X, Y, Z) = K(X,Y, Z) + g(Ȳ , Z)X̄ − g(X̄, Z)Ȳ
+ g((DXF )(Y )− (DY F )(X), Z)T. (3.13)

In an almost Grayan manifold following relations also hold [3]

(DX
′F )( ¯̄Y, ¯̄Z) + (DX

′F )(Ȳ , Z̄) = 0 (3.14)

(DX
′F )(Ȳ , ¯̄Z) = (DX

′F )( ¯̄Y, Z̄). (3.15)

Now we have

X(′F (Y, Z)) = (B̃X
′F )(Y, Z) +′ F (B̃XY, Z) +′ F (Y, B̃XZ)

= (DX
′F )(Y, Z) +′ F (DXY, Z) +′ F (Y, DXZ).

Using equations (3.10) and (2.4) in the above relation, we get

(B̃X
′F )(Y, Z) = (DX

′F )(Y, Z). (3.16)

Theorem 3.1. Let B̃ be a semi-symmetric non-metric connection, then
a) in an almost Grayan manifold

′N(X̄, Ȳ , Z̄) +′ N( ¯̄X, Ȳ , ¯̄Z) = 0, (3.17)

b) in a K-contact Riemannian manifold

(B̃XA)(Y ) = 0. (3.18)

Proof. a) We know that the Nijenhuis tensor N is defined by [3]

N(X,Y ) = (DX̄F )Y − (DȲ F )X − (DXF )Y + (DY F )X.

Using (3.10), (2.4) and (2.6) in the above equation, we have

N(X,Y ) = (B̃X̄F )Y − (B̃Ȳ F )X − (B̃XF )Y + (B̃Y F )X + 2g(X, Ȳ )T,(3.19)
′N(X, Y, Z) = (B̃X̄

′F )(Y,Z)− (B̃Ȳ
′F )(X, Z) + (B̃X

′F )(Y, Z̄)
− (B̃Y

′F )(X, Z̄) + 2g(X, Ȳ )A(Z), (3.20)
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where ′N(X,Y, Z) = g(N(X, Y )Z). Barring X ,Y , Z in the equation (3.20) and
then using (2.2), we get

′N(X̄, Ȳ , Z̄) = (B̃ ¯̄X
′F )(Ȳ , Z̄)− (B̃ ¯̄Y

′F )(X̄, Z̄) + (B̃X̄
′F )(Ȳ , ¯̄Z)− (B̃Ȳ

′F )(X̄, ¯̄Z).
(3.21)

Again barring X , Z in the above equation and then using (2.1), we have

′N( ¯̄X, Ȳ , ¯̄Z) = −(B̃X̄
′F )(Ȳ , ¯̄Z)− (B̃ ¯̄Y

′F )( ¯̄X, ¯̄Z)− (B̃ ¯̄X
′F )(Ȳ , Z̄) + (B̃Ȳ

′F )( ¯̄X, Z̄).
(3.22)

Adding equations (3.21) and (3.22) and then using (3.16), (3.14) and (3.15) we get
relation (3.17).

b) Now taking co-variant derivative of (2.6) with respect to B̃, we get

B̃X {A(Y )} = B̃X {g(T, Y )} , (3.23)

which implies

(B̃XA)(Y ) + A(B̃XY ) = (B̃Xg)(T, Y ) + g(B̃XT, Y ) + g(T, B̃XY ). (3.24)

Using (2.6) in the above equation, we get

(B̃XA)(Y ) = (B̃Xg)(T, Y ) + g(B̃XT, Y ). (3.25)

In consequence of equations (3.12), (2.3) and (2.4) the above equation assumes the
form

(B̃XA)(Y ) = −′F (X, Y ) + g(Y, DXT ). (3.26)

Using the equation (2.9) in the above equation we get (3.18).

Theorem 3.2. A K-contact Riemannian manifold admitting a semi-symmetric
non-metric F -connection B̃ is completely integrable.

