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Application of the pseudoinverse computation
in reconstruction of blurred images
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Abstract. We present a direct method for removing uniform linear motion blur from images. The method
is based on a straightforward construction of the Moore-Penrose inverse of the blurring matrix for a given
mathematical model. The computational load of the method is decreased significantly with respect to other
competitive methods, while the resolution of the restored images remains at a very high level. The method
is implemented in the programming package MATLAB and respective numerical examples are presented.

1. Introduction

Recording images is a very frequent event in everyday human life. However, the recorded images
are degraded with respect to the original images. The question of removing these imperfections, in
many scientific areas such as satellite imaging, medical imaging, astronomical imaging etc., is of crucial
importance. Some of the reasons for having different types of degradations in images are the phenomena
described as: blur, noise, geometrical degradations, illumination or color imperfections. A number of
outstanding overview articles, journal papers and textbooks deal with the problem of image restoration
[1, 3, 13, 16, 17].

In the present article, we investigate the problem of removing the blur from images, caused by a uniform
linear motion. Our assumptions are that the linear motion corresponds to an integral number of pixels,
and it is aligned with the horizontal (or vertical) sampling. We are concentrated on the usage of the Moore-
Penrose inverse solution of a given matrix equation which represents a mathematical model of the uniform
linear motion blur.

The methods of image restoration, based on the usage of the Moore-Penrose inverse, have been ex-
ploited in many recent papers [6–8]. Several methods for computing the Moore-Penrose inverse have been
introduced in [2]. One of the most commonly used methods, is the method of Singular Value Decom-
position (SVD). This method is very accurate but also time-intensive since it requires a large amount of
computational resources, especially in case of large matrices. An algorithm for fast computation of the
Moore-Penrose inverse is also presented in the recent work of P. Courrieu [9]. Courrieu’s algorithm is

2010 Mathematics Subject Classification. Primary 68U10; Secondary 94A08
Keywords. Image restoration, X-ray, motion blur, matrix equation, Moore-Penrose inverse
Received: 29 September 2011; Accepted: 01 November 2011
Communicated by Dragan S. Djordjević
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based on the reverse order law for matrix pseudoinverse (eq. 3.2 from [19]), and on the full-rank Cholesky
factorization of possibly singular symmetric positive matrices. Another very fast and reliable method for
estimation of the Moore-Penrose inverse of full rank rectangular matrices is given by V. Katsikis and D.
Pappas [14]. The method uses a special type of tensor product of two vectors.

All methods for computing the Moore-Penrose inverse, mentioned above, are either iterative or use some
kind of matrix factorization. The method we propose, explore the structure of the degradation matrix of
the model and generates the Moore-Penrose inverse analytically, by means of a set of rules. The motivation
behind, is the very proper structure of the matrix which participates as a degradation system in the image
formation process. The introduced method is very fast, which is its main advantage. On the other hand,
the main disadvantage of the proposed method is its limitation to uniform linear motion blur degradations.
The presented numerical results claim the expected decrease in CPU time.

The paper is organized as follows. In the second section we present the ideas behind the processes
of image restoration which are based on the usage of the Moore-Penrose inverse. In the third section we
present a new method for reconstruction of blurred images, by generating the Moore-Penrose inverse of
the model matrix analytically. Finally in the last section, by reporting numerical results, we observe certain
enhancement in the computational time and the Improvement in Signal to Noise Ration (ISNR), compared
to other standard methods for image restoration.

2. Preliminaries

The matrix A† which satisfies the following properties

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A,

is called the Moore-Penrose inverse of the matrix A.
This section refers to the formation of the mathematical model that reflects the process of removing the

blur in images, which is caused by a uniform linear motion as well as the matrix pseudoinverse solution of
the problem.

