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Abstract

The Laplacian Estrada index of a graph G is defined as LEE(G) =∑n
i=1 e

µi , where µ1, µ2, . . . , µn are the Laplacian eigenvalues of G. We de-
termine the unique tree with maximum Laplacian Estrada index among the
set of trees with given bipartition. We also determine the unique trees with
the third, the fourth, the fifth and the sixth maximum Laplacian Estrada
indices.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). Let A(G) be
the adjacency matrix of G. Let n = |V (G)|. The eigenvalues of G, denoted by
λ1, λ2, . . . , λn, are the eigenvalues of A(G) [3]. The Estrada index of a graph G is
defined as [7]

EE(G) =

n∑
i=1

eλi .

It found various applications in a large variety of problems. It was proved that
Estrada index is especially useful to characterize the folding degree of a protein
chain, account for the contribution of amino acids to folding [7, 8, 9]. Later, Estrada
index was extended to measure the centrality of complex networks [10, 11], extended
atomic branching [12], and the carbon-atom skeleton [16]. More mathematical
properties of the Estrada index can be found in [1, 6, 13, 14, 15, 17, 20, 21].

Let L(G) = D(G) − A(G) be the Laplacian matrix of G, where D(G) is the
diagonal matrix of vertex degrees of the graph G. Denote by µ1, µ2, . . . , µn the
Laplacian eigenvalues of G [19]. In full analogy with the expression of Estrada
index, the Laplacian Estrada index of a graph G is defined as [14]

LEE(G) =

n∑
i=1

eµi .
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Ilić and Zhou [18] proved that the path and the star are respectively the unique
trees with minimum and maximum Laplacian Estrada indices, which showed that
the use of Laplacian Estrada index as a measure of branching in alkanes. In [18],
the tree with the second maximum Laplacian Estrada index was also determined.
More mathematical properties of the Laplacian Estrada index can be found in [1,
5, 14, 22, 23].

A bipartite graph G is a graph whose vertices can be partition into two disjoint
sets V1(G) and V2(G) such that every edge connects a vertex in V1(G) to one in
V2(G). If |V1(G)| = p and |V2(G)| = q with p ≥ q ≥ 1, then we say G has a
(p, q)-bipartition. It is well-known that every tree is a bipartite graph.

In this paper, we determine the unique tree with maximum Laplacian Estrada
index among the set of trees with given bipartition. We also determine the unique
trees with the third, the fourth, the fifth and the sixth maximum Laplacian Estrada
indices.

2 Preliminaries

Denote by Mk(G) the k-th spectral moment of the graph G, i.e., Mk(G) =
∑n
i=1 λ

k
i .

It is well-known that Mk(G) is equal to the number of closed walks of length k in
G [3]. Then

EE(G) =

∞∑
k=0

Mk(G)

k!
. (1)

Let G1 and G2 be two graphs. If Mk(G1) ≤ Mk(G2) for all positive integers
k, then we write G1 � G2. If G1 � G2 and there is at least one positive integer
k0 such that Mk0(G1) < Mk0(G2), then we write G1 ≺ G2. By expression (1) for
Estrada index, G1 � G2 implies that EE(G1) ≤ EE(G2), and G1 ≺ G2 implies
that EE(G1) < EE(G2).

Let Mk(G;u) be the number of closed walks of length k in G starting at u.
Let u ∈ V (G1) and v ∈ V (G2). If Mk(G1;u) ≤ Mk(G2; v) for all positive

integers k, then we write (G1;u) � (G2; v). If (G1;u) � (G2; v) and there is at
least one positive integer k0 such that Mk0(G1;u) < Mk0(G2; v), then we write
(G1;u) ≺ (G2; v).

First we give some lemmas will be used in our proof.

Lemma 1. ([6]) Let H1, H2 be two non-trivial connected graphs with u, v ∈ V (H1),
w ∈ V (H2). Let Gu be the graph obtained from H1 and H2 by identifying u with
w, and Gv be the graph obtained from H1 and H2 by identifying v with w. If
(H1;u) ≺ (H1; v), then Gu ≺ Gv.

