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(STRONG) WEAK EXHAUSTIVENESS AND

(STRONG UNIFORM) CONTINUITY

Agata Caserta, Giuseppe Di Maio and L’ubica Holá

Abstract

In this paper we continue, in the realm of metric spaces, the study of ex-
haustiveness and weak exhaustiveness at a point of a net of functions initiated
by Gregoriades and Papanastassiou in 2008. We prove that exhaustiveness at
every point of a net of pointwise convergent functions is equivalent to uniform
convergence on compacta. We extend exhaustiveness-type properties to sub-
sets. First, we introduce the notion of strong exhaustiveness at a subset B for
sequences of functions and prove its equivalence with strong exhaustiveness
at P0(B) of the sequence of the direct image maps, where the hypersets are
equipped with the Hausdorff metric. Furthermore, we show that the notion of
strong-weak exhaustiveness at a subset is the proper tool to investigate when
the limit of a pointwise convergent sequence of functions fulfills the strong
uniform continuity property, a new pregnant form of uniform continuity dis-
covered by Beer and Levi in 2009.

1 Introduction

In 2008 Gregoriades and Papanastassiou introduced the notion of exhaustiveness
at a point of a metric space both for sequences and nets of functions (see [9]).
This new notion is closely related to equicontinuity and enables to consider the
convergence of a net of functions in terms of properties of the whole net and not as
properties of functions as single members. Exhaustiveness is a powerful tool to state
Ascoli-type theorems and to describe the relation between pointwise convergence
for functions and continuous convergence. So, in the third section, we continue the
investigation of exhaustiveness at a point. We prove that exhaustiveness for a net
of functions at every point of the domain is the property that must be added to
pointwise convergence to have uniform convergence on compacta.
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But, we are interested to the weaker notion of weak exhaustiveness at a point
which gives a necessary and sufficient condition under which the pointwise limit of
a sequence of arbitrary function (not necessarily continuous) is continuous (see [9]).
This is a novel machinery to study the fundamental conundrum of Analysis: what
precisely must be added to pointwise convergence of a sequence of continuous func-
tions to preserve continuity. In 1883 Arzelá solved the problem ([2], [3]) and paved
the way to several outstanding papers (for a comprehensive approach the interested
reader may consult [7]). A more appropriate question to ask in this setting is the
following: is there any topology on Y X finer than pointwise convergence that has
as intrinsic property to preserve continuity? The answer to this question was given
by Bouleau’s work in [10] and it falls out from a general theory. He introduced
the sticky topology on C(X, Y ) as the coarsest topology preserving continuity. Its
convergence is described by a criterion of convergence which as the Cauchy crite-
rion does not involve the limit. We point out that also exhaustiveness and weakly
exhaustiveness of a sequence of functions are defined in terms of properties of the
whole sequence and not of properties of the functions as single members.

In the third section, among other results, we offer a direct proof of the equiva-
lence for nets of arbitrary pointwise convergent functions between sticky convergence
and weakly exhaustiveness at every point. The proof reveals the internal gear of
these two formally far away conditions.

In the fourth section we introduce two notions of strong exhaustiveness at a
subset B of a metric space (X, d). We investigate the relation among: the strong ex-
haustiveness of a sequence of functions fn : X → Y at B, the properties at P0(B) of
the associated image maps f̂n : P0(X) → P0(Y ), where the hypersets are equipped
with the corresponding Hausdorff pseudometric, and the limit of Dd(fn(A), fn(C)),
where A and C are near subsets of X. Finally, we study the notion of strong uni-
form continuity on a subset B of X, a pregnant notion introduced by Beer and
Levi in 2009 [5], a strengthen of the notion of uniform continuity on B. This novel
notion, which models the behavior of a continuous function on the enlargements of
a compact subset of X, has several applications and plays an important role in Gen-
eral Topology and enables the notion of strong uniform convergence on bornologies
([5]). Recall that a bornology B on a metric space (X, d) is a family of subsets of
X that is closed under taking finite unions, is hereditary and forms a cover of X
(see [5], [6], [8], [12]). Note that since each bornology B contains singletons, we
automatically get pointwise convergence whatever B may be. We prove that the
pointwise limit of a sequence of functions is strongly uniformly continuous at B if
and only if the sequence is strongly-weakly exhaustive at B.