Suppose that the matrix F ∈ Rr×m corresponds to the original image with picture elements fi, j, i = 1, . . . , r,
j = 1, . . . ,m and G ∈ Rr×m with pixels 1i, j, i = 1, . . . , r, j = 1, . . . ,m, is the matrix corresponding to the degraded
image. Let l be an integer indicating the length of the linear motion blur in pixels and n = m + l − 1. In
practice the degradation (index l) is rarely known exactly, so that it must be identified from the blurred
image itself. To estimate the index l, two different cepstral methods can be used: one dimensional or two
dimensional cepstral method [15]. To avoid the problem when the information from the exact image spills
over the edges of the recorded image, we supplement the original image with boundary pixels that best
reflect the original scene. Without any confusion we are using the same symbol F for the enlarged original
image (matrix) with remark that F now becomes a matrix of dimensions r × n. First, we suppose that the
blurring is a horizontal phenomenon. Let us denote the degradation matrix by H ∈ Rm×n. For each row fi
of the matrix F and the respective row 1i of the matrix G we consider an equation of the form

1T
i = H f T

i , 1
T
i ∈ Rm, f T

i ∈ Rn, H ∈ Rm×n. (1)

The objective is to estimate the original image F, row by row, using the corresponding rows of the known
blurred image G and a priori knowledge of the degradation phenomenon H.

Equation (1) can be written in the matrix form as

G =
(
HFT

)T
= FHT, G ∈ Rr×m, H ∈ Rm×n, F ∈ Rr×n. (2)

There is an infinite number of exact solutions for f that satisfy the equation (1). But, only the Moore-
Penrose inverse solution solves uniquely the next minimization problem (see, for example [2]):

min ∥ f ∥2, subject to min ∥H f − 1∥2. (3)
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The unique vector f̃ satisfying (3) represents a row of the restored image [5–8], and it is defined by

f̃ = H†1. (4)

The matrix form of the equation (4) i.e., the restored image F̃ is given by

F̃ = G(H†)T. (5)

The matrix F̃ defined in (5) is the minimum-norm least-squares solution of the matrix equation (2).
The matrix equation which characterizes the vertical motion blurring process is given by

G = HF, G ∈ Rr×m, H ∈ Rr×n, F ∈ Rn×m, n = r + l − 1. (6)

The corresponding restored image can be computed using the Moore-Penrose inverse by the following
formula

F̃ = H†G. (7)

We assume that the blurring is a local phenomenon, spatially invariant as well that the imaging process
captures all light and no additional noise is included. Taking into consideration the given requirements,
the degradation matrix of the blurring process reduces to a matrix H = toeplitz(h1, h1). The matrix H is
non-symmetric Toepltiz matrix consisting of m rows and n = m + l − 1 columns, determined by its first
column h1 = (hi,1)m

i=1 and its first row h1 = (h1, j)n
j=1 as follows:

hi,1 =

{
1/l, i = 1,
0, i = 2, . . . ,m, and h1, j =

{
1/l, j = 1, . . . , l,
0, j = l + 1, . . . , n. (8)

An arbitrary ith row of the blurred image can be expressed using the ith row of the original image extended
with the boundary pixels as


1i,1
1i,2
1i,3
...
1i,m


=



1
l

1
l · · · 1

l 0 0 0 . . . 0

0 1
l

1
l · · · 1

l 0 0 . . . 0

0 0 1
l

1
l · · · 1

l 0 . . . 0
...
...
...
. . .

. . .
...
. . .

...

0 0 0 · · · 1
l

1
l · · · 1

l




fi,1
fi,2
fi,3
...

fi,n


, (9)

where l − 1 elements of the vector fi, are not actually the pixels from the original scene; rather they are
boundary pixels. How many boundary pixels will be added above the vector f depends of the nature and
direction of the movement. However, the rest of them, i.e., l − 1 minus the number of pixels added above
the vector f , would present the boundary pixels right of the horizontal line, and are added below the vector
f [11].

The process of non–uniform blurring assumes that the blurring of the columns in the image is indepen-
dent with respect to the blurring of the rows. In this case two matrices participate in the formation of the
process and the relation between the original and the blurred image can be displayed with the following
relation

G = HcFHT
r , G ∈ Rm1×m2 , Hc ∈ Rm1×r, F ∈ Rr×n, Hr ∈ Rm2×n, (10)

where n = m2 + lr − 1, r = m1 + lc − 1, lr is the length of the horizontal blurring in pixels and lc is the length
of the vertical blurring in pixels. In this case, the Moore-Penrose solution of the system (10) is given by

F̃ = H†c G(HT
r )†. (11)
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3. New image restoration method

First, we define a method of image restoration in the case when the number of columns of the image,
enlarged by boundary pixels, can be divided by an appropriate number of blurring pixels, i.e., when the
equality n = l·p holds. We show that in this case the Moore-Penrose inverse H† can be generated analytically,
without any iterations. Later, we generalize the method to the case when the dimension n is arbitrary.