Let L(G) be the line graph of a graph G. Zhou and Gutman [22] gave the
following relationship between the Laplacian Estrada index of a bipartite graph
and the Estrada index of its line graph.

Lemma 2. ([22]) Let G be a bipartite graph with n vertices and m edges. Then

LEE(G) = n−m+ e2 · EE(L(G)).



More on Laplacian Estrada indices of trees 199

Let dG(v) be the degree of v in G. Let dG(u, v) be the distance from u to v in
G.

For v ∈ V (G), G− v denotes the graph obtained from G by deleting the vertex
v.

For two distinct vertices u, v of a graph G, let Ak(G;u, [v]) be the set of (u, u)-
walks of length k containing v in G, let Mk(G;u, [v]) = |Ak(G;u, [v])|, let rk(G;u, v)
be the number of walks of length k ≥ 1 from u to v in G, and r0(G;u, v) = 1.

3 The maximum Laplacian Estrada index of trees
with given bipartition

Let G1 and G2 be two connected bipartite graphs shown in Fig. 1, where P , M ,
Q are connected subgraphs of G1, and dG1

(u), dG1
(v), dG1

(w) ≥ 2. In G2, all the
neighbors of v in Q of G1 are switched to be the neighbors of u in G2.

 1 
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Figure 1: The graphs G1 and G2 in Lemma 3.

Let G be a graph with y1y2 ∈ E(G). Denote by xy1y2(G) the vertex in L(G)
corresponding to y1y2 ∈ E(G).

Lemma 3. Let G1 and G2 be two connected bipartite graphs shown in Fig. 1. If
dG1(u), dG1(v) ≥ 2, then LEE(G1) < LEE(G2).

Proof. By Lemma 2, we need only to show that EE(L(G1)) < EE(L(G2)).
Let H be the graph obtained from G1 by deleting the vertices in Q different

from v. Let P ∗ be the graph obtained from G1 by deleting the vertices in M and Q
different from w, and M∗ be the graph obtained from G1 by deleting the vertices in
P and Q different from u, v. Then L(H) can be obtained from L(P ∗) and L(M∗)
by identifying xuw(P ∗) ∈ V (L(P ∗)) with xuw(M∗) ∈ V (L(M∗)). Let k be any
positive integer.

First we will show that (L(H)−xuw(H);xwv(H)) ≺ (L(H)−xwv(H);xuw(H)).
Clearly,

Mk(L(H)− xuw(H);xwv(H)) = Mk(L(M∗)− xuw(M∗);xwv(M
∗)).

Note that L(M∗)− xuw(M∗) ∼= L(M∗)− xwv(M∗), and thus

Mk(L(M∗)− xuw(M∗);xwv(M
∗)) = Mk(L(M∗)− xwv(M∗);xuw(M∗)).
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It follows that

Mk(L(H)− xuw(H);xwv(H)) = Mk(L(M∗)− xwv(M∗);xuw(M∗)).

This implies that we need only to show that

(L(M∗)− xwv(M∗);xuw(M∗)) ≺ (L(H)− xwv(H);xuw(H)),

which follows by noting that dG(u) ≥ 2 (i.e., L(P ∗) is not trivial).
Now we will show that

Mk(L(H);xwv(H), [xuw(H)]) ≤Mk(L(H);xuw(H), [xwv(H)]).

We construct a mapping f from Ak(L(H);xwv(H), [xuw(H)]) to Ak(L(H);xuw(H),
[xwv(H)]). For W ∈ Ak(L(H);xwv(H), [xuw(H)]), we may decompose W into
W = W1W2, where W1 is the shortest (xwv(H), xuw(H))-section of W , and W2 is
the remaining (xuw(H), xwv(H))-section of W . It is easily seen that the neighbors
of xwv(H) in L(H) different from xuw(H) are also the neighbors of xuw(H) in L(H).
Denote by w1, w2, . . . , wt the common neighbors of xwv(H) and xuw(H) in L(H),
where dL(H)(xwv(H)) = t+1. By the choice of W1, we know that W1 consists of an
(xwv(M