As a result we solve the following question: what exactly must be added to
pointwise convergence of a sequence of arbitrary functions to have the uniform
continuity of the limit.
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2 Preliminaries

All metric spaces (X, d) are assumed to contain at least two points. We denote the
power set of a set A by P(A), and the nonempty subsets of A by P0(A). If (Y, ρ)
is a second metric space, we again denote by Y X the set of all functions from X to
Y which is (except when all points of X are isolated or Y is a singleton) properly
larger than C(X, Y ), the set of all continuous functions from X to Y . Given any
function f ∈ Y X , the associated direct image map f̂ : P0(X) → P0(Y ) is defined
by f̂(A) = {f(a) : a ∈ A}.

If x0 ∈ X and ε > 0, we write S(x0, ε) for the open ε-ball with center x0. If A
is a nonempty subset of X, we write d(x0, A) for the distance from x0 to A, and if
A = ∅ we agree that d(x0, A) = ∞. We denote the ε-enlargement of A by

Aε = {x : d(x,A) < ε} =
⋃

x∈A

S(x, ε).

We define the Hausdorff distance between two nonempty subsets A and B in terms
of enlargements:

Hd(A,B) = inf {ε > 0 : A ⊂ Bε and B ⊂ Aε}.

The Hausdorff distance so defined is an extended real valued pseudometric on
P0(X). Furthermore, the map x → {x} is an isometry of X into P0(X).

If A and B are nonempty subsets of X, we define the gap between A and B by
the formula:

Dd(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}
The set A and B are called near if Dd(A,B) = 0 (the relation of nearness so defined
is called the metric proximity determined by d). A result that we will employ with
respect to nearness is the celebrated Efremovich Lemma ( [13]):

Lemma 2.1. Let (X, d) be a metric space and (xn), (wn) be sequences such that
for every n ∈ N d(xn, wn) > ε. Then there is an infinite subset N1 of N such that
for every {n, k} ⊂ N1 we have d(xn, wk) ≥ ε/4. In particular {xn : n ∈ N1} and
{wn : n ∈ N1} are not near.

In 2009 Beer and Levi introduced in the realm of metric spaces the novel and
powerful notion of strong uniform continuity on a subset B (see [5]).

Definition 2.2. Let (X, d) and (Y, ρ) be a metric space and let B be a subset of
X. A function f : X → Y is strongly uniformly continuous on B if for every ε > 0
there is δ > 0 such that if d(x,w) < δ and {x,w} ∩B 6= ∅, then ρ(f(x), f(w)) < ε.

Observe that strong uniform continuity od f on {x0} is equivalent to continuity
at x0, while strong uniform continuity on X is equivalent to global uniform con-
tinuity. Rephrasing, a bornology B on X is a family of non empty subsets of X
that contains singletons, that is stable with respect to finite unions and whenever
B ∈ B and B0 ⊂ B, then B0 ∈ B. The smallest bornology on X is the family of
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finite subsets of X, F0(X), and the largest is the family of all nonempty subsets of
X, P0(X). Other important bornologies are: the family of nonempty d-bounded
subsets, the family of nonempty d-totally bounded subsets and the family K of
nonempty subsets of X with compact closure. By a base B0 for a bornology B
we mean a subfamily of B that is cofinal with respect to inclusion, i.e. for each
B ∈ B there is B0 ∈ B0 such that B ⊂ B0. If B is a family of nonempty subsets
of X and (Y, ρ) a metric space, a function f ∈ Y X is called uniformly continuous
(resp. strongly uniformly continuous) on B if for each B ∈ B, f ¹ B is uniformly
continuous (resp. strongly uniformly continuous) on B. Of course if f ∈ C(X, Y )
and K is a compact subset of X, then f is strongly uniformly continuous on K.
Since f ∈ Y X is continuous at x if and only if f is strongly uniformly continuous at
{x}, just looking at the bornology F0(X) of finite sets, we see that strong uniform
continuity on F0(X), i.e. global continuity, is a stronger requirement than uniform
continuity on F0(X) which amounts to no requirement at all.

