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Abstract. We introduce several kinds of generalized continuities and homeomorphisms in computer
topology and investigate some properties of function spaces of these generalized continuous maps and
classify generalized computer topological spaces up to each of these generalized homeomorphisms.

1. Introduction

Since many results in computer topology (or digital topology) are recently shown, the paper starts with a
brief review of computer topological researches for continuities, homeomorphisms and digital connectivity.
By N and Z we denote the sets of all natural numbers and integer numbers, respectively. In digital topology
several approaches have been proposed for the study of a set X ⊆ Zn, as follows.

(1) The digital topological approach was introduced in [24] with k-adjacency relations of Zn,n ∈ N.
(2) The connected order topological space was introduced in [18], which recovers the structure of a

topology.
(3) The complex cell approach was developed in [20], by which an object is recognized as a structure

consisting of different dimensional cells. This approach can recover the structure of a topology.
(4) The Alexandroff topological approach was established in [1], by which gives a link between a

T0-Alexandroff topology and a partially ordered set.
This paper follows the Khalimsky product topology for the study of a subspace (X,Tn

X) ⊆ (Zn,Tn)
induced by the Khalimsky n-space (Zn,Tn). This approach provides a sound mathematical basis for digital
geometry such as image thinning, border tracking, contour filling, and object counting in which topological
problems issue. For instance, in [4], the θ-generalized homeomorphism was studied and further, in [21],
an extension problem of a Khalimsky continuous map f : A→ Z for A ⊆ Zn was treated under Khalimsky
topology. Meanwhile, the Khalimsky continuity has some limitations [16] related to both a preservation of
digital connectivity and a translation of digital objects. Consider a set X ⊆ Zn with one of the k-adjacency
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relation of Zn, denoted by (X, k). Studying a map f : (X, k0) → (Y, k1), we may consider that for two points
x0 and x1 are k0-adjacent their images by f are required to be k1-adjacent or equal to each other [2]. Thus,
the notion of digital (k0, k1)-continuity was introduced [2, 6].

Meanwhile, we observe that continuity of maps between two Khalimsky topological spaces (X, k0,Tn0
X )

with a k0-adjacency and (Y, k1,Tn1
Y ) with a k1-adjacency, denoted by f : (X, k0,Tn0

X ) → (Y, k1,Tn1
Y ), need

not satisfy the requirement of preserving the k0-connectivity of (X, k0,Tn0
X ) into the k1-one of (Y, k1,Tn1

Y )
[12, 16] (see also Remark 3.5). This is a reason why we use the (k0, k1)-continuity of Definition 3.3. To
be specific, if a space (X,Tn0

X ) is not connected in Khalimsky topology, then a Khalimsky continuous map
f : (X, k0,Tn0

X ) → (Y, k1,Tn1
Y ) cannot preserve the k0-connectivity into the k1-one of (Y, k1,Tn1

Y ) (see Figure
1). In relation to the study a set X ⊆ Zn from the viewpoint of digital topology, the preservation of the
k0-connectivity into the k1-connectivity should be considered. If not, the map cannot preserve lots of
information of (X, k0,Tn0

X ) into (Y, k1,Tn1
Y ). Thus, studying (X, k,Tn

X), we strongly need KD-(k0, k1)-continuity
[12, 15, 16]. This is one of the reasons why we study computer topological space by using several kinds
of generalized continuities(homeomorphisms) including KD-(k0, k1)-continuity(homeomorphism). In [12]
several kinds of continuities and homeomorphisms in computer topology such as KD-(k0, k1)-, (k0, k1)-and
K-(k0, k1)-continuities ( or homeomorphisms) were introduced and compared with each other. In [16] a
generalized KD-(k0, k1)-continuity was established and computer topological function space consisting of
generalized KD-(k0, k1)-continuous maps was studied. In [23], the notion of δ-continuity was introduced.
Finally, in [5, 22, 25] various continuities including super continuity were established. Motivated from the
above-mentioned continuities, we can study various continuities in computer topology.

This paper is organized as follows. Section 2 gives basic notions which underpin our work. Section
3 studies the notion of GKD-(k0, k1)-continuity and its properties. Section 4 shows some topologies on the
set of all GKD-(k0, k1)-continuous functions. Section 5 studies various properties of GKD-(k0, k1)-continuity.
Section 6 establishes several kinds of generalized homeomorphisms and investigates their various prop-
erties from the viewpoint of computer topology and further, classifies generalized computer topological
spaces up to each of generalized homeomorphisms. Finally, Section 7 concludes the paper with a summary.

2. Preliminaries

For basic concepts of this section see [9–13, 19, 24]. For {a, b} ⊆ Z with a � b, [a, b]Z = {n|a ≤ n ≤ b,n ∈ Z}
is a digital interval considered as a discrete topological subspace of Z [2] or a subspace ([a, b]Z,T[a,b]Z ) of the
Khalimsky line topology (Z,T) depending on the situation.

Let n ∈ N, Zn = Z × · · · × Z︸       ︷︷       ︸
n−times

, and p = (p1, . . . , pn) and q = (q1, . . . , qn) ∈ Zn. We say that the points p and q

are k-(or k(m,n)-) adjacent according to m, where m ∈ N with m ∈ [1,n]Z, if
(1) there are at most m indices i such that |pi − qi| = 1, and
(2) for all other indices i such that |pi − qi| , 1, we have pi = qi.
Let the number k be the cardinality of the set of points k-adjacent to given a point of Zn corresponding to

the positive integer m with m ∈ [1, n]Z. This operator consisting of these two items (1) and (2) is called k(m,n)
(briefly, km or k)-adjacency of Zn. Finally, we obtain the adjacency relations of Zn [6] (see also [8, 14, 15]), as
follows.

k := k(m,n) =
n−1∑

i=n−m

2n−iCn
i , (2.1)

where Cn
i =

n!
(n−i)! i! . Hereafter, each space X ⊆ Zn is assumed with one of the k-adjacency relations of Zn in

(2.1) and is denoted by (X, k).
In order to study a set A ⊆ Zn with a k-adjacency, we recall the following notions. A digital picture is

represented as a quadruple (Zn, k, k̄,X), where X is a subset of Zn, k is an adjacency relation for X, and k̄ is
an adjacency relation for Zn \ X [24], and n ∈ N. The pair (X, k) in (Zn, k, k̄,X) is called a (binary) space with a
k-adjacency (or briefly, a space) [19, 20, 24]. In this paper we are concerned with only the k-adjacency of X.
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For the basic concepts of this section, see [11, 12, 19, 24]. For {a, b} ⊆ Z with a � b, [a, b]Z = {a ≤ n ≤ b|n ∈ Z}
is considered in (Z, 2, 2, [a, b]Z) [2]. But in this paper we will not concern with the k̄-adjacency of Zn \ X.