Let us suppose that
n = m + l − 1 = l · p,

where the number of blurring pixels l is a positive integer. In the rest of the section, we construct the matrix
H̃ = [̃hi j], i = 1, . . . , n, j = 1, . . . ,m and show that it is actually the Moore-Penrose inverse of the degradation
matrix H.

All elements of the matrix H̃, excluding zero elements, can be represented by the following two se-
quences:

xk = −
l
n

(m − l(k − 1) − 1) = −m − l(k − 1) − 1
p

, k = 1, 2, . . . , p − 1,

yk =
l
n

(m − l(k − 1)) =
m − l(k − 1)

p
, k = 1, 2, . . . , p.

Additionally, we put z = yp =
1
p .

The general layout of the matrix H̃ ∈ Cn×n in the case n = m + l − 1 = l · p is given in Figure 3.1.

y1

B1
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. ..
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Figure 3.1. General layout of the matrix H† in the case n = m + l − 1 = l · p.

The parallelogram between the blocks Bk and Ck is called zero layer. The line denoted by upper line refers
to the elements above the zero layer of the matrix H̃ which actually constitute the diagonal of the square
m×m matrix formed from the first m rows of the matrix H̃. Similarly, lower line refers to the elements below
the zero layer of the matrix H̃ which constitute the diagonal of the square m × m matrix formed from the
last m rows of the matrix H̃. The upper line, the lower line, the first l elements of the first row of H̃ and the
last l elements of the last column of H̃ will be denominated as sides of the zero layer.
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Further, we preview the structure of the blocks Bk, k = 1, . . . , p − 1. Each block Bk can be represented via
appropriate block Pk of the following form:

Pk =

0

0 0

0 0 0
...
. . .

. . .
. . .

0 0 . . . . . . 0

xk 0 0 . . . . . . 0

−xk xk 0 0 . . . 0 z

−xk xk 0 0
... z

. . .
. . .

. . .
...

. . .
. . . 0

...

−xk xk z

−xk z + xk

yk+1

Zero parallelogram blocks are of dimensions (l− 2)× (l− 1). The block Bk is obtained by pasting up k times
the block Pk, from the bottom upwards, and then from the resulting block we cut by horizontal line the most
upper triangle which has a vertical side containing the upper l − 2 elements of the block Pk. The missing
element of the resulting block Bk is filled by the value of yk+1. The three steps in the formation process of
the blocks Bk are presented in Figure 3.2.

Pk ( )1st

Pk (k )th

.

.

.

1st step

.

.

.

2nd step

.

.

.

3rd step

Cutting line

yk+1

= B
k

Pk (2nd)

Pk (k )thPk (k )th

Pk (2nd)Pk (2nd)

Pk ( )1stPk ( )1st

Figure 3.2. Formation of the block Bi from the block Pi.

In order to write the analytical form of the matrix H̃ we will use the following notation. Let qi, q j,
ri and r j be integers such that for a given ith row and jth column hold i = qil + ri and j = q jl + r j. From
the previous considerations it is clear that: i ≤ j if and only if h̃i j ∈ Bk, k = 1, 2, . . . , p − 1. Similarly,
i ≥ l and i > j if and only if h̃i j ∈ Ck, k = 1, 2, . . . , p − 1. Taking this into account, we present the analytical
form of the matrix H̃ as follows
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h̃i j =



yq j+1, i ≤ j, r j = 1, ri = 1,
z + xq j , i ≤ j, r j = 1, ri = 0,
(−1)d+1xq j−1+1, i ≤ j, r j , 1, q j ≥ qi, (ri− j = 0 or ri− j = l − 1)

z + xp−q j−1, i ≥ l, i > j, r j = 1, ri = 1,
yp−q j , i ≥ l, i > j, r j = 1, ri = 0,
(−1)dxp−q j−1−1, i ≥ l, i > j, r j , 1, q j ≤ qi, (ri− j = 0 or ri− j = l − 1)

z, r j = 1, ri , 0, ri , 1
0, otherwise,

(12)

where d is 0 if ri− j = 0 and d = 1 otherwise. The first case in (12) gives the elements that are not equal to zero
or z of the blocks Bk, k = 0, . . . , p − 1 plus y1 from the first column. The second case produces the elements
that are not equal to zero or z of the blocks Ck, k = 0, . . . , p− 1 plus y1 from the last column. In order to store
the whole matrix we need only to store 2p − 1 elements which is lower than n in the case l > 2.

