Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **24:4** (2010), 87–94 DOI: 10.2298/FIL1004087E

PROPERTIES OF *i*-SUBMAXIMAL IDEAL TOPOLOGICAL SPACES

Erdal Ekici and Takashi Noiri

Abstract

In [2], the notion of I-submaximal ideal topological spaces is introduced and studied. In this paper, several characterizations and further properties of I-submaximal ideal topological spaces are obtained.

1 Introduction

The concept of submaximality of general topological spaces was introduced by Hewitt [12] in 1943. He discovered a general way of constructing maximal topologies. In [3], Alas et al. proved that there can be no dense maximal subspace in a product of first countable spaces, while under Booth's Lemma there exists a dense submaximal subspace in $[0,1]^c$. It is established that under the axiom of constructibility any submaximal Hausdorff space is σ -discrete. Any homogeneous submaximal space is strongly σ -discrete if there are no measurable cardinals. The first systematic study of submaximal spaces was undertaken in the paper of Arhangel'skiĭ and Collins [4]. They gave various necessary and sufficient conditions for a space to be submaximal and showed that every submaximal space is left-separated. This led to the question whether every submaximal space is σ -discrete [4]. The notion of ideal topological spaces was studied by Kuratowski [17] and Vaidyanathaswamy [19]. In 1990, Janković and Hamlett [13] investigated further properties of ideal topological spaces. In [2], properties of *I*-submaximal ideal topological spaces is studied. In this paper, several characterizations and further properties of I-submaximal ideal topological spaces are obtained. It will be shown that every ideal subspace of an I-submaximal ideal topological space is I-submaximal.

²⁰⁰⁰ Mathematics Subject Classifications. 54A05, 54A10.

Key words and Phrases. I-submaximal ideal space, submaximal space, ideal topological space. Received: July 7, 2009

Communicated by Ljubisa Kocinac

The authors thank to Referees for the reports.

2 Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A)will denote the closure and interior of A in (X, τ) , respectively. An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- (1) $A \in I$ and $B \subset A$ implies $B \in I$.
- (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function [17] of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X :$ $G \cap A \notin I$ for every $G \in \tau(x)\}$ where $\tau(x) = \{G \in \tau : x \in G\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the \star -topology, finer than τ , is defined by $Cl^*(A) = A \cup A^*(I, \tau)$ [13]. When there is no chance for confusion, we will simply write A^* for $A^*(I, \tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I, \tau)$. For any ideal space (X, τ, I) , the collection $\{U \setminus J : U \in \tau \text{ and } J \in I\}$ is a basis for τ^* . If I is an ideal on X, then (X, τ, I) is called an ideal topological space or simply an ideal space.

Definition 1. A subset A of an ideal space (X, τ, I) is called

- (1) α -I-open [8] if $A \subset Int(Cl^*(Int(A)))$.
- (2) pre-I-open [5] if $A \subset Int(Cl^*(A))$.
- (3) semi-I-open [8] if $A \subset Cl^*(Int(A))$.
- (4) strongly β -I-open [9] if $A \subset Cl^*(Int(Cl^*(A)))$.
- (5) \star -dense [6] if $Cl^*(A) = X$.

Lemma 1. ([2]) For a subset A of an ideal space (X, τ, I) , the following properties are equivalent:

(1) A is pre-I-open,

(2) $A = G \cap B$, where G is open and B is \star -dense.

Lemma 2. ([1]) Let (X, τ, I) be an ideal space and $A \subset X$. Then A is α -I-open if and only if it is semi-I-open and pre-I-open.

3 *I*-Submaximal Ideal Topological Spaces

Definition 2. ([2]) An ideal space (X, τ, I) is called I-submaximal if every \star -dense subset of X is open.

Theorem 3. For an ideal space (X, τ, I) , the following properties are equivalent:

- (1) X is I-submaximal,
- (2) Every pre-I-open set is open,
- (3) Every pre-I-open set is semi-I-open and every α -I-open set is open.