We say that a set of lattice points is k-connected if it is not a union of two disjoint non-empty sets that are
not k-adjacent to each other [19]. Thus a singleton set with a k-adjacency is k-connected. For a space (X, k)
in Zn, two distinct points x, y ∈ X are called k-connected if there is a sequence (x0 = x, x1, · · · , xm = y) ⊆ X
such that xi and xi+1 are k-adjacent, i ∈ [0,m − 1]Z,m ∈ N \ {1} [19]. Then we call it a k-path. The length of a
k-path is called the number m [19]. A simple k-curve is considered as a k-path (x0, x1, · · · , xm) ⊆ Zn such that
xi and x j are k-adjacent if and only if j = i ± 1 [19]. Furthermore, a simple closed k-curve with l elements in
Zn is a k-path (w0,w1, · · · ,wl−1) derived from a simple k-curve (w0,w1, · · · ,wl−1,wl) with w0 = wl, where wi
and w j are k-adjacent if and only if j = i + 1(mod l) or i = j + 1(mod l) [19]. The length of the simple k-path,
denoted by lk(x0, xl−1), is the number l. Let SCn,l

k denote a simple closed k-curve with l elements in Zn [9].
Let us now recall basic notions of Khalimsky topology as follows. The Khalimsky line topology on Z is

generated by the following subbasis {[2n − 1, 2n + 1]Z|n ∈ Z} [4] and is denoted by (Z,T). Furthermore, the
product topology on Zn derived from (Z,T) is called the Khalimsky product topology on Zn (or the Khalimsky
n-space), n ≥ 2, and is denoted by (Zn,Tn) [3, 4]. Indeed, in the Khalimsky line (Z,T), since the singletons
{2n|n ∈ Z} and {2n + 1|n ∈ Z} are closed and open, respectively, we can see that the union of any subsets of
the closed sets is also closed. Furthermore, for a subset X ⊆ Zn, we consider the subspace (X,Tn

X) induced
from the Khalimsky n-space (Zn,Tn). Moreover, the topological research area of the space (X,Tn

X) with some
k-adjacency relations is called computer topology in this paper.

Let us examine the structure of the Khalimsky n-space. A point x = (x1, x2, · · · , xn) ∈ Zn is open if all
coordinates are odd, and closed if each of the coordinates is even [4, 14, 21]. These points are called pure and
the other points in Zn is called mixed. In all subspaces in (Zn,Tn),n ≥ 2, of Figure 1, black big circle means a
pure open point, and the symbols � and •mean a pure closed point and a mixed point, respectively.
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Figure 1: Comparison between Khalimsky continuity and KD-(8, 2)-continuity

3. GKD-(k0, k1)-continuity

For a set X in Zn with a k-adjacency (X, k), in order to establish the notion of KD-(k0, k1)-continuity, we
now recall the digital (topological) k-neighborhood in [6], as follows.

Definition 3.1. ([6], see also [7–10]) Let (X, k) be a space in Zn with one of the k-adjacency of Zn, x, y ∈ X,
and ε ∈ N. By Nk(x, ε) we denote the set

{y ∈ X|lk(x, y) ≤ ε} ∪ {x}, ε ∈ N,
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where lk(x, y) is the length of a shortest simple k-path x to y in X. Besides, we say that lk(x, y) = ∞ if there is
no k-path from x to y.

Thus, if the k-component of x is the singleton {x}, then we see that Nk(x, ε) = {x} for any ε ∈ N. For the
Khalimsky n-space (Zn,Tn) and a subset X ⊆ Zn, we obtain the subspace (X,Tn

X) induced by (Zn,Tn), where
Tn

X = {O ∩ X|O ∈ Tn}.

Definition 3.2. ([6], see also [12, 16]) We say that a space (X,Tn
X) with a k-adjacency is a (computer topological)

space and use the notation (X, k,Tn
X)(briefly, Xn,k).

Let us now recall that f : Xn0,k0 → Yn1,k1 is Khalimsky continuous at a point x0 ∈ X if for any O f (x0) ∈ Tn1
Y

there is Ox0 ∈ Tn0
X satisfying f (Ox0 ) ⊆ O f (x0) as usual.

Definition 3.3. ([12]) For two spaces Xn0,k0 and Yn1,k1 , we say that a function f : X → Y is Khalimsky
continuous with digital (k0, k1)-continuity (briefly, KD-(k0, k1)-continuous) at a point x0 ∈ X if

(1) f is Khalimsky continuous at the point x0; and
(2) for any Nk1 ( f (x0), ε) ⊆ Y, there is Nk0 (x0, δ) ⊆ X such that f (Nk0 (x0, δ)) ⊆ Nk1 ( f (x0), ε), where ε, δ ∈ N.
Furthermore, we say that a map f : X→ Y is KD-(k0, k1)-continuous if the map f is KD-(k0, k1)-continuous

at any point x ∈ X.

Remark 3.4. The current condition (2) of Definition 3.3 is the digital (k0, k1)-continuity in [6] (see also [7–10])
which is exactly focused on the preservation of the k0-connectivity of (X, k0) into the k1-connectivity of (Y, k1).
Thus in Definition 3.3 we may write δ = 1 = ε (see [13]).

Indeed, owing to the condition (1) of Definition 3.3 (see Remark 3.5), we observe that there is a big
difference between the digital (k0, k1)-continuity in [6–10] and the current KD-(k0, k1)-continuity.