Proof. It is known that an almost contact metric manifold is completely integrable
if it satisfies the following two conditions [3]

N(X̄, Ȳ ) = 0 ⇔′ N(X̄, Ȳ , Z̄) = 0, (3.27)
A(N(X̄, Ȳ )) = A(N(X, Y )). (3.28)

Since B̃ is F -connection, we have from (3.20)

′N(X, Y, Z) = 2g(X, Ȳ )A(Z). (3.29)

Barring X , Y , Z in (3.29) we at once get the condition (3.27). Now from equations
(3.19) and (2.2), we have

A(N(X, Y )) = A(B̃X̄ Ȳ − B̃Ȳ X̄) + 2g(X, Ȳ ). (3.30)
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Using the fact A(B̃X̄ Ȳ ) = −(B̃X̄A)(Ȳ ) in the above equation, we obtain

A(N(X, Y )) = −(B̃X̄A)(Ȳ ) + (B̃Ȳ A)(X̄) + 2g(X, Ȳ ). (3.31)

By virtue of (3.18), equation (3.31) gives

A(N(X, Y )) = 2g(X, Ȳ ). (3.32)

Barring X , Y in the above equation and then using (2.5), we get

A(N(X̄, Ȳ )) = 2g(X, Ȳ ). (3.33)

From the equations (3.32) and (3.33), we have the condition (3.28).

4 Induced Connection on the Submanifold

Let Mn, (n = 2m + 1) be an odd dimensional differentiable manifold of class C∞

and Mn−2 be a submanifold of Mn. Let p : Mn−2 → Mn be an inclusion map such
that b ∈ Mn−2 ⇒ p b ∈ Mn. The map p induces a Jacobian map P : Tn−2 → Tn

where Tn−2 is the tangent space to Mn−2 at b and Tn is the tangent space to Mn

at p b such that λ in Mn−2 at b ⇒ Pλ in Mn at p b. Let G be the metric tensor of
Mn and g the induced metric tensor of Mn−2 at the points bp and p respectively.
Then

G(Pλ, Pµ)ob = g(λ, µ), (4.34)

where λ and µ are arbitrary vector fields in the submanifold Mn−2. Let N1 and N2

be two mutually orthogonal unit normals to the submanifold Mn−2 such that

(a) G(Pλ,N1) = G(Pλ,N2) = G(N1, N2) = 0,

(b) G(N1, N1) = G(N2, N2) = 1. (4.35)

Let the almost contact manifold Mn admit a semi-symmetric non-metric connection
B̃ given by (3.10), then we have

(a) Pλ = P f λ + α(λ)N1 + γ(λ)N2,

(b) T = P t + ρN1 + σN2, (4.36)

where t is a vector field in the submanifold Mn−2.
Let D∗ be the induced connection on the submanifold Mn−2. Then we have

DPλPµ = P (D∗
λµ) + h1(λ, µ)N1 + h2(λ, µ)N2, (4.37)

where h1 , h2 are second fundamental tensors of the submanifold Mn−2. Let B̃∗ be
the induced connection on the submanifold for semi-symmetric non-metric connec-
tion B̃ with respect to the unit normals N1 , N2. Then we have

B̃PλPµ = P (B̃∗
λµ) + m1(λ, µ)N1 + m2(λ, µ)N2, (4.38)
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for arbitrary vector fields λ , µ and m1 ,m2 are tensor fields of type (0, 2) of the
submanifold Mn−2.

It is well known that the necessary and sufficient conditions that the submanifold
Mn−2 be an almost contact metric submanifold with the structure {f, t, a} in almost
contact metric manifold Mn are [2]

(A(PX))ob = a(X), (4.39)
F (PX) = pfX. (4.40)

Theorem 4.1. The induced connection on the almost contact metric submanifold
of almost contact metric manifold with semi-symmetric non-metric connection is
also a semi-symmetric non-metric connection.