In our analysis a key role is played by the bornology of UC-sets introduced by
Beer and Levi in [5]. We recall that a subset A of X is an UC-subset if and only if
each function f continuous on X is strongly uniformly continuous on A.

3 Exhaustiveness at points

Let B be a bornology with closed base on X. The classical uniformity for the
topology τB of uniform convergence on B for C(X, Y ) has as a base for its entourages
all sets of the form

[B, ε] := {(f, g) : for every x ∈ B ρ(f(x), g(x)) < ε}, (B ∈ B, ε > 0).

When B = F , we get the standard uniformity for the topology of pointwise con-
vergence, τF = τp; when B = K, we get the standard uniformity for the topology
of uniform convergence on compacta, τK = τk; when B = P0(X), we get the stan-
dard uniformity for the topology of uniform convergence on X, τP0(X) = τu. These
uniformities make sense on Y X as well.

Given a bornology B with closed base on X, Beer and Levi present a new
uniformizable topology on the set of all functions Y X from X to Y that preserves
strong uniform continuity on B.

Definition 3.1. [5] Let (X, d) and (Y, ρ) be metric spaces and let B be a bornol-
ogy with closed base on X. Then the topology of strong uniform convergence τs

B is
determined by a uniformity on Y X having as a base all sets of the form

[B, ε]s := {(f, g) : ∃δ > 0 for every x ∈ Bδ ρ(f(x), g(x)) < ε}, (B ∈ B, ε > 0).

When the bornology B is equal to the family of all finite subsets of X, F0(X), the
strong uniform convergence on F0(X) is equal to the sticking topology τS defined
by Bouleau in [10] and [11]. We point out that these topologies are the coarsest
topologies preserving continuity of nets of continuous functions.
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In the space X = RR+ of functions from [0,∞) into R, Bouleau proved that
there exists for the sticking topology a criterion of convergence which, as the Cauchy
criterion, does not involve the limit. This criterion can be extended to nets in the
setting of metric spaces.

Proposition 3.2. Let (X, d) and (Y, ρ) be metric spaces and (fα)α∈Λ be a net of
functions from X to Y . The net (fα)α∈Λ converges sticky if and only if for every
x and for every ε > 0 there is α0 such that for all α > α0 there exists Vx, a
neighbourhood of x, with the property that for all y ∈ Vx there exists βy such that
for all β ≥ βy we have ρ(fβ(y), fα(y)) < ε.

We recall the notion of exhaustiveness which applies for both families and nets
of functions [9].

Definition 3.3. Let (X, d) and (Y, ρ) be metric spaces and (fα)α∈Λ be a net of
functions from X to Y . (fα)α∈Λ is exhaustive at x if for every ε > 0 there is δ > 0
and α0 such that for all y ∈ S(x, δ) and for all α ≥ α0 we have ρ(fα(y), fα(x)) < ε.
The net (fα)α∈Λ is exhaustive if it is exhaustive at every x ∈ X.

In [9] Gregoriades and Papanastassiou proved the following proposition:

Proposition 3.4. Let (X, d) and (Y, ρ) be metric spaces and (fn)n∈ω, f be functions
from X to Y . If the sequence (fn)n∈ω pointwise converges to f and (fn)n∈ω is
exhaustive at x, then f is continuous at x.

We have the following proposition:

Proposition 3.5. Let (X, d) and (Y, ρ) be metric spaces and (fn)n∈ω, f be functions
from X to Y . The following are equivalent:

(i) (fn)n∈ω pointwise converges to f and (fn)n∈ω is exhaustive,

(ii) f is continuous and (fn)n∈ωconverges to f uniformly on compact sets,

(iii) f is continuous and (fn)n∈ω τ s
B-converges to f , where B is the bornology of

relatively compact subsets of X.