Remark 3.5. ([12], see also [16]) Neither of the conditions (1) and (2) of Definition 3.3 implies the other. To
be specific, consider a space (A, 8,T2

A) in Figure 1 and the map f : A → Z with the mapping in Figure 1.
Then, while the map f is a Khalimsky continuous map, f cannot satisfy the condition (2) of Definition 3.3
at the points x7 and x8, which means that the condition (1) of Definition 3.3 does not imply the condition
(2) of Definition 3.3.

Meanwhile, in general, since the digital k-neighborhood Nk(x, ε) need not be a Khalimsky topological
neighborhood in Xn,k, the condition (2) may not imply the condition (1) of Definition 3.3.

In terms of the condition (2) of Definition 3.3 with δ = 1 = ε, the paper [2] (see also [10, 11]) define
the notion of (k0, k1)-isomorphism. Precisely, a discrete topological space with a k-adjacency (X, k) can be
recognized to be a digital k-graph Gk [10]. To be specific, the vertex set of Gk can be considered as the set of
points of X. Besides, two points x1, x2 ∈ X determine a k-edge of Gk if and only if x1 and x2 are k-adjacent in
X [10]. Indeed, a space (X, k) can be considered as a simplicial complex via a geometric realization of (X, k)
[10]. Thus digital graph versions of (k0, k1)-continuity and (k0, k1)-homeomorphism in [2] were established
[10].

Definition 3.6. ([2], see also [10, 13]) For two digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X→ Y
is called a (k0, k1)-isomorphism if h is a digitally (k0, k1)-continuous bijection and further, h−1 : Y → X is
digitally (k1, k0)-continuous. Then we use the notation X ≈(k0,k1) Y. If n0 = n1 and k0 = k1, then we call it a
k0-isomorphism and use the notation X ≈k0 Y.

Obviously, we have the computer topological category consisting of a collection Ob(C) of computer
topological spaces with k-adjacency relations of Zn and a class Mor(X,Y) of KD-(k0, k1)-continuous maps for
each pair Xn0,k0 and Yn1,k1 in Ob(C), denoted by KDTC [12].

Motivated by the cartesian product adjacency of [17], we obtain an N-compatible adjacency of a digital
product [16]. This can strongly contribute to the study a digital function space. In order to study related to
some product properties of a function space in Sections 4, 5, and 6, we take the following notion which is a
convenient presentation of the N-compatible of a digital product in [16].



D.N. Georgiou, S.E. Han / Filomat 26:3 (2012), 539–552 543

Definition 3.7. ([16]) For two digital spaces (X, k1) in Zn1 and (Y, k2) in Zn2 we say that two distinct points
(x, y), (x′, y′) ∈ X × Y are normally compatible (briefly, N-compatible) k-adjacent with the ki-adjacency,
i ∈ {1, 2}, if

(1) (x′, y′) ∈ Nk((x, y), 1)⇒ x′ ∈ Nk1 (x, 1), y′ ∈ Nk2 (y, 1), and
(2) the k- (or k(m,n1 + n2)−) adjacency of X ×Y is determined by some number m with m ≥ max{m1,m2},

where the number mi is taken from the ki-(or ki(mi, ni)-)adjacency, i ∈ {1, 2}.

Theorem 3.8. ([16]) For (Xi, ki), i ∈ {1, 2}, assume X1 × X2 with an N-compatible adjacency. Then, the natural
projection map pi : X1 × X2 → Xi is a (k, ki)-continuous map.

Hereafter, we study that for two computer topological spaces (Xi)ni,ki , i ∈ {1, 2}, the cartesian product
space (X1 × X2, k,Tn1+n2

X1×X2
) is assumed to have an N-compatible k-adjacency in relation with the k1-and the

k2-adjacency. Indeed, an N-compatible adjacency of a cartesian product plays an important role in studying
a computer topological product space in relation with the study of a computer topological function space
in Sections 4 and 5.

In general, on Z we can consider many topologies. For example, we can consider the Scott topology and
the upper topology(for more details, see [5]).

Precisely, we recall the following notion [16].
(1) Let z ∈ Z and ↑ z = {x ∈ Z|z ≤ x}. The family consisting of Z and the set {↑ z|z ∈ Z}, as a base, defines

a topology on Z, denoted here by τup.
Furthermore, we can consider the product topology τn

up on Zn derived from the topology τup.
(2) Let z ∈ Z and ↓ z = {x ∈ Z|x ≤ z}. The family consisting of Z and the set {↓ z|z ∈ Z}, as a base, defines

a topology on Z, denoted here by τlo, which is called lower topology.
Besides, we can consider the product topology τn

lo on Zn derived from the topology τlo.

Definition 3.9. ([16]) Let τ be an arbitrary topology on Z and let τn be a product topology on Zn induced
from (Z, τ). For X ⊆ Zn, consider the subspace (X, τn

X) induced from (Zn, τn). Furthermore, considering the
topological space (X, τn

X) with a k-adjacency, we call it a generalized computer topological space with a k-adjacency
and use the notation (X, k, τn

X).

If τn is the Khalimsky product topology Tn, then the notion of generalized computer topological space
coincides with the notion of computer topological space (X,Tn

X).

Definition 3.10. ([16]) Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and

x0 ∈ X. A function f : X→ Y is called generalized (k0, k1)-continuous at the point x0 if
(1) f is topologically continuous at the point x0 and
(2) for Nk1 ( f (x0), 1) ⊆ Y, there is Nk0 (x0, 1) ⊆ X such that f (Nk0 (x0, 1)) ⊆ Nk1 ( f (x0), 1).
Besides, we say that the map f : X → Y is generalized KD-(k0, k1)-continuous (briefly, GKD-(k0, k1)-

continuous) if the map f is generalized KD-(k0, k1)-continuous at any point x ∈ X.

If τ is the Khalimsky line topology T, then the notion of GKD-(k0, k1)-continuity coincides with the notion
of KD-(k0, k1)-continuity.

As an analog of computer topological category we obtain the following theorem.