∗), xwv(M
∗))-walk in L(M∗) − xuw(M∗) whose length may be zero and a

single edge xwv(M
∗)xuw(M∗), or an (xwv(M

∗), wi)-walk in L(M∗)−xuw(M∗) and
a single edge wixuw(M∗) for 1 ≤ i ≤ t. Then

Mk(L(H);xwv(H), [xuw(H)]) = |Ak(L(H);xwv(H), [xuw(H)])|
=

∑
z∈{xwv(M∗),w1,w2...,wt}

k1+k2=k,k1,k2≥1

rk1−1(L(M∗)− xuw(M∗);xwv(M
∗), z)

·rk2(L(H);xuw(H), xwv(H)).

Similarly,

Mk(L(H);xuw(H), [xwv(H)]) = |Ak(L(H);xuw(H), [xwv(H)])|
=

∑
z∈{xuw(H),w1,w2...,wt}

k1+k2=k,k1,k2≥1

rk1−1(L(H)− xwv(H);xuw(H), z)

·rk2(L(H);xwv(H), xuw(H))

≥
∑

z∈{xuw(M∗),w1,w2...,wt}
k1+k2=k,k1,k2≥1

rk1−1(L(M∗)− xwv(M∗);xuw(M∗), z)

·rk2(L(H);xwv(H), xuw(H)).

For any positive integer s and z ∈ {w1, w2 . . . , wt},

rs(L(M∗)− xuw(M∗);xwv(M
∗), z) = rs(L(M∗)− xwv(M∗);xuw(M∗), z)

and

rs(L(M∗)−xuw(M∗);xwv(M
∗), xwv(M

∗))=rs(L(M∗)−xwv(M∗);xuw(M∗), xuw(M∗))
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since L(M∗)− xuw(M∗) ∼= L(M∗)− xwv(M∗), and it is well-known that [3]

rs(L(H);xuw(H), xwv(H)) = rs(L(H);xwv(H), xuw(H)).

It follows that Mk(L(H);xwv(H), [xuw(H)]) ≤Mk(L(H);xuw(H), [xwv(H)]).
Note that

Mk(L(H);xwv(H)) = Mk(L(H)−xuw(H);xwv(H))+Mk(L(H);xwv(H), [xuw(H)]),

Mk(L(H);xuw(H)) = Mk(L(H)−xwv(H);xuw(H))+Mk(L(H);xuw(H), [xwv(H)]).

Then we have (L(H);xwv(H)) ≺ (L(H);xuw(H)).
Let H1 be the graph obtained from G1 by deleting the vertices in P and M

different from w. It is easily seen that L(G1) can be obtained from L(H) and
L(H1) by identifying xwv(H) ∈ V (L(H)) with xwv(H1) ∈ V (L(H1)). Let G∗ be
the graph obtained from L(H) and L(H1) by identifying xuw(H) ∈ V (L(H)) with
xwv(H1) ∈ V (L(H1)). It follows from Lemma 1 that L(G1) ≺ G∗.

Note that G∗ is a proper subgraph of L(G2) since dG1
(u), dG1

(v) ≥ 2 (i.e., P,Q
are not trivial), and thus G∗ ≺ L(G2), implying that L(G1) ≺ L(G2). �

Let Sn(a, b) be the n-vertex tree obtained by adding one edge between the two
centers of two stars Sa and Sb, where a ≥ b ≥ 1, a+ b = n.

Theorem 1. Let G be an n-vertex tree with a (p, q)-bipartition, where p + q = n,
p ≥ q ≥ 1. Then LEE(G) ≤ LEE(Sn(p, q)) with equality if and only if G ∼=
Sn(p, q).

Proof. Let G be a tree with maximum Laplacian Estrada index with a (p, q)-
bipartition. Let P = v1v2 . . . vt be a diametrical path of G.