Proof. (i) ⇒ (ii) The function f is continuous by Prop. 2.5 in [9]. Let ε > 0 be
fixed and K a compact subset of X. Let δ > 0 be such that ρ(f(z), f(u)) < ε/4 for
every z, u with d(z, u) < δ and {z, u} ∩K 6= ∅. By assumption, for every x ∈ X,
(fn)n∈ω is exhaustive at x. Since K is compact, there exist x1, ..., xt ∈ K and
respectively, δxi < δ, nxi for i ≤ t such that K =

⋃
i≤t S(xi, δxi) and for every y ∈

S(xi, δxi) we have ρ(fn(y), fn(xi)) < ε/4 for all n ≥ nxi . By assumption (fn)n∈ω

converges pointwise to f at xi for i = 1, ..., t, hence there exists ni such that for all
n ≥ ni, we have that ρ(fn(xi), f(xi)) < ε/4. Let n∗ = max{nx1 , ..., nxt , n1, ..., nt}.
Hence for every y ∈ K, y ∈ S(xi, δxi) for some i ≤ t. Therefore for every n ≥ n∗

ρ(fn(y), f(y)) ≤ ρ(fn(y), fn(xi)) + ρ(fn(xi), f(xi)) + ρ(f(xi), f(y)) < ε.
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(ii) ⇒ (i) It is sufficient to prove that (fn)n∈ω is exhaustive at every x ∈ X. Let
ε > 0 be fixed as well as x ∈ X. Since (fn)n∈ω converges pointwise to f at x, there
exists n0 such that for all n ≥ n0 we have that ρ(fn(x), f(x)) < ε/4. We claim that
there is a δ > 0 such that for every y ∈ S(x, δ) we have ρ(fn(x), fn(y)) < ε for every
n ≥ n0. If not, there is a sequence (xn) converging to x and an increasing sequence
(kn) of positive integers such that kn ≥ n0 for every n ∈ ω and ρ(fkn(xn), fkn(x)) ≥
ε for every n. K = {xn} ∪ {x} is a compact subset of X. By assumption, there is
an n1 such that for all z ∈ K and for all n ≥ n1 we have that ρ(fn(z), f(z)) < ε/4.
Since f is continuous at x, there is δ > 0 such that for every y ∈ S(x, δ) we have
ρ(f(x), f(y)) < ε/4. Since (xn) → x there is xn ∈ S(x, δ) and for kn ≥ max{n0, n1}
we have:

ρ(fkn(xn), fkn(x)) ≤ ρ(fkn(xn), f(xn)) + ρ(f(xn), f(x)) + ρ(f(x), fkn(x)) < ε

a contradiction.
The equivalence (ii) ⇔ (iii) follows from τs

B = τk, where τk denotes the compact
open topology.

The previous proposition does not hold for nets of functions, indeed we have the
following proposition:

Proposition 3.6. Let (X, d) be a metric space. The following are equivalent:

(i) X is locally compact,

(ii) for every metric space (Y, ρ), every continuous function f : X → Y and
every net (fα)α∈Λ which converges uniformly on compacta to f , we have that
(fα)α∈Λ is exhaustive.

Proof. (i) ⇒ (ii) is clear. To prove (ii) ⇒ (i), suppose that X is not locally
compact. Let x ∈ X be a point of X which has no compact neighborhood. Let
K(x) = {K ⊂ X : x ∈ K, K compact}. Let U(x) denote the family of all open
neighborhoods of x. On U(x) × K(x) define the following direction: (U1,K1) ≥
(U2, K2) if and only if U1 ⊂ U2 and K2 ⊂ K1. For every (U,K) ∈ U(x) × K(x)
let xU,K ∈ U \ K, and let fU,K : X → [0, 1] be a continuous function such that
fU,K(xU,K) = 1 and fU,K(z) = 0 for every z ∈ K.

It is easy to verify that the net (fU,K) converges uniformly on compact sets to
the function identically equal to 0 and it is not exhaustive at x.

Now, we show that exhaustiveness for a net of arbitrary pointwise convergence
functions forces weaker classical convergences.

Proposition 3.7. Let (X, d) and (Y, ρ) be metric spaces and (fα)α∈Λ, f be func-
tions from X to Y . If the net (fα)α∈Λ pointwise converges to f and (fα)α∈Λ is
exhaustive, then (fα)α∈Λ converges sticky.