To illustrate our description we give the full form of the matrix H̃ observing the case p = 4.

y1 x1 y2 x2 y3 x3 y4

z −x1 x1 0 z −x2 x2 0 z −x3 x3 0 z

z −x1 x1 z −x2 x2 z −x3 x3 z
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

...

z −x1 x1 z −x2 x2 z −x3 x3 z

y4 −x1 z + x1 −x2 z + x2 −x3 z + x3

z + x3 −x3 0 y2 x2 0 y3 x3 0 y4

z x3 −x3 z −x2 x2 z −x3 x3 z
...

. . .
. . .

... −x2 x2 z −x3 x3 z

z x3 −x3 z
. . .

. . .
...

. . .
. . .

...

z x3 −x3 z −x2 x2 z −x3 x3 z

y4 0 x3 y3 −x2 z + x2 −x3 z + x3

z + x3 −x3 z + x2 −x2 0 y3 x3 0 y4

z x3 −x3 z x2 −x2 z −x3 x3 z
...

. . .
. . .

...
. . .

. . .
... −x3 x3 z

z x3 −x3 z x2 −x2 z
. . .

. . .
...

z x3 −x3 z x2 −x2 z −x3 x3 z

y4 0 x3 y3 0 x2 y2 −x3 z + x3

z + x3 −x3 z + x2 −x2 z + x1 −x1 0 y4

z x3 −x3 z x2 −x2 z x1 −x1 z
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

...

z x3 −x3 z x2 −x2 z x1 −x1 z

z 0 x3 −x3 z 0 x2 −x2 z 0 x1 −x1 z

y4 x3 y3 x2 y2 x1 y1



.
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In order to verify that the matrix H̃ is actually the Moore-Penrose inverse of the matrix H, i.e., that
H̃ = H† we will use the following two lemmas:

Lemma 3.1. The equality HH̃ = I holds for the matrix H̃ given by (12).

Proof. Each row of the matrix H contains l non zero constant elements equal to 1/l, so that it is obvious that
the elements of the matrix HH̃ are

(HH̃)i j =
1
l

i+l−1∑
s=i

h̃sj, i = 1, . . . ,m and j = 1, . . . ,m.

Therefore, we need to explore the properties of jth column of the matrix H̃, j = 1, . . . ,m, i.e., the sums of its l
consecutive elements. For this reason, from the representation of the matrix H̃ given by (12) we distinguish
two different cases:

1 case : r j = 1.
Each set of l consecutive elements contains only two elements different from z. If both of them are above

the zero layer their sum is yq j+1 + (l − 1)z + xq j = 0. If both of them are below the zero layer their sum is
xp−q j−1 + (l − 1)z + yp−q j = 0. Otherwise, if one of them is above the zero layer and the other one is below
the zero layer, then their sum is yq j+1 + yp−q j = l. Unfortunately, as we mentioned before, the last is the case
only when i = j.

2 case : r j , 1.
Each set of l consecutive elements contains only two non zero elements. If those two elements are above

the zero layer or both of them are below the zero layer then it is obvious that their sum is 0. If one of them
is above the zero layer and the other one is below the zero layer, thus i = j, their sum is −xq j−1+1 − xp−q j−1−1,
which by easy calculations can be shown that equals l.

So finally for the both cases we have

(HH̃)i j =
1
l

i+l−1∑
s=i

h̃sj =

{
1, i = j
0, i , j , i = 1, . . .m, j = 1, . . .m.

i.e. HH̃ = I.

Lemma 3.2. The equality (H̃H)T = H̃H holds for the matrix H̃ given by (12).

Proof. For a given i = 1, . . . , n and j = 1, . . . ,n, we should show that (H̃H)i j = (H̃H) ji. The elements of the
matrix H̃H can be presented as

(H̃H)i j =
1
l

min { j,m}∑
s=max {1, j−l+1}

h̃is, i = 1, . . . ,n and j = 1, . . . ,n. (13)

Let us denote by s = min { j,m} −max {1, j − l + 1}.
Consequently, we should show that the sum of s consecutive elements in the ith row of the matrix H̃H

where the last element is in the jth column; equals the sum s consecutive elements in the jth row of the
matrix H̃H, where the last element is in the ith column. So the case when i = j is clear, actually, for a given i
these elements actually present the sum of the s consecutive elements that belong to the zero layer as well
as his sides. We continue with the opposite case when i , j.