Theorem 3.11. ([16]) (1) Let (X, k, τn
X) be a generalized computer topological space. Then, the identity map 1X is

GKD-(k, k)-continuous.
(2) Let (X, k0, τ

n1
X ), (Y, k1, τ

n2
Y ), and (Z, k2, τ

n3
Z ) be three generalized computer topological spaces. If a map f1 : X→ Y

is GKD-(k0, k1)-continuous and a map f2 : Y→ Z is GKD-(k1, k2)-continuous, then the composite map f2◦ f1 : X→ Z
is GKD-(k0, k2)-continuous.

(3) For a GKD-(k0, k1)-continuous map f : (X, k0, τ
n0
X )→ (Y, k1, τ

n1
Y ), f ◦ 1X = 1Y ◦ f = f , where “◦” stands for

the composition. Moreover, for a KD-(k0, k1)-continuous map f : (X, k0, τ
n0
X )→ (Y, k1, τ

n1
Y ), a KD-(k1, k2)-continuous

map 1 : (Y, k1, τ
n1
Y ) → (Z, k2, τ

n2
Z ), and a KD-(k2, k3)-continuous map h : (Z, k2, τ

n2
Z ) → (W, k3, τ

n3
W), we see that

h(◦1 ◦ f ) = (h ◦ 1) ◦ f .
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Consequently, we have the category consisting of a collection Ob(C) of computer topological spaces with a k-
adjacency relations of Zn and a class Mor(X,Y) of GKD-(k0, k1)-continuous maps for each pair (X, k0, τ

n0
X ) and

(Y, k1, τ
n1
Y ) in Ob(C).

By Theorem 3.8, we can establish the category of set of all GKD-(k0, k1)-continuous maps denoted by
GKDTC.

Theorem 3.12. ([16]) Let (X, k1, τ
n1
X ), (Y, k2, τ

n2
Y ), and (Z, k3, τ

n3
Z ) be three generalized computer topological spaces.

Assume that each of the product spaces (X × Z, k, τn1+n3
X×Z ) and (Y × Z, k′, τn2+n3

Y×Z ) is well defined with an N-compatible
k-adjacency. If a map f : X→ Y is a GKD-(k1, k2)-continuous map, then the product map f × id : X ×Z→ Y ×Z is
GKD-(k, k′)-continuous, where id : Z→ Z is the identity map.

The following simple closed 8-curve on Z2 in [8–10] and a simple closed 26-curves on Z3 will be often
used later in this paper.

SC2,8
4 ≈4 ((0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0)),

SC2,6
8 ≈8 ((0, 0), (1, 1), (1, 2), (0, 3), (−1, 2), (−1, 1)),

SC3,6
18 := ((0, 0, 0), (1,−1, 0), (1,−1, 1), (2, 0, 1), (1, 1, 1), (1, 1, 0)).

SC2,4
8 ≈8 ((0, 0), (1, 1), (0, 2), (−1, 1)).


(3.1)

Remark 3.13. Contrary to the hypothesis of Theorem 3.12, if the existence of an N-compatible k-adjacency
of X × Z or Y × Z is not allowed, the assertion of Theorem 3.12 may not be successful with the following
example.

Consider the following two maps with several simple closed 4- and 8-curves in (3.1)
f : SC2,8

4 := (ai)i∈[0,7]Z → SC2,4
8 := (b j) j∈[0,3]Z given by f (ai) = bi(mod 4) and

1SC2,6
8

: SC2,6
8 → SC2,6

8 which is the identity map of SC2,6
8 := (ct)t∈[0,5]Z in (3.1).

Let us now consider the cartesian product map

f × 1SC2,6
8

: SC2,8
4 × SC2,6

8 → SC2,4
8 × SC2,6

8

given by
f × 1SC2,6

8
(ai, ct) = ( f (ai), ct).

Then, we observe that SC2,8
4 × SC2,6

8 ⊆ Z4 cannot have an N-compatible k-adjacency, k ∈ {8, 32, 64, 80}. Thus,
we observe that the product map f × 1SC2,6

8
cannot be a KD-(or GKD-)(k, k′)-continuous map.

Theorem 3.14. ([16]) Let (X, k1, τ
n1
X ), (Y, k2, τ

n2
Y ), and (Z, k3, τ

n3
Z ) be generalized computer topological spaces such

that the product space (X × Y, k, τn1+n3
X×Y ) is well defined with an N-compatible k-adjacency. If a map F : X × Y → Z

is GKD-(k, k3)-continuous and x ∈ X, then the map Fx : Y → Z for which Fx(y) = F(x, y) for every y ∈ Y is
GKD-(k2, k3)-continuous.

4. Topologies on the set of all GKD-(k0, k1)-continuous functions

We recall that a topological space is said to be a T 1
2
-space if each singleton is either open or closed [3].

Indeed, (Z,T) is obviously a T 1
2
-space and the Khalimsky n-space (Zn,Tn) is not a T 1

2
-space but a T0-space

if n ≥ 2 [3].

Notation 1.([16]) Let (Y, k1, τ
n1
Y ) and (Z, k2, τ

n2
Z ) be two generalized computer topological spaces. By C(Y,Z)

we denote the set of all GKD-(k1, k2)-continuous functions from Y into Z. Let f ∈ C(Y,Z). We can suppose
that f is the set of all pairs ((y1, . . . , yn1 ), (z1, . . . , zn2 )) such that f (y1, . . . , yn1 ) = (z1, . . . , zn2 ), (y1, . . . , yn1 ) ∈ Y,
and (z1, . . . , zn2 ) ∈ Z.
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We put
((y1, . . . , yn1 ), (z1, . . . , zn2 )) ≡ (y1, . . . , yn1 , z1, . . . , zn2 ).

Then, we can consider every map f ∈ C(Y,Z) as a subset of Zn1+n2 .
In what follows by

C ⟨Y,Z⟩
we denote the set

∪{ f : f ∈ C(Y,Z)}.
Clearly, C ⟨Y,Z⟩ ⊆ Zn1+n2 .