Proof. $(1) \Rightarrow (2)$: It follows from Lemma 4.4 of [2].

 $(2) \Rightarrow (3)$: Suppose that every pre-*I*-open set is open. Then every pre-*I*-open set is semi-*I*-open.

Let $A \subset X$ be an α -*I*-open set. Since every α -*I*-open set is pre-*I*-open, then by (2), *A* is open.

 $(3) \Rightarrow (1)$: Let A be a \star -dense subset of X. Since $Cl^*(A) = X$, then A is pre-*I*-open. By (3), A is semi-*I*-open. Since a set is α -*I*-open if and only if it is semi-*I*-open and pre-*I*-open, then A is α -*I*-open. Thus, by (3), A is open and hence X is *I*-submaximal.

Lemma 4. ([11]) Let (X, τ, I) be an ideal spaces and $A, B \subset X$. If A is semi-I-open and B is open, then $A \cap B$ is semi-I-open.

Theorem 5. For a subset A of an I-submaximal ideal space (X, τ, I) , the following are equivalent:

(1) A is semi-I-open,

(2) A is strongly β -I-open.

Proof. $(2) \Rightarrow (1)$: Let A be a strongly β -I-open set in X. Put $H = Cl^*(A)$ and $K = A \cup (X \setminus Cl^*(A))$. We have $A = Cl^*(A) \cap K$ and $Cl^*(K) = X$. This implies that $A = H \cap K$, where H is semi-I-open and K is \star -dense. Since X is I-submaximal, then K is open. By Lemma 4, $A = H \cap K$ is semi-I-open.

 $(1) \Rightarrow (2)$: It follows from the fact that every semi- $I\text{-}{\rm open}$ set is strongly $\beta\text{-}I\text{-}{\rm open}.$ \blacksquare

Theorem 6. For an ideal space (X, τ, I) , the following properties are equivalent: (1) X is I-submaximal,

(2) For all $A \subset X$, if $A \setminus Int(A) \neq \emptyset$, then $A \setminus Int(Cl^*(A)) \neq \emptyset$.

(3) $\tau = \{U \setminus A : U \in \tau \text{ and } Int^*(A) = \varnothing\}.$

Proof. $(1) \Rightarrow (2)$: Let $A \subset X$ and $A \setminus Int(A) \neq \emptyset$. Suppose that $A \setminus Int(Cl^*(A)) = \emptyset$. Then $A \subset Int(Cl^*(A))$. This implies that A is pre-*I*-open. Since X is *I*-submaximal, by Theorem 3, A is open. Thus, $A \setminus Int(A) = A \setminus A = \emptyset$. This is a contradiction.

 $(2) \Rightarrow (1)$: Let A be a pre-I-open set. Then $A \subset Int(Cl^*(A))$.

Suppose that A is not open. Then $A \nsubseteq Int(A)$ and hence $A \setminus Int(A) \neq \emptyset$. By (2), $A \setminus Int(Cl^*(A)) \neq \emptyset$. Thus, $A \nsubseteq Int(Cl^*(A))$. This is a contradiction.

 $(1) \Rightarrow (3): \text{Suppose that } \sigma = \{U \backslash A : U \in \tau \text{ and } Int^*(A) = \varnothing\}.$

Let $G \in \tau$. Since $G = G \backslash \varnothing$ and $Int^*(\varnothing) = \varnothing$, then $\tau \subset \sigma$.

Let $G \in \sigma$. Then $G = U \setminus A$, where $U \in \tau$ and $Int^*(A) = \emptyset$. We have $G = U \cap X \setminus A$. Since $Int^*(A) = \emptyset$, then $X \setminus Int^*(A) = Cl^*(X \setminus A) = X$. Since X is *I*-submaximal, then $X \setminus A$ is open. Thus, G is open. Hence $\sigma \subset \tau$.