Proof. Let ε > 0 be fixed as well as x ∈ X. By assumption, (fα)α∈Λ is ex-
haustive at x, hence there exist a δ0 and α0 such that for all y ∈ S(x, δ0) we
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have ρ(fα(y), fα(x)) < ε/8 for all α ≥ α0. Let y ∈ S(x, δ0), since (fα)α∈Λ con-
verges pointwise to f , there exists α1 such that for all α ≥ α1, we have that
ρ(fα(x), f(x)) < ε/8 and ρ(fα(y), f(y)) < ε/8. Let α2 ≥ α0, α1, hence for every
α ≥ α2 there is δ = δ0 and β0 = α2 such that for all β ≥ β0

ρ(fβ(y), fα(y)) ≤ ρ(fβ(y), fβ(x)) + ρ(fβ(x), fα(x)) + ρ(fα(x), fα(y)) < ε.

The coming example shows that the reverse implication in the previous propo-
sition is not true.

Example 3.8. Let X = Y = [0, 1] and f be a zero function. For every n ∈ ω
let fn(1/n) = 1 and fn(X \ (1/n − 1/2n, 1/n + 1/2n)) = {0}. First we prove
that (fn)n∈ω converges sticky. For every x > 0 and every ε > 0 select n′ such
that 1/n′ + 1/2n′ < x. Let n0 = n′ + 1. For every n ≥ n0, fn(y) = 0 for every
y ∈ (1/n′ + 1/2n′ , 1], and the claim follows. Let x = 0, ε > 0 and n0 = 1. For every
n ≥ n0, set V0 = [0, 1]. If y ∈ [0, 1], select n′ such that 1/n′ + 1/2n′ < y and set
ny = n′ + 1. Again for every p, q ≥ ny we have that fp(y) = fq(y) = 0. Finally we
show that (fn)n∈ω is not exhaustive at 0. For ε > 1/2 and for every δ > 0 and n0

there is y ∈ S(0, δ) and n > n0 such that |fn(y) − fn(0)| > 1/2. In fact given n0

it is suffices to select n′ such that n′ > n0 and 1/n′ < δ. Then fn′(1/n′) = 1 and
fn′(0) = 0.

Proposition 3.9. Let (X, d) and (Y, ρ) be metric spaces and (fα)α∈Λ, f be func-
tions from X to Y . If the net (fα)α∈Λ pointwise converges to f and (fα)α∈Λ is
exhaustive, then (fα)α∈Λ converges to f topologically.

Proof. The proof is trivial.

Remark 3.10. We observe that Example 3.8 shows also that sticky convergence
does not imply neither topological convergence nor uniform convergence on com-
pact sets. In fact, topological convergence fails since the sequence {1/n : n ∈ ω}
converges to 0, but fn(1/n) = 1 for every n and f(0) = 0. To show that (fn)n∈ω

does not converges uniformly on compact sets, take K = {1/n : n ∈ ω} ∪ {0}.
Thus we need to investigate a weaker property than exhaustiveness defined for

sequences by Gregoriades and Papanastassiou in [9].

Definition 3.11. Let (X, d) and (Y, ρ) be metric spaces and (fα)α∈Λ, be a net of
functions from X to Y . The net (fα)α∈Λ is weakly exhaustive at x if for every ε > 0
there is δ > 0 such that for all y ∈ S(x, δ) there exists αy ∈ Λ such that for all
α ≥ αy we have ρ(fα(y), fα(x)) < ε.
The net (fα)α∈Λ, is weakly exhaustive if it is weakly exhaustive at every x.

Using this new tool, Gregoriades and Papanastassiou proved in [9] the following
theorem:

Theorem 3.12. Let (X, d) and (Y, ρ) be metric spaces and (fn)n∈ω, f be functions
from X to Y such that the sequence (fn)n∈ω pointwise converges to f . Then (fn)n∈ω

is weakly exhaustive if and only if f is continuous.
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This property can be easily extended to nets of functions. Now, we offer a direct
proof of the equivalence between sticky convergence and weakly exhaustiveness at
any point of X for nets of continuous functions.

Proposition 3.13. Let (X, d) and (Y, ρ) be metric spaces and (fα)α∈Λ be a net of
function of C(X, Y ) which pointwise converges to a function f from X to Y . Then
the following are equivalent:

(i) (fα)α∈Λ is weakly exhaustive,

(ii) (fα)α∈Λ converges sticky.