Besides, we consider the space (C ⟨Y,Z⟩ , k), where k ∈ {3n1+n2 −1(n1+n2 ≥ 2), 3n1+n2 −∑r−2
t=0 Cn1+n2

t 2n1+n2−t−
1(2 ≤ r ≤ n1 + n2 − 1, n1 + n2 ≥ 3), 2(n1 + n2)(n1 + n2 ≥ 1)} (see (2.1).

Notation 2. Let (Y, k1, τ
n1
Y ) and (Z, k1, τ

n2
Z ) be generalized computer topological spaces.

(1) If ȳ ≡ (y1, . . . , yn1 ) ∈ Y and f ∈ C(Y,Z), then by f (ȳ) we denote the point z̄ = (z1, . . . , zn2 ) ∈ Z such that
(ȳ, z̄) ∈ f .

(2) If f ∈ C ⟨Y,Z⟩, K ⊆ Y, and L ⊆ Z, then by f (K) we denote the set of all points (z1, . . . , zn2 ) ∈ Z such that
there is (y1, . . . , yn1 ) ∈ K with (y1, . . . , yn1 , z1, . . . , zn2 ) ∈ f . By f−1(L) we denote the set

∪{(y1, . . . , yn1 ) ∈ Y| f (y1, . . . , yn1 ) ∈ L}.

A topology t on (C ⟨Y,Z⟩ , k0) is called A-splitting if for every (X, k, τn
X) ∈ A, the GKD-(k3, k2)-continuity of

the map F : X × Y→ Z implies the GKD-(k, k0)-continuity of the map

F̂ : (X, k, τn
X)→ (C ⟨Y,Z⟩ , k0, t).

A topology t on (C ⟨Y,Z⟩ , k0) is calledA-admissible if for every space (X, k, τn
X) ∈ A, the GKD-(k, k0)-continuity

of the map
G : (X, k, τn

X)→ (C ⟨Y,Z⟩ , k0, t)

implies the GKD-(k3, k2)-continuity of the map

G̃ : (X × Y, k3, τ
n+n1
X×Y )→ (Z, k2, τ

n2
Z ).

Definition 4.1. The point-open topology on (C ⟨Y,Z⟩ , k0), denoted here by tpo, is the topology for which the
family of all set of the form

[ȳ,U] = { f ∈ C ⟨Y,Z⟩ | f (ȳ) ∈ U}
composes a subbase, where ȳ ∈ Y and U ∈ τn2

Z .

Definition 4.2. The set-open topology on (C ⟨Y,Z⟩ , k0), denoted here by tso, is the topology for which the
family of all sets of the form

[K,U] = { f ∈ C ⟨Y,Z⟩}| f (K) ⊆ U}
compose a subbase, where K is a subset of Y and U ∈ τn2

Z .

Definition 4.3. A generalized computer topological space (Z, k2, τ
n2
Z ) is called a Ti-space, i ∈ {0, 1, 2, 3}, if

(Z, τn2
Z ) is a Ti-space, where Ti is the separation axiom as usual.

Theorem 4.4. If a generalized computer topological space (Z, k2, τ
n2
Z ) is a Ti-space, i ∈ {0, 1, 2}, then the computer

topological function space (C ⟨Y,Z⟩ , k0, tpo)) is a Ti-space.

Proof: We assume that a generalized computer topological space (Z, k2, τ
n2
Z ) is a T0-space and prove that the

computer topological function space (C ⟨Y,Z⟩ , k0, tpo)) is a T0-space Indeed, let f , 1 ∈ C ⟨Y,Z⟩ and

(y1, · · · , yn1 , z1, · · · , zn2 ) ∈ f and (y1, · · · , yn1 , z
′
1, · · · , z′n2

) ∈ 1.
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Since the space Z is a T0-space, there exists an open set U ∈ τn2
Z such that f (y1, · · · , yn) = (z1, · · · , zn2 ) ∈ U

and 1(y1, · · · , yn) = (z′1, · · · , z′n2
) < U. �

We consider the subbasic open set [ȳ,U]. Clearly f ∈ [ȳ,U] and 1 < [ȳ,U]. Thus, the generalized
computer space (C ⟨Y,Z⟩ , k0, tpo) is also a T0-space.

Similarly, if the space (Z, k2, τ
n2
Z ) is a Ti-space, i ∈ {1, 2}, then the computer topological function space

(C ⟨Y,Z⟩ , k0, tpo) is also a Ti-space, respectively.

Notation 3. For (C ⟨Y,Z⟩ , k0), by ttrivial and tdis we denote the trivial topology and the discrete topology
{ϕ,C ⟨Y,Z⟩} and P(C ⟨Y,Z⟩), respectively, where P(X) means the power set of X.

Theorem 4.5. For the topologies ttr, tpo, and tdis, we have

ttr ⊆ tpo ⊆ tdis.

Proof: The proof of this theorem is clear. �

Example 4.6. Assume that Y = {1} ⊆ Z and Z = {1, 3} ⊆ Z. We consider the spaces (Y, 2) and (Z, 2) with the
Khalimsky topologies TY and TZ, respectively. In this case, we observe C(Y,Z) = { f = {(1, 1)}, 1 = {(1, 3)}}.
Clearly, C ⟨Y,Z⟩ = {(1, 1), (1, 3)} ⊆ Z2. Thus, we can consider the computer topological spaces

(C ⟨Y,Z⟩ , 4,T2
C⟨Y,Z⟩)

and
(C ⟨Y,Z⟩ , 8,T2

C⟨Y,Z⟩).

Let (X,TX) ⊆ (Z,T) be a computer topological space such that the product X × Y is well defined.
Obviously, there is a GKD-(4, 2)-continuous map

F : (X × Y, 4,T2
X×Y)→ (Z, 2,TZ) := Z1,2

which does not imply the GKD-(2, k)-continuity of the map F̂ : (X, 2,TX) := X1,2 → (C ⟨Y,Z⟩ ,k, T2
C⟨Y,Z⟩), k ∈

{4, 8}.