Let us explore the properties of each row i of the matrix H̃, i = 1, . . . ,n. First we recall that if i ≤ j that
means that h̃i j is either y1 or belongs in a block Bk, k = 1, . . . , p − 1. And, if i > l and i > j that means that h̃i j
is either y1 or belongs in a block Ck.
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1 case : i < j, ri = 1 and r j , 1 (i = 1, . . . ,n − 1 and j = 1, . . . ,n).
From (13) and definition of the matrix H̃ we have

(H̃H)i j =
1
l

(yq j+1 + xq j+1) =
z
l
.

That means that the sum of each s consecutive elements equals z, if the elements are in the (kl + 1)st row,
k = 0, . . . , p − 1, and the last element is not in the (kl + 1)st column, k = 0, . . . , p − 1. Also since i < j the last
element is above the diagonal of the square matrix constituted of the first m rows of H̃.

We need to compare these values with the values of (H̃H) ji. For this situation we analyze the opposite
case i.e. we interchange the conditions for i and j. Suppose,

i > j, ri , 1 and r j = 1 (i = 1, . . . , n and j = 1, . . . , n − 1).

From here we continue with two different possibilities, denoted by a1 and a2.
a1: if ri = 0 then

(H̃H)i j =
1
l

(−xq j + z + xq j ) =
z
l
.

a2: if ri , 0 then

(H̃H)i j =
1
l

{
z, j = 1
z + xp−q j − xp−q j = z, j > 1.

Thus the first case is completed i.e. if i < j, ri = 1 and r j , 1 (i = 1, . . . ,n − 1 and j = 1, . . . ,n) then
(H̃H)i j = (H̃H) ji.

2 case : i < j, ri = 1 and r j = 1 (i = 1, . . . ,m − 1 and j = 1, . . . ,m) then

(H̃H)i j = yq j+1 + xq j = z(1 − l).

Note: Since m = l(p − 1) + 1 and n = m + l − 1, if j > m it follows that r j , 1.
If the conditions i > j, ri = 1 and r j = 1 (i = 1, . . . ,m and j = 1, . . . ,m − 1) are satisfied we obtain

(H̃H)i j =

{
z + xp−1 = z(1 − l), j = 1
z + xp−q j−1 − xp−q j = z(1 − l), j , 1,

which completes the proof in the case 2.
3 case : i < j, ri , 1 and r j = 1 (i = 1, . . . ,m − 1 and j = 1, . . . ,m) then

(H̃H)i j =
1
l

(−xq j + z + xq j ) =
z
l
.

Under the assumptions i > j, ri = 1 and r j , 1 (i = 1, . . . ,m and j = 1, . . . ,m − 1) one can verify

(H̃H)i j =
1
l

(z + xp−q j−1 − xp−q j−1) =
z
l
,

so that the verification of the statement in case 3 is completed.
4 case : i < j, ri , 1 and r j , 1 (i = 1, . . . ,n− 1 and j = 1, . . . , n). Similarly as in the previous cases, after

considering several possibilities, one can derive the following

(H̃H)i j =
1
l

{
z(l − 1), ri = r j, i ≤ m
z, otherwise.

Under the opposite assumptions i > j, ri , 1 and r j , 1 (i = 1, . . . , n and j = 1, . . . , n − 1) we get

(H̃H)i j =
1
l

{
z(l − 1), ri = r j, j ≤ m
z, otherwise,

and the proof is completed.
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Theorem 3.1. The matrix H̃ given by (12) is the Moore-Penrose inverse of the matrix H.

Proof. Since the matrix H is full row rank matrix its Moore-Penrose inverse is its right inverse. From this
fact and from the previous two lemmas follows the proof of the theorem.

Algorithm 3.1 Image deblurring method (MP method).
Require: The blurred image G of dimensions r ×m defined in the blurring process (9).

1: If m + l − 1 mod l , 0 then add l ∗ quotient(m + l − 1, l) + l −m boundary pixels, else add l − 1 boundary
pixels.

