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Abstract. The object of the present paper is to study 3-dimensional trans-Sasakian manifolds admitting
Ricci solitons and gradient Ricci solitons. We prove that if (1,V, λ) is a Ricci soliton where V is collinear
with the characteristic vector field ξ, then V is a constant multiple of ξ and the manifold is of constant scalar
curvature provided α, β =constant. Next we prove that in a 3-dimensional trans-Sasakian manifold with
constant scalar curvature if 1 is a gradient Ricci soliton, then the manifold is either a β-Kenmotsu manifold
or an Einstein manifold. As a consequence of this result we obtain several corollaries.

1. Introduction

A Ricci soliton is a generalization of an Einstein metric. In a Riemannian manifold (M, 1), 1 is called a
Ricci soliton if [17]

£V1 + 2S + 2λ1 = 0, (1)

where £ is the Lie derivative, S is the Ricci tensor, V is a complete vector field on M and λ is a constant.
Metrics satisfying (1) are interesting and useful in physics and are often referred as quasi-Einstein (e.g.
[10, 19, 20]). Compact Ricci solitons are the fixed points of the Ricci flow ∂

∂t1 = −2S projected from the
space of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits
for the Ricci flow on compact manifolds. Theoretical physicists have also been looking into the equation of
Ricci soliton in relation with string theory. The initial contribution in this direction is due to Friedan who
discusses some aspects of it in [10].

The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and
positive respectively. If the vector field V is the gradient of a potential function− f , then 1 is called a gradient
Ricci soliton and equation (1) assumes the form ∇∇ f = S + λ1.

A Ricci soliton on a compact manifold has constant curvature in dimension 2 [17] and also in dimension
3 [21]. For details we refer to Chow and Knopf [3] and Derdzinski [1].

On the other hand, the roots of contact geometry lie in differential equations as in 1872 Sophus Lie
introduced the notion of contact transformation as a geometric tool to study systems of differential equations.
This subject has manifold connections with the other fields of pure mathematics, and substantial applications
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in applied areas such as mechanics, optics, phase space of dynamical system, thermodynamics and control
theory. For more details see [12, 18, 24, 25].

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric struc-
tures by Chinae and Gonzales [9], and they appear as a natural generalization of both Sasakian and
Kenmotsu manifolds. Again in the Gray-Hervella classification of almost Hermitian manifolds [2], there
appears a class, W4, of Hermitian manifolds which are closely related to locally conformal Kaehler mani-
folds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [15] if the
product manifold M×R belongs to the class W4. The class C6 ⊕C5 [14] coincides with the class of the trans-
Sasakian structures of type (α, β). In [14], the local nature of the two subclasses C5 and C6 of trans-Sasakian
structures is characterized completely. In [9], some curvature identities and sectional curvatures for C5, C6
and trans-Sasakian manifolds are obtained. It is known that [8] trans-Sasakian structures of type (0, 0), (0, β)
and (α, 0) are cosymplectic, β-Kenmotsu [8] and α-Sasakian [8], respectively.

The local structure of trans-Sasakian manifolds of dimension n ≥ 5 has been completely characterized
by J. C. Marrero [13]. He proved that a trans-Sasakian manifold of n ≥ 5 is either cosymplectic or α-Sasakian
or β-Kenmotsu.

In [16], Sharma has started the study of Ricci solitons in K-contact manifolds. In a K-contact manifold
the structure vector field ξ is Killing, that is, £ξ1 = 0,which is not in general, in a trans-Sasakian manifold.

Motivated by these circumtances in this paper we study Ricci solitons and gradient Ricci solitons in
three-dimensional trans-Sasakian manifolds. Throughout the paper we assume that α, β =constant.

The present paper is organized as follows: After Preliminaries in section 3, we give an example of
a 3-dimensional trans-Sasakian manifold with α, β =constant. In section 4, we study Ricci solitons in a
3-dimensional trans-Sasakian manifold and prove that if the vector field V is collinear with the Reeb vector
field ξ, then V is a constant multiple of ξ and the manifold is of constant scalar curvature. Also we prove that
if 1 is a Ricci soliton and V = ξ, then the Ricci soliton is shrinking. Finally we prove that if a 3-dimensional
trans-Sasakian manifold with constant scalar curvature admits gradient Ricci soliton, then the manifold is
either a β-Kenmotsu manifold or an Einstein manifold. As a consequence of this result we obtain several
corollaries.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure(ϕ, ξ, η, 1),
that is, ϕ is an (1, 1)-tensor field , ξ is a vector field , η is a 1-form and 1 is the compatible Riemannian metric
such that

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y),

1(X, ϕY) = −1(ϕX,Y), 1(X, ξ) = η(X),

for all X,Y ∈ TM ([4], [5]). The fundamental 2-form Φ of the manifold is defined by Φ(X,Y) = 1(X, ϕY), for
X,Y ∈ TM .