 $(3) \Rightarrow (1)$: Let A be a pre-*I*-open set. By Lemma 1, $A = G \cap B$, where G is open and B is \star -dense. We have $Cl^*(B) = X$ and hence $Int^*(X \setminus B) = \emptyset$. This implies that $A = G \setminus (X \setminus B)$ and $Int^*(X \setminus B) = \emptyset$. Thus, by (3), A is open. Hence, by Theorem 3, X is *I*-submaximal.

Definition 3. ([12]) A topological space (X, τ) is called a submaximal space if each of its dense subset is open.

Theorem 7. Let $f : (X, \tau) \to (Y, \sigma, I)$ be an open surjective function. If X is submaximal, then Y is I-submaximal.

Proof. Let X be submaximal and $A \subset Y$ be a \star -dense set. Then A is dense in Y. Since $f^{-1}(A)$ is dense, then $f^{-1}(A)$ is open in X. Since f is an open surjective function, then $A = f(f^{-1}(A))$ is open. Hence, Y is I-submaximal.

Corollary 8. If $\prod_{i \in I} X_i$ is a submaximal product space of X_i , then X_i is *I*-submaximal for every $i \in I$.

Proof. It follows from the fact that for each $i \in I$, the projective function $p_i : \prod_{i \in I} X_i \to X_i$ is an open surjection.

Definition 4. A subset A of an ideal space (X, τ, I) is called \star -codense if $X \setminus A$ is \star -dense.

Theorem 9. For an ideal space (X, τ, I) , the following are equivalent:

(2) Every \star -codense subset A of X is closed.

Proof. $(1) \Rightarrow (2)$: Let A be a *-codense subset of X. Since $X \setminus A$ is *-dense, then $X \setminus A$ is open. Thus, A is closed.

 $(2) \Rightarrow (1)$: It is similar to that of $(1) \Rightarrow (2)$.

Definition 5. A subset A of an ideal space (X, τ, I) is called

(1) a t-I-set [8] if $Int(A) = Int(Cl^*(A))$.

(2) semi-I-regular [16] if A is a t-I-set and semi-I-open.

(3) an AB_I -set [16] if $A = U \cap V$, where $U \in \tau$ and V is a semi-I-regular set.

Theorem 10. For an ideal space (X, τ, I) , the following are equivalent:

- (1) X is I-submaximal,
- (2) Every pre-I-open set is an AB_I -set,
- (3) Every \star -dense set is an AB_I-set.

Proof. $(1) \Rightarrow (2)$: Let $A \subset X$ be a pre-*I*-open set. Since X is *I*-submaximal, by Theorem 3, A is open. It follows from Proposition 2 of [16] that A is an AB_I -set.

 $(2) \Rightarrow (3)$: Let $A \subset X$ be a *-dense set. Since every *-dense set is pre-*I*-open, then by (2), A is an AB_I -set.

 $(3) \Rightarrow (1)$: Let $A \subset X$ be a *-dense set. By (3), A is an AB_I -set. Since every *-dense set is pre-I-open, then A is pre-I-open. Since A is pre-I-open and an AB_I -set, by Proposition 4 of [16], A is open. Hence, X is I-submaximal.

⁽¹⁾ X is I-submaximal,

Properties of I-submaximal ideal topological spaces

4 Subspaces

Recall that if (X, τ, I) is an ideal topological space and A is a subset of X, then (A, τ_A, I_A) , where τ_A is the relative topology on A and $I_A = \{A \cap J : J \in I\}$ is an ideal topological space.

Lemma 11. ([14]) Let (X, τ, I) be an ideal topological space and $B \subset A \subset X$. Then $B^*(\tau_A, I_A) = B^*(\tau, I) \cap A$.

Lemma 12. ([10]) Let (X, τ, I) be an ideal topological space and $B \subset A \subset X$. Then $Cl^*_A(B) = Cl^*(B) \cap A$.

Theorem 13. If (X, τ, I) is an *I*-submaximal ideal space and $A \subset X$, then (A, τ_A, I_A) is *I*-submaximal.