Proof. (i) ⇒ (ii) Let ε > 0 be fixed as well as x ∈ X. By assumption, (fα)α∈Λ is
weakly exhaustive at x, hence there exists a δ0 such that such for all y ∈ S(x, δ0)
there is αy such that for all α ≥ αy we have ρ(fα(y), fα(x)) < ε/4. Since (fα)α∈Λ

converges pointwise to f at x, there exists α0 such that for all α ≥ α0, we have that
ρ(fα(x), f(x)) < ε/8. Thus for every α, β ≥ α0, ρ(fβ(x), fα(x)) < ε/4. Since such
fα is continuous at x, there exists a δα

x such that for every y ∈ S(x, δα
x ), we have

that ρ(fα(x), fα(y)) < ε/4. Let δ = min{δ0, δ
α
x }. Hence for all α ≥ α0 there exists

δ, with the property that for all y ∈ S(x, δ) there exists αy such that for all β ≥ αy

we have

ρ(fβ(y), fβ(y)) ≤ ρ(fβ(y), fβ(x)) + ρ(fβ(x), fα(x)) + ρ(fα(x), fα(y)) ≤ 3/4ε.

(ii) ⇒ (i) Let ε > 0 be fixed as well as x ∈ X. By assumption, (fα)α∈Λ converges
sticky, there is α0 such that for all α ≥ α0 there is a δ0 > 0 and for every y ∈ S(x, δ0)
there is αy such that for every β ≥ αy, ρ(fβ(y), fα(y)) < ε/8. Since (fα)α∈Λ

converges pointwise to f at x, there exists α1 such that for all α ≥ α1, we have that
ρ(fα(x), f(x)) < ε/8. Thus for every α, β ≥ α1, ρ(fβ(x), fα(x)) < ε/4. Since fα

is continuous at x there exists a δα
x such that for every y ∈ S(x, δα

x ), we have that
ρ(fα(x), fα(y)) < ε/4. Let δ = min{δ0, δ

α
x } and choose α∗y greater than α0, α1, αy.

Thus we have

ρ(fβ(y), fβ(x)) ≤ ρ(fβ(y), fα(y)) + ρ(fα(y), fα(x)) + ρ(fα(x), fβ(x)) ≤ ε/2 < ε.

The notion of quasi-uniform convergence was introduced for the first time by
Arzelà [2] in 1883 to give a necessary and sufficient condition for the continuity of a
series of real valued continuous functions defined on compact intervals of R. In 1948
P.S. Alexandroff in [1] studied the question for a sequence of continuous functions
from a topological space X (not necessarily compact) to a metric space Y . We
quote also the seminal paper of Bartle [4], where Arzelà’s theorem is extended to
nets of real valued continuous functions on a topological space.

The Alexandroff convergence can be restated for nets in the following way
(see [7]).

Definition 3.14. Let (fα)α∈Λ be a net of continuous functions from a topological
space X to a metric space (Y, ρ) and let f : X → Y . Then (fα)α∈Λ is called
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Alexandroff convergent to f provided it is pointwise convergent to f and for every
ε > 0, for every α0 ∈ Λ there exist a cofinal subset Λ0 of {α : α ≥ α0} and an open
cover {Γα : α ∈ Λ0} of X such that for every α ∈ Λ0, for every x ∈ Γα, we have
ρ(fα(x), f(x)) < ε.

Definition 3.15. [4] Let (fα)α∈Λ be a net of real valued functions on an arbitrary
set X and let f : X → R. Then (fα)α∈Λ is said to converge to f quasi-uniformly
on X, provided it pointwise converges to f , and for every ε > 0 and α0 there exists
a finite number of indices α1, α2, ..., αn ≥ α0 such that for each x ∈ X at least one
of the following inequalities holds:

|fαi(x)− f(x)| < ε i = 1, ..., n.

Using Proposition 3.13 and Theorem 2.10 in [7] we state the following theorem:

Theorem 3.16. Let (X, d) and (Y, ρ) be metric and (fα)α∈Λ be a net of functions
from X to Y . Suppose that (fα)α∈Λ is a net in C(X, Y ) that is pointwise convergent
to f . The following are equivalent:

(i) (fα)α∈Λ is weakly exhaustive,

(ii) (fα)α∈Λ is sticky convergent (or equivalently τs
F -convergent to f),

(iii) (fα)α∈Λ Alexandroff converges to f ,

(iv) (fα)α∈Λ is quasi-uniformly convergent to f on compacta.