An almost contact metric structure (ϕ, ξ, η, 1) on a connected manifold M is called a trans-Sasakian
structure [15] if (M ×R, J, G) belongs to the class W4 [2], where J is the almost complex structure on M ×R
defined by J(X, f d/dt) = (ϕX − fξ, η(X)d/dt), for all vector fields X on M and smooth functions f on M×R ,
and G is the product metric on M ×R . This may be expressed by the condition [6]

(∇Xϕ)Y = α(1(X,Y)ξ − η(Y)X) + β(1(ϕX,Y)ξ − η(Y)ϕX), (2)

for smooth functions α and β on M. Here we say that the trans-Sasakian structure is of type (α, β). From the
formula (2) it follows that

∇Xξ = −αϕX + β(X − η(X)ξ), (3)
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(∇Xη)Y = −α1(ϕX,Y) + β1(ϕX, ϕY).

An explicit example of 3-dimensional proper trans-Sasakian manifold is constructed in [13]. In [23], the
Ricci tensor and curvature tensor for 3-dimensional trans-Sasakian manifolds are studied and their explicit
formulae are given.

From [23] we know that for a 3-dimensional trans-Sasakian manifold

2αβ + ξα = 0, (4)

S(X, ξ) = (2(α2 − β2) − ξβ)η(X) − Xβ − (ϕX)α,

S(X,Y) = (
τ
2
+ξβ− (α2−β2))1(X,Y)− (

τ
2
+ξβ−3(α2−β2))η(X)η(Y)− (Yβ+ (ϕY)α)η(X)− (Xβ+ (ϕX)α)η(Y),

and

R(X,Y)Z = (
τ
2
+ 2ξβ − 2(α2 − β2))(1(Y,Z)X − 1(X,Z)Y) − 1(Y,Z)[(

τ
2
+ ξβ − 3(α2 − β2))η(X)ξ

−η(X)(ϕ1radα − 1radβ) + (Xβ + (ϕX)α)ξ] + 1(X,Z)[(
τ
2
+ ξβ − 3(α2 − β2))η(Y)ξ

−η(Y)(ϕ1radα − 1radβ) + (Yβ + (ϕY)α)ξ] − [(Zβ + (ϕZ)α)η(Y) + (Yβ + (ϕY)α)η(Z)

+(
τ
2
+ ξβ − 3(α2 − β2))η(Y)η(Z)]X + [(Zβ + (ϕZ)α)η(X) + (Xβ + (ϕX)α)η(Z)

+(
τ
2
+ ξβ − 3(α2 − β2))η(X)η(Z)]Y,

where S is the Ricci tensor of type (0, 2), R is the curvature tensor of type (1, 3) and τ is the scalar curvature
of the manifold M.

For α, β =constant the above relations become

S(X,Y) = (
τ
2
− (α2 − β2))1(X,Y) − (

τ
2
− 3(α2 − β2))η(X)η(Y), (5)

S(X, ξ) = 2(α2 − β2)η(X), (6)

R(X,Y)ξ = (α2 − β2)(η(Y)X − η(X)Y), (7)

QX = (
τ
2
− (α2 − β2))X − (

τ
2
− 3(α2 − β2))η(X)ξ. (8)

From (4) it follows that if α, β =constant, then the manifold is either α-Sasakian or β-Kenmotsu or cosym-
plectic.

Proposition 2.1. A 3-dimensional trans-Sasakian manifold with α, β =constant, is either α-Sasakian or β-Kenmotsu
or cosymplectic.

We note that α-Sasakian manifolds are quasi-Sasakian [7]. They provide examples of C(λ)-manifolds
with λ > 0.

A β-Kenmotsu manifold is a C(−β2)-manifold.
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are

local products of a Kaehler manifold and real line or a circle [11].