Proof. Let B be a \star -dense set in (A, τ_A, I_A) . Let $U = B \cup (X \setminus A)$. By Lemma 12, we have

$$Cl^*(U) = Cl^*(B \cup (X \setminus A)) \supset$$

$$Cl^*(B) \cup Cl^*(X \setminus A) \supset Cl^*_A(B) \cup Cl^*(X \setminus A)$$

$$= A \cup Cl^*(X \setminus A) = X.$$

Therefore, U is a *-dense set in (X, τ, I) . Since X is I-submaximal, then U is open in X. Thus, $B = U \cap A$ and B is open in (A, τ_A, I_A) . Hence, (A, τ_A, I_A) is I-submaximal.

Definition 6. ([8]) A subset A of an ideal space (X, τ, I) is called a B_I -set if $A = U \cap V$, where $U \in \tau$ and V is a t-I-set.

Theorem 14. For an ideal space (X, τ, I) , the following are equivalent:

- (1) X is I-submaximal,
- (2) Every subset of X is a B_I -set,
- (3) Every strongly β -I-open set is a B_I -set,
- (4) Every \star -dense subset of X is a B_I -set.

Proof. $(1) \Rightarrow (2)$: It follows from Theorem 3.2 of [18].

 $(2) \Rightarrow (3)$: Obvious.

 $(3) \Rightarrow (4)$: It follows from the fact that every \star -dense subset of X is a strongly β -I-open set.

 $(4) \Rightarrow (1)$: It follows from Theorem 3.2 of [18].

5 Further Properties

Definition 7. ([7]) An ideal space (X, τ, I) is said to be *-extremally disconnected if *-closure of every open subset A of X is open.

Lemma 15. ([7]) For an ideal space (X, τ, I) , the following properties are equivalent:

- (1) X is \star -extremally disconnected,
- (2) Every semi-I-open set is pre-I-open,
- (3) The \star -closure of every strongly β -I-open subset of X is open,
- (4) Every strongly β -I-open set is pre-I-open.

Theorem 16. For an ideal space (X, τ, I) , the following properties are equivalent: (1) X is I-submaximal and \star -extremally disconnected.

(2) Any subset of X is strongly β -I-open if and only if it is open.

Proof. (1) \Rightarrow (2) : Let X be *I*-submaximal and *-extremally disconnected. By Lemma 15, every strongly β -*I*-open set is pre-*I*-open. By Theorem 3, every pre-*I*-open set is open. Thus, every strongly β -*I*-open set is open. The converse follows from the fact that every open set is strongly β -*I*-open.

 $(2) \Rightarrow (1)$: Suppose that any subset of X is strongly β -*I*-open if and only if it is open. Since every strongly β -*I*-open set is open and so pre-*I*-open, by Lemma 15, X is *-extremally disconnected. Since every pre-*I*-open set is open, by Theorem 3, X is *I*-submaximal.

Corollary 17. For an ideal space (X, τ, I) , if X is I-submaximal and \star -extremally disconnected, the following are equivalent for a subset $A \subset X$:

- (1) A is strongly β -I-open,
- (2) A is semi-I-open,
- (3) A is pre-I-open,
- (4) A is α -I-open,
- (5) A is open.

Proof. It follows from Theorem 16. ■

Lemma 18. ([16]) Every AB_I -set is semi-I-open in an ideal topological space (X, τ, I) .

Theorem 19. For an ideal space (X, τ, I) , if X is I-submaximal and \star -extremally disconnected, the following properties are equivalent for a subset $A \subset X$:

- (1) A is semi-I-open,
- (2) A is an AB_I -set.

Proof. $(1) \Rightarrow (2)$: Let A is semi-*I*-open. Since X is \star -extremally disconnected, by Lemma 15, every semi-*I*-open set is pre-*I*-open. Since X is *I*-submaximal, by Theorem 10, every pre-*I*-open set is an AB_I -set.

 $(2) \Rightarrow (1)$: It follows from Lemma 18.