4 Strong exhaustiveness at families

Beer and Levi initiated the study of strong uniform continuity on a set B, so we
introduce two appropriate forms of exhaustiveness at a set B.

Definition 4.1. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω be functions from
X to Y and B a subset of X. The sequence (fn)n∈ω is strongly exhaustive at B if
for every ε > 0 there is δ > 0 and n0 such that if d(x, y) < δ and B ∩ {x, y} 6= ∅
then ρ(fn(y), fn(x)) < ε for every n ≥ n0. Let B be a subset of P0(X), we say that
(fn)n∈ω is strongly exhaustive at B if it is strongly exhaustive at any B ∈ B.

Now we characterize the notion of strongly exhaustiveness at B for a sequence
of functions in terms of the behaviour of the induced direct image maps, and a
property of the gap functional with respect to images of near subsets.

Theorem 4.2. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω be functions from
X to Y and B a family of nonempty subsets of X. The following are equivalent:

(i) (fn)n∈ω is strongly exhaustive at B,

(ii) for every B ∈ B, (f̂n)n∈ω is strongly exhaustive at P0(B) with respect to
(P0(X),Hd) and (P0(Y ),Hρ),
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(iii) for every B ∈ B, whenever C ∈ P0(B) and Dd(C,A) = 0, then
limn Dρ(fn(C), fn(A)) = 0 .

Proof. (i) ⇒ (ii) Let ε > 0 and B ∈ B be fixed. Let B0 ⊂ B. By assumption,
(fα)α∈Λ is strongly exhaustive at B, hence there exist a δ0 and n0 such that if
d(x, y) < δ and B ∩ {x, y} 6= ∅ then ρ(fn(y), fn(x)) < ε for every n ≥ n0.

We claim that if Hd(C, A) < δ and C ⊂ B, then Hρ(f̂n(C), f̂n(A)) < ε for every
n ≥ n0. Let C ∈ P0(B) such that Hd(C, A) < δ ad n ≥ n0. Then f̂n(C) ⊂ (f̂n(A))ε

and f̂n(A) ⊂ (f̂n(C))ε. Thus Hρ(f̂n(C), f̂n(A)) ≤ ε for every n ≥ n0.
(ii) ⇒ (iii) Let B ∈ B and C ∈ P0(B) such that Dd(C, A) = 0. For n ∈ ω

let an ∈ A be such that d(an, C) < 1/n. Let Cn = C ∪ {an} for every n ∈ ω.
Let ε > 0. There is δ > 0 and n0 such that if C ⊂ B and Hd(C, H) < δ, then
Hρ(f̂n(C), f̂n(H)) ≤ ε for every n ≥ n0. Let k ∈ ω be such that 1/k < δ. Then
Hd(C, Cl) < δ for every l ≥ k. Thus Hρ(f̂n(C), f̂n(Cl)) ≤ ε for every n ≥ n0

and l ≥ k. Let n ≥ n0 and l ≥ k be fixed. Thus there is cl ∈ C such that
ρ(fn(cl), fn(al)) < ε, i.e. Dρ(fn(C), fn(A)) < ε. (iii) ⇒ (i) Assume that (fn)n∈ω

fails to be strongly exhaustive at some B ∈ B. For some positive ε we can pick
for each n, mn ≥ n, an ∈ B and xn ∈ X such that d(an, xn) < 1/n, (mn) is an
increasing sequence of positive integers and ρ(fmn(an), fmn(xn)) > ε for every n.
By Efromovich Lemma there exists N1 ⊂ N infinite such that Dρ(A′, B′) > 0 where
A′ = {fmn(an) : n ∈ N1} and B′ = {fmn(xn) : n ∈ N1}. The condition (iii) fails
with A = {an : n ∈ N1} and B = {xn : n ∈ N1}.

Now, we introduce the appropriate form of exhaustiveness for sequences of point-
wise convergent functions to study strong uniform continuity of the limit.