3. Example of a 3-dimensional trans-Sasakian manifold

In this section we give an example of a 3-dimensional trans-Sasakian manifold with α, β =constant.
We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z , 0}, where (x, y, z) are the standard

coordinates in R3. The vector fields

e1 = z
∂
∂x
, e2 = z

∂
∂y
, e3 = z

∂
∂z
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are linearly independent at each point of M. Lat 1 be the Riemannian metric defined by

1(e1, e3) = 1(e2, e3) = 1(e1, e2) = 0,
1(e1, e1) = 1(e2, e2) = 1(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = 1(Z, e3) for any Z ∈ χ(M). Let ϕ be the (1, 1) tensor field defined by
ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0. Then using linearity of ϕ and 1we have

η(e3) = 1, ϕ2Z = −Z + η(Z)e3,

1(ϕZ, ϕW) = 1(Z,W) − η(Z)η(W),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (ϕ, ξ, η, 1) defines an almost contact metric structure on M. Now, by
direct computations we obtain [e1, e2] = 0 [e2, e3] = −e2, [e1, e3] = −e1.

The Riemannian connection ∇ of the metric tensor 1 is given by the Koszul’s formula which is

21(∇XY,Z) = X1(Y,Z) + Y1(Z,X) − Z1(X,Y) − 1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y]). (9)

Using (9) we have

21(∇e1 e3, e1) = 21(−e1, e1),
21(∇e1 e3, e2) = 0 = 21(−e1, e2),
21(∇e1 e3, e3) = 0 = 21(−e1, e3).

Hence ∇e1 e3 = −e1. Similarly, ∇e2 e3 = −e2 and ∇e3 e3 = 0. Equation (9) further yields

∇e1 e2 = 0, ∇e1 e1 = e3,

∇e2 e2 = e3, ∇e2 e1 = 0,
∇e3 e2 = 0, ∇e3 e1 = 0.

We see that

(∇e1ϕ)e1 = ∇e1ϕe1 − ϕ∇e1 e1 = −∇e1 e2 − ϕe3 = −∇e1 e2 = 0 (10)
= 0(1(e1, e1)e3 − η(e1)e1) − 1(1(ϕe1, e1)e3 − η(e1)ϕe1).

(∇e1ϕ)e2 = ∇e1ϕe2 − ϕ∇e1 e2 = −∇e1 e1 − 0 = e3 (11)
= 0(1(e1, e2)e3 − η(e2)e1) − 1(1(ϕe1, e2)e3 − η(e2)ϕe1).

(∇e1ϕ)e3 = ∇e1ϕe3 − ϕ∇e1 e3 = 0 + ϕe1 = −e2 (12)
= 0(1(e1, e3)e3 − η(e3)e1) − 1(1(ϕe1, e3)e3 − η(e3)ϕe1).

By (10), (11) and (12) we see that the manifold satisfies (2) for X = e1, α = 0, β = −1, and e3 = ξ. Similarly, it
can be shown that for X = e2 and X = e3 the manifold also satisfies (2) for α = 0, β = −1, and e3 = ξ. Hence
the manifold is a trans-Sasakian manifold of type (0,−1).

4. Ricci soliton

Let M be a 3-dimensional trans-Sasakian manifold with metric 1. A Ricci soliton is a generalization of
an Einstein metric and defined on a Riemannian manifold (M, 1) by

£V1 + 2S + 2λ1 = 0. (13)

Let V be pointwise collinear with ξ i.e. V = bξ, where b is a function on the 3-dimensional trans-Sasakian
manifold. Then (£V1 + 2S + 2λ1)(X,Y) = 0, implies

1(∇Xbξ,Y) + 1(∇Ybξ,X) + 2S(X,Y) + 2λ1(X,Y) = 0,
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or,

b1((∇Xξ,Y) + (Xb)η(Y) + b1(∇Yξ,X) + (Yb)η(X) + 2S(X,Y) + 2λ1(X,Y) = 0.

Using (3), we obtain

b1(−αϕX+β(X−η(X)ξ),Y)+ (Xb)η(Y)+ b1(−αϕY+β(Y−η(Y)ξ),X)+ (Yb)η(X)+2S(X,Y)+2λ1(X,Y) = 0,

which yields

2bβ1(X,Y) − 2bβη(X)η(Y) + (Xb)η(Y) + (Yb)η(X) + 2S(X,Y) + 2λ1(X,Y) = 0. (14)

In (14) replacing Y by ξ it follows that

Xb + (ξb)η(X) + 2(2(α2 − β2)η(X)) + 2λη(X) = 0. (15)