Questions. 1. Is the trivial topology ttrivial on (C ⟨Y,Z⟩ , k0)A-splitting?
2. Is the point-open topology tpo on (C ⟨Y,Z⟩ , k0)A-splitting?
3. Is the discrete topology tdis on (C ⟨Y,Z⟩ , k0)A-admissible?

5. Strong and weak forms of GKD-(k0, k1)-continuity

Let X be a set and let τ be a topology on X, and A ⊆ X. In what follows by Cl(A) (respectively, Int(A))
we denote the closure (respectively, the interior) of A in the topological space (X, τ). Besides, the subset A of
X called regularly open(respectively regularly closed) if A = Int(Cl(A))(respectively A = (Cl(Int(A))).

Definition 5.1. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X. A

function f : X → Y is called almost GKD-(k0, k1)-continuous (briefly, AGKD-(k0, k1)-continuous) at the point
x0 if

(1) f is topologically almost continuous at the point x0 (i.e. for every open neighborhood U of f (x0) in
Y, there exists an open neighborhood V of x0 in X such that f (V) ⊆ Int(Cl(U)) [25]) and

(2) f (Nk0 (x0, 1)) ⊆ Nk1 ( f (x0), 1).
We say that a map f : X→ Y is AGKD-(k0, k1)-continuous if the map f is AGKD-(k0, k1)-continuous at any

point x ∈ X.

Theorem 5.2. GKD-(k0, k1)-continuity implies AGKD-(k0, k1)-continuity.
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Proof: The proof of this theorem follows by the fact that every topologically continuous map is topologically
almost continuous. �

The converse of Theorem 5.2 may not be true, as the following example shows.

Example 5.3. Let (X = {0, 1, 2, 3}, 2, τX) and (Y = {0, 1, 2, 3, 4}, 2, τ′Y) be two generalized computer topological
spaces, where

τ = {∅,Z, {0, 1, 3}, {0, 1}}, τX = {∅, {0, 1, 3}, {0, 1},X}}, and

τ′ = {∅,Z, {0, 1, 2}, {0}}, τ′Y = {∅, {0, 1, 2}, {0},Y}}.
We consider the map f : (X, 2, τX) → (Y, 2, τ′Y) for which f (x) = x, for every x ∈ X. The map f is not
GKD-(2, 2)-continuous at the point x = 0 but it is AGKD-(2, 2)-continuous at this point.

Let us now explain Example 5.3 as follows: For the open neighborhood {0} of f (0) = 0, there is not an
open neighborhood V ∈ τX of the point 0 such that f (V) ⊆ {0}.
Meanwhile, the map f is AGKD-(2, 2)-continuous at the point 0. Indeed, for the smallest open neighborhood
{0} of f (0) = 0 in Y, there exists the open neighborhood {0, 1} of x = 0 in X(see Figure 2) such that

f ({0, 1}) = {0, 1} ⊆ Int(Cl({0})) = {0, 1, 2, 3}.

We also have f (N2(0, 1)) ⊆ N2( f (0), 1).

3


2


1


0


3


2


0


X
 Y

f


1


4


Figure 2: AGKD (2, 2)-continuity of f

Theorem 5.4. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and f : X → Y. The

following statements are equivalent:
(1) f is almost GKD-(k0, k1)-continuous.
(2) a) Inverse image of every regularly-open set of Y is an open subset of X, and
b) For any point x ∈ X, f (Nk0 (x, 1)) ⊆ Nk1 ( f (x), 1).
(3) a) Inverse image of every regularly-closed set of Y is closed subset of X, and
b) For any point x ∈ X, f (Nk0 (x, 1)) ⊆ Nk1 ( f (x), 1).
(4) a) f−1(A) ⊆ Int( f−1(Int(Cl(A))) for every open subset A of Y, and
b) For any point x ∈ X, f (Nk0 (x, 1)) ⊆ Nk1 ( f (x), 1).
(5) a) Cl( f−1(Int(Cl(B))) ⊆ f−1(B) for every closed subset B of Y, and
b) For any point x ∈ X, f (Nk0 (x, 1)) ⊆ Nk1 ( f (x), 1).

Proof: The proof of this theorem follows by the Definition 5.1 and Theorem 2.2 of [25].�
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Definition 5.5. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X. A

function f : X→ Y is called super GKD-(k0, k1)-continuous (briefly, SGKD-(k0, k1)-continuous) at the point x0
if

(1) f is topologically super continuous at the point x0 (i.e. for every open neighborhood U of f (x0) in Y
there exists an open neighborhood V of x0 in X such that f (Int(Cl(V))) ⊆ U [22]

and
(2) f (Nk0 (x0, 1)) ⊆ Nk1 ( f (x0), 1).
Besides, we say that a map f : X→ Y is SGKD-(k0, k1)-continuous if the map f is SGKD-(k0, k1)-continuous

at any point x ∈ X.

Theorem 5.6. SGKD-(k0, k1)-continuity implies GKD-(k0, k1)-continuity and, therefore, AGKD-(k0, k1)-continuity.

Proof: The proof of this theorem follows by the fact that every topologically super continuous map is
topologically continuous and, therefore, topologically almost continuous.�

The converse of Theorem 5.6 may not be true, as the following example shows.

Example 5.7. Let (X = {0, 1, 2, 3}, 2, τX) and and (Y = {0, 1, 2, 3}, 2, τ′Y) be generalized computer topological
spaces, where

τ = {∅,Z, {0, 1, 3}, {0, 1}}, τX = {∅, {0, 1, 3}, {0, 1}, {0, 1, 2, 3}}, and

τ′ = {∅,Z, {1, 3}, {1}}, τ′Y = {∅, {1, 3}, {1}, {0, 1, 2, 3}}.
We consider the map f : (X, 2, τX) → (Y, 2, τ′Y) for which f (0) = f (1) = 1, f (2) = 2, and f (3) = 3. The map f
is not SGKD-(2, 2)-continuous at the point x = 1 but it is GKD-(2, 2)-continuous at the point x = 1.