Suppose that the diameter of G is at least four. Then applying Lemma 3 to
G1 = G by setting u = v2 and v = v4, we may get a tree G′ such that LEE(G) <
LEE(G′). Clearly, we may partition the vertices of G and G′ in the same way, i.e.,
G′ has also a (p, q)-bipartition, which is a contradiction to the choice of G. Then
the diameter of G is at most three, i.e., G ∼= Sn(p, q). �

4 The first six maximum Laplacian Estrada in-
dices of trees

Lemma 4. ([18]) Let u be a vertex of a tree Q with at least two vertices. For integer
a ≥ 1, let G1 be the tree obtained by attaching a star Sa+1 at its center v to u of Q,
and G2 be the tree obtained by attaching a+ 1 pendent vertices to u of Q, see Fig.
2. Then LEE(G1) < LEE(G2).

Lemma 5. ([18]) If G ∼= Sn(a, b) with a+ b = n, a ≥ b ≥ 5, then

LEE(G) < LEE(Sn(n− 4, 4)) < LEE(Sn(n− 3, 3)) < LEE(Sn(n− 2, 2)).
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Figure 2: The trees G1 and G2 in Lemma 4.

Recall that a caterpillar is a tree in which removal of all pendent vertices gives
a path.

Let Pn(n1, n2, n3) be the n-vertex caterpillar obtained from the path on five
vertices, say v0v1v2v3v4, by attaching ni pendent vertices to vi for i = 1, 2, 3, where
n1 + n2 + n3 = n− 5, n1 ≥ n3, n1, n2, n3 ≥ 0.

Applying Lemmas 4 and 5, Ilić and Zhou [18] showed that Sn(n−1, 1) and Sn(n−
2, 2) are respectively the unique trees with maximum and the second maximum
Laplacian Estrada indices, and the third maximum Laplacian Estrada index for
trees on n ≥ 6 vertices is uniquely achieved by Sn(n − 3, 3) or a caterpillar of
diameter four. Ilić and Zhou [18] also used computer to test the trees on n ≤ 22
vertices, and found that Sn(n− 3, 3) and Pn(0, n− 5, 0) are respectively the unique
trees with the third and the fourth maximum Laplacian Estrada indices.

Deng and Zhang [5] showed that LEE(Sn(n − 3, 3)) > LEE(Pn(0, n − 5, 0))
for n ≥ 6. Now we give another proof for this inequality. Applying Lemma 3 to
G1 = Pn(0, n−5, 0) by setting w to be the vertex with degree n−3 in Pn(0, n−5, 0),
we have LEE(Sn(n− 3, 3)) > LEE(Pn(0, n− 5, 0)).

In the following, we determine the unique trees with the third, the fourth, the
fifth and the sixth maximum Laplacian Estrada indices.

Lemma 6. ([2]) Let G be a graph on n vertices and vertex degrees d1 ≥ d2 ≥ · · · ≥
dn. Suppose that µ1 ≥ µ2 ≥ · · · ≥ µn = 0 are the Laplacian eigenvalues of G. If
G is not the vertex-disjoint union of the complete graph on s vertices and n − s
isolated vertices, then µs ≥ ds − s+ 2 for 1 ≤ s ≤ n.

Lemma 7. For n ≥ 8, LEE(Sn(n− 4, 4)) < LEE(Pn(n− 5, 0, 0)).

Proof. The case for n = 8 can be checked by direct calculation. Suppose in the
following that n ≥ 9.

Let φ(G, x) be the characteristic polynomial of L(G). By direct calculation,
φ(Sn(n−4, 4), x) = x(x−1)n−4f(x), where f(x) = x3− (n+ 2)x2 + (5n−14)x−n.

Let x1 ≥ x2 ≥ x3 be the roots of f(x) = 0. It is easily checked that f(1) =
3(n − 5) > 0, f(5) = −n + 5 < 0, f(n − 5

2 ) = 1
2n

2 − 5n + 55
8 > 0, implying that

x1 < n− 5
2 , x2 < 5, x3 < 1. Then LEE(Sn(n−4, 4)) < en−

5
2 +e5+e1+e0+(n−4)e1.