Again putting X = ξ in (15) yields ξb = −2(α2 − β2) − λ.
Putting this value in (15), we get

Xb + (−2(α2 − β2) − λ)η(X) + 2(2(α2 − β2))η(X) + 2λη(X) = 0,

or,

db = −{λ + 2(α2 − β2)}η. (16)

Applying d on (16), we get {λ + 2(α2 − β2)}dη = 0.
Since dη , 0 we have

λ + 2(α2 − β2) = 0. (17)

Using (17) in (16) yields b is a constant. Therefore from (14) it follows

S(X,Y) = −(λ + bβ)1(X,Y) + bβη(X)η(Y),

which implies that M is of constant scalar curvature provided β =constant. This leads to the following:

Theorem 4.1. If in a 3-dimensional trans-Sasakian manifold the metric 1 is a Ricci soliton and V is pointwise
collinear with ξ, then V is a constant multiple of ξ and 1 is of constant scalar curvature provided β = constant.

Now let V = ξ. Then the equation (13) reduces to

£ξ1 + 2S + 2λ1 = 0. (18)

Using (3), we get

(£ξ1)(X,Y) = 2β{1(X,Y) − η(X)η(Y)}. (19)

Therefore

A(X,Y) = (£ξ1 + 2S)(X,Y) = (£ξ1)(X,Y) + 2S(X,Y). (20)

Now using (5) and (19) from (20) we obtain

A(X,Y) = 2β{1(X,Y) − η(X)η(Y)} + 2{(τ
2
− (α2 − β2))1(X,Y) − (

τ
2
− 3(α2 − β2))η(X)η(Y)}. (21)

Applying (21) in (18) we get

2{β − (α2 − β2) + λ}1(X,Y) − 2{β − τ
2
+ 3(α2 − β2)}η(X)η(Y) = 0. (22)

Now taking X = Y = ξ in (22) we obtain λ = 2(β2 − α2).
Since α2 , β2, Therefore λ > 0 and Ricci soliton is shrinking.

Theorem 4.2. If a 3-dimensional trans-Sasakian manifold admits a Ricci soliton (1, ξ, λ) then the Ricci soliton is
shrinking.
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5. Gradient Ricci Soliton

If the vector field V is the gradient of a potential function − f then 1 is called a gradient Ricci soliton and
(13) assume the form

∇∇ f = S + λ1. (23)

This reduces to

∇YD f = QY + λY, (24)

where D denotes the gradient operator of 1. From (24) it follows

R(X,Y)D f = (∇XQ)Y − (∇YQ)X. (25)

Differentiating (8) we have

(∇WQ)(X) =
dτ(W)

2
(X − η(X)ξ)− (

τ
2
− 3(α2 − β2))(−α1(ϕW,X)+ β(1(W,X)− η(X)η(W))+ η(X)∇Wξ). (26)

In (26) replacing W by ξ yields

(∇ξQ)(X) =
dτ(ξ)

2
(X − η(X)ξ).

Then we have

1((∇ξQ)(X) − (∇XQ)(ξ), ξ) = 1(
dτ(ξ)

2
(X − η(X)ξ), ξ) =

dτ(ξ)
2

(1(X, ξ) − η(X)) = 0. (27)

Using (27) from (25), we obtain

1(R(ξ,X)D f , ξ) = 0. (28)

From (7) we get

1(R(ξ,Y)D f , ξ) = (α2 − β2)(1(Y,D f ) − η(Y)η(D f )).

Using (28) in the above equation yields

(α2 − β2)(1(Y,D f ) − η(Y)η(D f )) = 0,

or,

(α2 − β2)(1(Y,D f ) − η(Y)1(D f , ξ)) = 0,

which implies

D f = (ξ f )ξ, since α2 , β2. (29)

Using (29) in (24)

S(X,Y) + λ1(X,Y) = 1(∇YD f ,X) = 1(∇Y(ξ f )ξ,X)
= (ξ f )1(∇Yξ,X) + Y(ξ f )η(X)
= (ξ f )1((−αϕY + β(Y − η(X)ξ),X) + Y(ξ f )η(X) (30)
= −α(ξ f )1(ϕY,X) + β(ξ f )1(Y,X) − β(ξ f )η(Y)η(X) + Y(ξ f )η(X).
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Putting X = ξ in (30) and using (6) we get

S(Y, ξ) + λη(Y) = Y(ξ f ) = {λ + 2(α2 − β2)}η(Y). (31)