Definition 8. ([15]) A subset A of an ideal space (X, τ, I) is called weakly I-local closed if $A = U \cap V$, where $U \in \tau$ and V is a \star -closed set.

Properties of *I*-submaximal ideal topological spaces

Theorem 20. For an ideal space (X, τ, I) , the following properties are equivalent: (1) X is I-submaximal,

(2) Every subset of X is weakly I-local closed,

(3) Every subset of X is a union of a \star -open subset and a closed subset of X,

(4) Every \star -dense subset of X is an intersection of a \star -closed subset and an open subset of X.

Proof. $(1) \Rightarrow (2)$: It follows from Theorem 3.2 of [18].

 $(2) \Leftrightarrow (3)$: Let $A \subset X$. By (2), we have $X \setminus A = U \cap K$, where U is open and K is \star -closed in X. This implies that $A = (X \setminus U) \cup (X \setminus K)$, where $X \setminus U$ is closed and $X \setminus K$ is \star -open in X. The converse is similar.

 $(2) \Rightarrow (4)$: Obvious.

 $(4) \Rightarrow (1)$: Let $A \subset X$ be a *-dense set. Then $A = U \cap B$, where U is open and B is *-closed. Since $A \subset B$ and so B is *-dense, then $Int(B) = Int(Cl^*(B)) =$ Int(X) = X. Hence B = X and A = U is open. Thus, X is I-submaximal.

References

- A. Acikgoz, T. Noiri and S. Yuksel, On α-I-continuous and α-I-open functions, Acta Math. Hungar., 105 (1-2) (2004), 27-37.
- [2] A. Acikgoz, S. Yuksel and T. Noiri, On α-I-preirresolute functions and β-Ipreirresolute functions, Bull. Malays. Math. Sci. Soc. (2), 28 (1) (2005), 1-8.
- [3] O. T. Alas, M. Sanchis, M. G. Thačenko, V. V. Thachuk and R. G. Wilson, Irresolvable and submaximal spaces, Homogeneity versus σ-discreteness and new ZFC examples, Topology Appl., 107 (2000), 259-273.
- [4] A. V. Arhangel'skiĭ and P. J. Collins, On submaximal spaces, Topology Appl., 64 (3) (1995), 219-241.
- [5] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996).
- [6] J. Dontchev, M. Ganster and D. Rose, *Ideal resolvability*, Topology Appl., 93 (1999), 1-16.
- [7] E. Ekici and T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122 (1-2) (2009), 81-90.
- [8] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341-349.
- [9] E. Hatir, A. Keskin and T. Noiri, On a new decomposition of continuity via idealization, JP Jour. Geometry and Topology, 3 (1) (2003), 53-64.

- [10] E. Hatir, A. Keskin and T. Noiri, A note on strong β-I-sets and strongly β-Icontinuous functions, Acta Math. Hungar., 108 (1-2) (2005), 87-94.
- [11] E. Hatir and T. Noiri, On semi-I-open sets and semi-I-continuous functions, Acta Math. Hungar., 107 (4) (2005), 345-353.
- [12] E. Hewitt, A problem of set-theoretic topology, Duke Math. J., 10 (1943), 309-333.
- [13] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [14] D. Janković and T. R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital. (7), 6-B (1992), 453-465.
- [15] A. Keskin, T. Noiri and S. Yuksel, Decompositions of I-continuity and continuity, Commun. Fac. Sci. Univ. Ankara Series A1, 53 (2004), 67-75.
- [16] A. Keskin and S. Yuksel, On semi-I-regular sets, AB_I-sets and decompositions of continuity, R_IC-continuity, A_I-continuity, Acta Math. Hungar., 113 (3) (2006), 227-241.
- [17] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [18] V. Renukadevi, Note on IR-closed and A_{IR} -sets, Acta Math. Hungar., 122 (4) (2009), 329-338.
- [19] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61.

Addresses:

Erdal Ekici

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey

E-mail: eekici@comu.edu.tr

Takashi Noiri

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869-5142, Japan *E-mail*: t.noiri@nifty.com