Proof. From equation (3.10), we have

B̃PλPµ = DPλPµ +′ F (Pλ, Pµ)T. (4.41)

Using (4.37), (4.38) and (4.40) in the above equation, we obtain

P (B̃∗
λµ) + m1(λ, µ)N1 + m2(λ, µ)N2

= P (D∗
λµ) + h1(λ, µ)N1 + h2(λ, µ)N2 + G(Pfλ, Pµ)T, (4.42)

from which we can find

B̃∗
λµ = D∗

λµ + g(fλ, µ)t (4.43)
(a)h1(λ, µ) = m1(λ, µ), (b)h2(λ, µ) = m2(λ, µ). (4.44)

Now

λ(g(µ, υ)) = (B̃∗
λg)(µ, υ) + g(B̃∗

λµ, υ) + g(µ, B̃∗
λυ)

= g(D∗
λµ, υ) + g(µ,D∗

λυ)
⇒ (B̃∗

λg)(µ, υ) = −g(λ̄, µ)g(t, υ)− g(λ̄, υ)g(µ, t)
= −g(λ̄, µ)a(υ)− g(λ̄, υ)a(µ), (4.45)

where a(λ) = g(t, λ).
Also from (4.43), we have

B̃∗
λµ− B̃∗

µλ− [λ, µ] = g(λ̄, µ)t− g(µ̄, λ)t

= 2g(λ̄, µ)t
= 2 ′f(λ, µ)t, (4.46)

where g(fλ, µ) = ′f(λ, µ).
The theorem follows from equations (4.45) and (4.46).

Theorem 4.2. (a) The mean curvature of the submanifold Mn−2 with respect to
the Riemannian connection D∗ coincides with the mean curvature of the submanifold
Mn−2 with respect to the semi-symmetric non-metric connection B̃∗.
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(b) The submanifold Mn−2 is totally geodesic with respect to the Riemannian
connection D∗ if and only if it is totally geodesic with respect to the semi-symmetric
non-metric connection B̃∗.

(c) The submanifold Mn−2 is totally umbilical with respect to the Riemannian
connection D∗ if and only if it is totally umbilical with respect to the semi-symmetric
non-metric connection B̃∗.

Proof. Define D∗P and B̃∗P respectively by

(D∗P )(λ, µ) = (D∗
λP )µ = DPλPµ− P (D∗

λµ), (4.47)
(B̃∗P )(λ, µ) = (B̃∗

λP )µ = B̃PλPµ− P (B̃∗
λµ). (4.48)

In view of (4.37) and (4.38) the equations (4.47) and (4.48) can be rewritten as

(D∗
λP )µ = h1(λ, µ)N1 + h2(λ, µ)N2, (4.49)

(B̃∗
λP )µ = m1(λ, µ)N1 + m2(λ, µ)N2. (4.50)

respectively.
Let λ1, λ2, ..., λn−2 be (n − 2) orthonormal local vector fields in the subman-

ifold Mn−2. Then the function 1
n−2

∑n−2
i=1 h(ei, ei) is called the mean curvature

of the submanifold Mn−2 with respect to the Riemannian connection D∗ and
1

n−2

∑n−2
i=1 m(ei, ei) is called the mean curvature of the submanifold Mn−2 with

respect to the semi-symmetric non-metric connection B̃∗.
If h1 , h2 vanish, then the submanifold Mn−2 is said to be totally geodesic with

respect to the Riemannian connection D∗ and if h1 , h2 is proportional to g, then
the submanifold Mn−2 is called totally umbilical with respect to the Riemannian
connection D∗. Similarly if m1 ,m2 vanish, then the submanifold Mn−2 is said to
be totally geodesic with respect to the semi-symmetric non-metric connection B̃∗

and if m1 ,m2 is proportional to g, then the submanifold Mn−2 is called totally
umbilical with respect to the semi-symmetric non-metric connection B̃∗.

The proof at once follows from the equation (4.44).
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