Let µ1 ≥ µ2 be the first two largest Laplacian eigenvalues of Pn(n− 5, 0, 0). By
Lemma 6, µ1 ≥ n−2, µ2 ≥ 2. Then LEE(Pn(n−5, 0, 0)) > en−2+e2+e0+(n−5)e1.
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Note that

(en−2 + e2 + e0 + (n− 5)e1)− (en−
5
2 + e5 + e1 + e0 + (n− 4)e1)

= en−2 − en− 5
2 + e2 − e5 − 2e1

> e8−2 − e8− 5
2 + e2 − e5 − 2e1 > 0,

and thus LEE(Sn(n− 4, 4)) < LEE(Pn(n− 5, 0, 0)). �

Lemma 8. For n ≥ 6, LEE(Pn(n− 5, 0, 0)) < LEE(Pn(0, n− 5, 0)).

Proof. By Lemma 2, we need only to show that

EE(L(Pn(n− 5, 0, 0))) < EE(L(Pn(0, n− 5, 0))).

Let H be the graph obtained by attaching a pendent vertex to a vertex of the
complete graph Kn−3. Denote by u the unique pendent vertex in H, v the unique
neighbor of u, and w a neighbor of v different from u in H. Let k be any positive
integer.

We will show that (H;u) ≺ (H;w). We construct a mapping f from Ak(H;u) to
Ak(H;w). For W ∈ Ak(H;u), let f(W ) be the walk obtained from W by replacing
its first and last vertex u by w. Obviously, f(W ) ∈ Ak(H;w) and f is an injection.
Since n ≥ 6, we have M2(H;w) = dH(w) = n − 4 > M2(H;u) = dH(u) = 1.
It follows that f is an injection but not a surjection for k = 2, implying that
(H;u) ≺ (H;w).

It is easily seen that L(Pn(n− 5, 0, 0)) (L(Pn(0, n− 5, 0)), respectively) can be
obtained by identifying u ∈ V (H) (w ∈ V (H), respectively) with an end vertex of
a single edge. Then the result follows from Lemma 1. �

Lemma 9. For n = n1 + n2 + n3 ≥ 8, LEE(Pn(n1, n2, n3)) < LEE(Sn(n− 4, 4))
if (n1, n2, n3) 6= (n− 5, 0, 0), (0, n− 5, 0).

Proof. By Lemma 4,

LEE(Pn(n1, n2, n3))

< min{LEE(Sn(n1 + n2 + 3, n3 + 2)), LEE(Sn(n1 + 2, n2 + n3 + 3))}

if n1 + 2 ≥ n2 + n3 + 3, and

LEE(Pn(n1, n2, n3))

< min{LEE(Sn(n1 + n2 + 3, n3 + 2)), LEE(Sn(n2 + n3 + 3, n1 + 2))}

if n1 + 2 < n2 + n3 + 3.
Clearly, n1 + n2 + 3 > n3 + 2 as n1 ≥ n3. If n3 + 2 ≥ 4, i.e., n3 ≥ 2, then

by Lemma 5, LEE(Sn(n1 + n2 + 3, n3 + 2)) ≤ LEE(Sn(n − 4, 4)), implying that
LEE(Pn(n1, n2, n3)) < LEE(Sn(n− 4, 4)).
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If n1 + 2 ≥ 4 and n2 + n3 + 3 ≥ 4, i.e., n1 ≥ 2 and n2 + n3 ≥ 1, then by Lemma
5, LEE(Sn(n1 + 2, n2 + n3 + 3)) ≤ LEE(Sn(n− 4, 4)) if n1 + 2 ≥ n2 + n3 + 3, and
LEE(Sn(n2 +n3 +3, n1 +2)) ≤ LEE(Sn(n−4, 4)) if n1 +2 < n2 +n3 +3, implying
that LEE(Pn(n1, n2, n3)) < LEE(Sn(n− 4, 4)).

We are left to consider the cases n3 ≤ 1, and n1 ≤ 1 or n2 + n3 ≤ 0. Obviously,
the case n2 + n3 ≤ 0 does not hold since (n1, n2, n3) 6= (n− 5, 0, 0). We need only
to consider the cases n3 ≤ 1 and n1 ≤ 1.