Interchanging X and Y in (30) we obtain

S(X,Y) + λ1(X,Y) = −α(ξ f )1(Y, ϕX) + β(ξ f )1(X,Y) − β(ξ f )η(X)η(Y) + X(ξ f )η(Y). (32)

Adding (30) and (32) we get

2S(X,Y) + 2λ1(X,Y) = 2β(ξ f )1(X,Y) − 2β(ξ f )η(X)η(Y) + Y(ξ f )η(X) + X(ξ f )η(Y). (33)

Using (31) in (33) we have

S(X,Y) + λ1(X,Y) = β(ξ f ){1(X,Y) − η(X)η(Y)} + (λ + 2(α2 − β2))η(X)η(Y).

Then using (24) we have

∇YD f = β(ξ f )(Y − η(Y)ξ) + (λ + 2(α2 − β2))η(Y)ξ. (34)

Using (34) we calculate

R(X,Y)D f = ∇X∇YD f − ∇Y∇XD f − ∇[X,Y]D f
= βX(ξ f )Y − βY(ξ f )X + βY(ξ f )η(X)ξ − βX(ξ f )η(Y)ξ
+(λ + 2(α2 − β2) − β(ξ f ))((∇Xη)(Y)ξ − (∇Yη)(X)ξ) (35)
+(λ + 2(α2 − β2) − β(ξ f ))((∇Xξ)η(Y) − (∇Yξ)η(X)).

Taking inner product with ξ in (35),we get

0 = 1(R(X,Y)D f , ξ) = 2α(λ + 2(α2 − β2) − β(ξ f ))1(ϕY,X).

Thus we have 2α(λ + 2(α2 − β2) − β(ξ f )) = 0.
Now we consider the following cases:
Case i) α = 0, or

Case ii) λ + 2(α2 − β2) − β(ξ f ) = 0,
Case iii) α = 0 and λ + 2(α2 − β2) − β(ξ f ) = 0.

Case i) If α = 0, then the manifold reduces to a β-Kenmotsu manifold.
Case ii) Let λ+2(α2−β2)−β(ξ f ) = 0. If we use this in (31) we get Y(ξ f ) = β(ξ f )η(Y). Substitute this value

in (33) we obtainS(X,Y)+ λ1(X,Y) = β(ξ f )1(X,Y). Contracting this equation, we get τ+ 3λ = 3β(ξ f ), which
implies that

(ξ f ) =
τ
3β
+
λ
β
.

If τ =constant, then (ξ f ) =constant= c(say). Therefore from (29) we have D f = (ξ f )ξ = cξ. Thus we can
write from this equation 1(D f ,X) = cη(X), which means that d f (X) = cη(X). Applying d this, we get cdη = 0.
Since dη , 0, we have c = 0. Hence we get D f = 0. This means that f =constant. Therefore equation (23)
reduces toS(X,Y) = 2(α2 − β2)1(X,Y), that is, M is an Einstein manifold.

Case iii) Using α = 0 and λ + 2(α2 − β2) − β(ξ f ) = 0 in (31) we obtain Y(ξ f ) = β(ξ f )η(Y). Now as in Case
ii) we conclude that the manifold is an Einstein manifold.

Thus we have the following:

Theorem 5.1. If a 3-dimensional trans-Sasakian manifold with constant scalar curvature admits gradient Ricci
soliton, then the manifold is either a β-Kenmotsu manifold or an Einstein manifold provided α, β =constant.
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In a recent paper De and Sarkar [22] proved that if a 3-dimensional compact connected trans-Sasakian
manifold is of constant curvature, then it is either α-Sasakian or β-Kenmotsu. Since for a 3-dimensional
Riemannian manifold constant curvature and Einstein manifold are equivalent, therefore from the Theorem
3 we state the following:

Corollary 5.2. If a compact 3-dimensional trans-Sasakian manifold with constant scalar curvature admits Ricci
soliton, then the manifold is either α-Sasakian or β-Kenmotsu.

Also in [22] authors proved that a 3-dimensional connected trans-Sasakian manifold is locally ϕ-
symmetric if and only if the scalar curvature is constant provided α and β are constants. Hence from
Theorem 3 we obtain the following:

Corollary 5.3. If a locally ϕ-symmetric 3-dimensional connected trans-Sasakian manifold admits gradient Ricci
soliton, then the manifold is either β-Kenmotsu manifold or an Einstein manifold provided α, β =constant.
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