Definition 4.3. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω be functions from
X to Y and B a subset of X. The sequence (fn)n∈ω is strongly-weakly exhaustive
at B if for every ε > 0 there is a δ > 0 such that y ∈ Bδ and for every x ∈ B such
that d(x, y) < δ there is n(x,y) and ρ(fn(y), fn(x)) < ε for every n ≥ n(x,y). Let B
be a subset of P0(X), we say that (fn)n∈ω is strongly-weakly exhaustive at B if it is
strongly-weakly exhaustive at any B ∈ B.

First of all we notice that being strongly-weakly exhaustive at a subset is a
stronger requirement than weakly exhaustive at points.

Example 4.4. Example 3.8 shows that f is weakly exhaustive at any point but it
is not strongly-weakly exhaustive at (0, 1].

We prove the following theorem.

Theorem 4.5. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω, f be functions from
X to Y such that (fn)n∈ω pointwise converges to f . Let B be a family of non empty
subsets of X. The following are equivalent:

(i) (fn)n∈ω is strongly weakly exhaustive at B,

(ii) f is strongly uniformly continuous on B.
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Proof. (i) ⇒ (ii) Let ε > 0 and B ∈ B be fixed. By assumption, (fn)n∈ω is
strongly-weakly exhaustive at B, hence there exists δ > 0 such that for all y ∈ Bδ

and for every x ∈ B with d(x, y) < δ there is n(x,y) and for every n ≥ n(x,y) we have
ρ(fn(y), fn(x)) < ε/4. Take y ∈ Bδ and x ∈ B with d(x, y) < δ. Since (fn)n∈ω

pointwise converges to f , there is n0 and for every n ≥ n0, ρ(fn(x), f(x)) < ε/4
and ρ(fn(y), f(y)) < ε/4. Let n ≥ max{n0, n(x,y)}, hence for every n ≥ n we have
that ρ(f(x), f(y)) < ε.

(ii) ⇒ (i) Let ε > 0 and B ∈ B be fixed and f strongly uniformly continuous
at B. Hence there exists δ > 0 such that for all y ∈ Bδ and for every x ∈ B
with d(x, y) < δ we have ρ(f(y), f(x)) < ε/4. Take y ∈ Bδ and x ∈ B with
d(x, y) < δ. Since (fn)n∈ω pointwise converges to f , there is n0 and for every
n ≥ n0, ρ(fn(x), f(x)) < ε/4 and ρ(fn(y), f(y)) < ε/4. For every n ≥ n0 we have
that ρ(fn(x), fn(y)) < ε.

In view of Theorem 6.7 in [5], we have the following corollary:

Corollary 4.6. Let (X, d) and (Y, ρ) be metric spaces and B be a bornology with
closed base. Let (fn)n∈ω be a net of strongly uniformly continuous functions from
X to Y that is τB-convergent to f ∈ Y X . The following are equivalent:

(i) (fn)n∈ω is strongly weakly exhaustive at B,

(ii) f is strongly uniformly continuous on B,

(iii) (fn)n∈ω is τ s
B-convergent to f .

Note that for B = {X} we get what must be exactly added to pointwise conver-
gence to have uniform continuity of the limit.

Corollary 4.7. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω, f be functions from
X to Y such that (fn)n∈ω pointwise converges to f . The following are equivalent:

(i) (fn)n∈ω is strongly weakly exhaustive,

(ii) f is uniformly continuous.

Using Proposition 4.11 and Theorem 5.2 in [9] we have the following corollaries:

Corollary 4.8. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω , f be functions
from X to Y such that (fn)n∈ω pointwise converges to f . Let B the bornology of
the d-totally bounded subsets of X. The following are equivalent:

(i) (fn)n∈ω is strongly-weakly exhaustive on B,

(ii) f is strongly uniformly continuous on B,

(iii) f is uniformly continuous on B.

Corollary 4.9. Let (X, d) and (Y, ρ) be metric spaces, (fn)n∈ω, f be functions
from X to Y such that (fn)n∈ω pointwise converges to f . Let Buc the bornology of
the family of UC-sets. If A ∈ Buc and (fn)n∈ω is weakly exhaustive on X, then f
is strongly uniformly continuous on A.
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