Theorem 5.8. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and f : X → Y. The

following statements are equivalent:
(1) f is SGKD-(k0, k1)-continuous.
(2) a) Inverse image of every open set of Y is a δ-open subset of X. (A subset U of X is called δ-open if for each

x ∈ U there exists a regularly open set H such that x ∈ H ⊆ U).
b) For any point x ∈ X, f (Nk0 (x, 1)) ⊆ Nk1 ( f (x), 1).
(3) a) For each point x ∈ X and each open neighborhood U of f (x), there is a δ-open neighborhood V of x such that

f (V) ⊆ U.
b) For any point x ∈ X, f (Nk0 (x, 1)) ⊆ Nk1 ( f (x), 1).

Proof: The proof of this theorem follows by the Definition 5.5 and Theorem 2.1 of [22].�

Remark 5.9. By the similar method as the above we can give many different forms of continuity. For
example, we give the notions of generalized (k0, k1)-θ-continuity, WGKD-(k0, k1)-continuity, and GKD-(k0, k1)-
δ-continuity (see below).

Definition 5.10. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X.

A function f : X → Y is called GKD-(k0, k1)-θ-continuous (briefly, GKD-(k0, k1)-θ-continuous) at the point x0
if

(1) f is topologically θ-continuous at the point x0 (i.e. for every open neighborhood U of f (x0) in Y there
exists an open neighborhood V of x0 in X such that f (Cl(V)) ⊆ Cl(U)) and

(2) f (Nk0 (x0, 1)) ⊆ Nk1 ( f (x0), 1).
Besides, we say that a map f : X → Y is generalized (k0, k1)-θ-continuous (briefly, GKD-(k0, k1)-θ-

continuous) if the map f is GKD-(k0, k1)-θ-continuous at any point x ∈ X.

Definition 5.11. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X.

A function f : X → Y is called weakly GKD-(k0, k1)-continuous (briefly, WGKD-(k0, k1)-continuous) at the
point x0 if

(1) f is Khalimsky topologically continuous at the point x0 (i.e. for every open neighborhood U of f (x0)
in Y there exists an open neighborhood V of x0 in X such that f (V) ⊆ Cl(U) [23]) and
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(2) f (Nk0 (x0, 1)) ⊆ Nk1 ( f (x0), 1).
We say that a map f : X → Y is WGKD-(k0, k1)-continuous if the map f is WGKD-(k0, k1)-continuous at

any point x ∈ X.

Motivated by the notion of δ-continuity of [23], we obtain the following notion.

Definition 5.12. Let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X.

A function f : X → Y is called generalized KD-(k0, k1)-δ-continuous (briefly, GKD-(k0, k1)-δ-continuous) at
the point x0 if

(1) f is topologically δ-continuous at the point x0 (i.e. for every open neighborhood U of f (x0) in Y there
exists an open neighborhood V of x0 in X such that f (Int(Cl(V))) ⊆ Int(Cl(U)) and

(2) f (Nk0 (x0, 1)) ⊆ Nk1 ( f (x0), 1).
We say that a map f : X → Y is GKD-(k0, k1)-δ-continuous if the map f is GKD-(k0, k1)-δ-continuous at

any point x ∈ X.

Then we obviously obtain the following theorem.

Theorem 5.13. (1) AGKD-(k0, k1)-continuity implies GKD-(k0, k1)-θ-continuity.
(2) SGKD-(k0, k1)-continuity implies GKD-(k0, k1)-δ-continuity.
(3) GKD-(k0, k1)-δ-continuity implies AGKD-(k0, k1)-continuity.
(4) GKD-(k0, k1)-θ-continuity implies WGKD-(k0, k1)-continuity.

The converse of Theorem 5.13 need not be true, as the following examples show.

Example 5.14. Let X = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (3, 2), (3, 1)} and Y = {0, 1, 2}. Let us now consider
the map f : (X, 4,T2

X)→ (Y, 2,TY) for which

f ({(1, 1), (1, 2)}) = {0}, f ({(1, 3), (2, 3), (3, 3), (2, 2)}) = {1},

and
f ({(3, 2), (3, 1)}) = {2}.

Then, while the map f is not GKD-(4, 2)-continuous at the point (2, 2), it is GKD-(4, 2)-θ-continuous.

Example 5.15. Let (X = {0, 1, 2, 3}, 2, τX) and (Y = {0, 1, 2, 3}, 2, τ′Y) be two generalized computer topological
spaces, where

τ = {∅,Z, {0, 1, 2}}, τX = {∅, {0, 1, 2}, {0, 1, 2, 3}}, and

τ′ = {∅,Z, {0, 1}, {0, 1, 2}}, τ′Y = {∅, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}}.
We consider the map f : (X = {0, 1, 2, 3}, 2, τX) → (Y = {0, 1, 2, 3}, 2, τ′Y) for which f (x) = x for every x ∈ X.
Clearly, the map f is GKD-(2, 2)-δ-continuous at the point 0 but it is not GKD-(2, 2)-continuous and it is not
SGKD-(2, 2)-continuous at this point either.

Example 5.16. Let (X = {0, 1, 2, 3}, 2, τX) and (Y = {0, 1, 2, 3}, 2, τ′Y) be two generalized computer topological
spaces, where

τ = {∅,Z, {0, 1}, {0, 1, 2}}, τX = {∅, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}}, and

τ′ = {∅,Z, {0}, {0, 1}, {2, 3}, {0, 1, 2, 3}}, τ′Y = {∅, {0}, {0, 1}, {2, 3}, {0, 1, 2, 3}},
We consider the map

f : (X = {0, 1, 2, 3}, 2, τX)→ (Y = {0, 1, 2, 3}, 2, τ′Y)

for which f (x) = x for every x ∈ X. Clearly, the map f is AGKD-(2, 2)-continuous at the point 0 but it is not
GKD-(2, 2)-δ-continuous at this point.
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Example 5.17. Let (X = {0, 1, 2, 3}, 2, τX) and (Y = {0, 1, 2, 3}, 2, τ′Y) be two generalized computer topological
spaces, where

τ = {∅,Z, {0}, {0, 1}, {0, 1, 2}}, τX = {∅, {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}}, and

τ′ = {∅,Z, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {1, 2, 3}, {0, 1, 2, 3}, {2, 3}, {1, 3}},
τ′Y = {∅, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {0, 1, 2}, {1, 2, 3}, {2, 3}, {1, 3}, {0, 1, 2, 3}}.
We consider the map

f : (X = {0, 1, 2, 3}, 2, τX)→ (Y = {0, 1, 2, 3}, 2, τ′Y)

for which f (x) = x for every x ∈ X. Then, the map f is obviously WGKD-(2, 2)-continuous at the point 0 but
it is not GKD-(2, 2)-θ-continuous at this point.