It is easily seen that Pn(n1, n2, n3) has an (n1 + n3 + 3, n2 + 2)-bipartition if
n1 +n3 + 3 ≥ n2 + 2, and an (n2 + 2, n1 +n3 + 3)-bipartition if n1 +n3 + 3 < n2 + 2.
Note that the case n1, n3 = 0 does not hold as (n1, n2, n3) 6= (0, n− 5, 0), and thus
n1 + n3 + 3 ≥ 4. If n2 + 2 ≥ 4, i.e., n2 ≥ 2, then by Theorem 1 and Lemma 5,
LEE(Pn(n1, n2, n3)) < LEE(Sn(n− 4, 4)).

Thus the remaining cases are n1, n2, n3 ≤ 1, recall that n ≥ 8, implying that
it only can be n1 = n2 = n3 = 1. By direct calculation, LEE(P8(1, 1, 1)) <
LEE(S8(4, 4)). Then the result follows. �

Theorem 2. The Laplacian Estrada indices of n-vertex trees with n ≥ 8 may be
ordered by the following inequalities, where G is an n-vertex tree different from any
other tree in the inequalities :

LEE(G) < LEE(Sn(n− 4, 4)) < LEE(Pn(n− 5, 0, 0))

< LEE(Pn(0, n− 5, 0)) < LEE(Sn(n− 3, 3))

< LEE(Sn(n− 2, 2)) < LEE(Sn(n− 1, 1)).

Proof. Recall that Sn(n − 1, 1) and Sn(n − 2, 2) are respectively the unique trees
with maximum and the second maximum Laplacian Estrada indices [18]. Let G
be an n-vertex tree different from Sn(n − 1, 1) and Sn(n − 2, 2). Obviously, the
diameter of G is at least three.

Suppose that the diameter of G is three. Then G ∼= Sn(a, b) for some integers
a, b with a+ b = n, a ≥ b ≥ 3. If b ≥ 5, then by Lemma 5, LEE(G) < LEE(Sn(n−
4, 4)) < LEE(Sn(n− 3, 3)).

If G is a caterpillar of diameter four (i.e., G ∼= Pn(n1, n2, n3)) different from
Pn(n− 5, 0, 0), Pn(0, n− 5, 0), then by Lemma 9, LEE(G) < LEE(Sn(n− 4, 4)).

Suppose that G is a non-caterpillar of diameter four. Suppose that G has a
(p, q)-bipartition, where p ≥ q ≥ 3. If q ≥ 4, then by Theorem 1 and Lemma
5, LEE(G) < LEE(Sn(n − 4, 4)). Suppose that q = 3. Let P = u0u1u2u3u4
be a diametrical path of G. Then G is a tree obtained by attaching x1 pendent
vertices to u1, a star Sx2

(x2 − 1, 1) at its center to u2, and x3 pendent vertices to
u3, where x1 ≥ x3 ≥ 0, x2 ≥ 2. If x1 ≥ 1, then by Lemmas 4 and 9, LEE(G) <
LEE(Pn(x1, x2, x3)) < LEE(Sn(n− 4, 4)). Suppose that x1 = 0. Then x3 = 0. If
n = 8, then by Lemmas 3 and 9, LEE(G) < LEE(P8(1, 1, 1)) < LEE(S8(4, 4)). If
n ≥ 9, then by Lemmas 4 and 5, LEE(G) < LEE(Sn(n− 4, 4)).

If the diameter of G is at least five, then by Lemma 4

LEE(G) < LEE(Pn(n1, n2, n3))
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for some non-negative integers n1, n2, n3 with (n1, n2, n3) 6= (n−5, 0, 0), (0, n−5, 0),
and thus by Lemma 9, LEE(G) < LEE(Sn(n− 4, 4)).

We have shown that LEE(G) < LEE(Sn(n− 4, 4)) if G 6∼= Sn(n− 3, 3), Sn(n−
4, 4), Pn(n− 5, 0, 0), Pn(0, n− 5, 0). By Lemmas 7, 8 and 3,

LEE(Sn(n− 4, 4)) < LEE(Pn(n− 5, 0, 0))

< LEE(Pn(0, n− 5, 0)) < LEE(Sn(n− 3, 3)).

Then the result follows. �
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