6. Classification of generalized computer topological spaces up to each of generalized homeomorphisms
in computer topology

On the basis of Definitions 5.1, 5.5, 5.10, 5.11, and 5.12, by the same method as the establishment of
GKDTC in Theorem 3.11, several kinds of categories motivated by AGKD-(k0, k1)-, SGKD-(k0, k1)-, WGKD-
(k0, k1)-, GKD-(k0, k1)-δ-, GKD-(k0, k1)-θ-continuous maps are established, which are denoted by AGKDTC,
SGKDTC, WGKDTC, GKD-δ-TC, and GKD-θ-TC, respectively.

In AGKDTC, SGKDTC, WGKDTC, GKD-δ-TC, and GKD-θ-TC, their corresponding isomorphisms (or
homeomorphisms) can be established in computer topology. For instance, let (X, k0, τ

n1
X ) and (Y, k1, τ

n2
Y ) be

two generalized computer topological spaces and x0 ∈ X. A function f : X → Y is called an almost GKD-
(k0, k1)-homeomorphism (or almost GKD-(k0, k1)-isomorphism) (briefly, AGKD-(k0, k1)-homeomorphism (or
AGKD-(k0, k1)-isomorphism) if

(1) f is a bijection and
(2) f is an AGKD-(k0, k1)-continuous map and f−1 is an AGKD-(k1, k0)-continuous map.

Remark 6.1. Isomorphisms between objects in the categories introduced are called homeomorphisms (see
Figure 3).

By Theorem 5.2, we obtain the following theorem.

Theorem 6.2. GKD-(k0, k1)-homeomorphism implies AGKD-(k0, k1)-homeomorphism.

Similarly, let (X, k0, τ
n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X. A

function f : X→ Y is called a super GKD-(k0, k1)-homeomorphism (briefly, SGKD-(k0, k1)-homeomorphism)
if

(1) f is a bijection and
(2) f is an SGKD-(k0, k1)-continuous map and f−1 is an SGKD-(k1, k0)-continuous map.
In terms of Theorems 5.2, 5.6 and 5.13, we obtain the following theorem.

Theorem 6.3. An SGKD-(k0, k1)-homeomorphism implies a GKD-(k0, k1)-homeomorphism and, therefore, an AGKD-
(k0, k1)-homeomorphism.

By using the same method of the construction of both an AGKD-(k0, k1)-homeomorphism and an SGKD-
(k0, k1)-homeomorphism, we can consider the following:
Let (X, k0, τ

n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X. A function

f : X→ Y is called a GKD-(k0, k1)-θ-homeomorphism (briefly, GKD-(k0, k1)-θ-homeomorphism) if
(1) f is a bijection and
(2) f is a generalized (k0, k1)-θ-continuous map and f−1 is a generalized (k1, k0)-θ-continuous map.
Besides, let (X, k0, τ

n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X. A func-

tion f : X → Y is called a weakly GKD-(k0, k1)-homeomorphism (briefly, WGKD-(k0, k1)-homeomorphism)
if

(1) f is a bijection and
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(2) f is a WGKD-(k0, k1)-continuous map and f−1 is a WGKD-(k1, k0)-θ-continuous map.
Finally, let (X, k0, τ

n1
X ) and (Y, k1, τ

n2
Y ) be two generalized computer topological spaces and x0 ∈ X.

A function f : X → Y is called a generalized KD-(k0, k1)-δ-homeomorphism (briefly, GKD-(k0, k1)-δ-
homeomorphism) at the point x0 if

(1) f is a bijection and
(2) f is a GKD-(k0, k1)-δ-continuous map and f−1 is a a GKD-(k1, k0)-δ-continuous map.
In terms of Theorem 5.13, we obtain the following theorem (see Figure 3).

Theorem 6.4. (1) AGKDTC is a subcategory of GKD-θ-TC.
(2) SGKDTC is a subcategory of GKD-δ-TC.
(3) GKD-δ-TC is a subcategory of AGKDTC.
(4) GKD-θ-TC is a subcategory of WGKDTC.

In terms of Theorems 6.2, 6.3 and 6.4, we can establish a distribution of several generalized homeomor-
phisms(isomorphisms) in computer topology.
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-homeomorphism


1
0
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k
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0
,
k
k
 AGKD- (      )-

homeomorphism


1
0
,
k
k


GKD- (      )-

homeomorophism


1
0
,
k
k


SGKD- (      )-
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1
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k
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Figure 3: Distribution diagram of generalized isomorphisms (or homeomorphisms) from a computer topological point of view

Remark 6.5. In the categories AGKDTC, SGKDTC, WGKDTC, GKD-δ-TC, and GKD-θ-TC, using each of their
corresponding homeomorphisms (or isomorphisms), we can classify generalized computer topological
spaces.

7. Summary

We have compared among GKD-(k0, k1)-, AGKD-(k0, k1)-, SGKD-(k0, k1)-, GKD-(k0, k1)-δ-, GKD-(k0, k1)-
θ- and WGKD-(k0, k1)-continuities (homeomorphisms). Besides, due to the KD-(k0, k1)-continuity from
Definition 3.3, we obtain Theorem 4.5 comparing among trivial topology, point open topology, and discrete
topology of given a computer topological function space. In Theorem 4.5 we see that the discrete topology
of C(Y,Z) is equivalent to the digital function space C(Y,Z), where Y and Z are digital spaces in the
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digital topological category of digital spaces and digital (k0, k1)-continuous maps. Finally, we have shown
the distribution diagram among several generalized homeomorphisms (or isomorphisms) from Theorem
6.3(see Figure 3).
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