2: Compute the matrix H† according to the formula (12)
3: Apply formula (5)
4: Return F̃.

4. Experimental results

In this section we present numerical results which are obtained by testing the method proposed in Algo-
rithm 3.1 (MP method) on X-ray images. In order to confirm the efficiency, we compared our method with
three recently announced methods for computing the Moore-Penrose inverse of the matrix H. Summarizing,
the following four methods are compared:

1. The MP method,
2. Pappas1 method, defined by the MATLAB function ginv.m from [14],
3. Pappas2 method, defined by the MATLAB function qrginv.m from [8],
4. Courrieu method from [9].

The experiments are done using Matlab programming language [12] on an Intel(R) CPU T2130 @ 1.86
GHz 1.87 GHz 32-bit system with 2 GB of RAM memory. Tests are made for several images of dimensions
r ×m. The index l that takes values between 10 and 100 is the varying parameter for a given image.

Also we compared the efficiency of four different strategies of image restoration: the approach based
on the Moore-Penrose inverse, the Wiener filter (WF), the constrained least-squares (CLS) filter, and the
Lucy-Richardson (LR) algorithm. For the implementation of the Wiener filter, the constrained least-squares
filter, and Lucy-Richardson algorithm we used built–in functions from the Matlab package [10].

In image restoration the quality enhancement of the restored image over the recorded blurred one is
evaluated by the signal-to-noise ratio improvement (ISNR). The ISNR of the recorded (blurred) image is
defined in decibels as follows:

ISNR = 10 log10

(∑
n1,n2(G(n1,n2) − F(n1,n2))2∑
n1,n2(F̃(n1,n2) − F(n1,n2))2

)
. (14)

Figure 4.1 presents one practical example for restoring blurred X-ray image. The image is taken from
the results obtained from Google Image search with the keywords ”X-ray image”. The picture in Figure
4.1 called Original image shows the original X-ray image. The image is divided into r = 843 rows and
m = 1050 columns. To prevent loosing information from the boundaries of the image, we assumed zero
boundary conditions, which implies that values of the pixels of the original image F outside the domain of
consideration are zero (black). This choice is natural for X-ray images since the background of these images
is black. The picture named as Degraded image presents the degraded X-ray image with a uniform horizontal
motion of length l = 80. The pictures named as Moore-Penrose Inverse, Wiener Restored Image, Constrained LS
Restored Image and Lucy-Richardson Restored Image denote the images obtained after the application of the
corresponding restoration algorithms. From Figure 4.1, it is clear that the MP method produces the best
result.
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Figure 4.1. Removal of blur, caused by a uniform horizontal motion.

The difference in quality of the restored images among the three methods (WF, CLS and LR) is insignif-
icant, and can hardly be seen by human eye. For this reason, the ISNR is applied in order to compare the
quality of the restored images. Figure 4.2 (left) shows the corresponding ISNR value of the restored images
as a function of l for the MP method and the other mentioned classical methods. This figure illustrates that
the MP method for image restoration has the best quality of the restored image with respect to the other
methods.
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Figure 4.2. (left) Improvement in signal-to-noise-ratio vs. length of the blurring process

(right) Computational time vs. length of the blurring process.

As we have already mentioned, the main advantage of the proposed method for computing the Moore-
Penrose inverse, is the time required to obtain the restored image compared to other methods for computing
the Moore-Penrose inverse. Figure 4.2 (right) shows the corresponding computational time, denoted by
t(sec), as a function of l < 100 pixels for the MP method and the other three considered methods for
computing the Moore–Penrose inverse. Obviously, the minimal computational time is reached by the MP
method.

Additionally, we compare the method based on the usage of the Moore-Penrose inverse with another
image restoration method, which uses a least-squares solution of the following system, arising from (9),

1i, j =
1
l

l−1∑
k=0

fi, j+k, i = 1, . . . ,n, j = 1, . . . ,m, (15)

where n = m + l − 1. The corresponding solution is derived by using the standard Matlab function mrdi-

vide(), and it will be called LS solution in the test examples. The function mrdivide(B,A) (or equivalently
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B/A) performs matrix right division (forward slash) [18]. Matrices B and A must have the same number
of columns. If A is a square matrix, B/A is roughly the same as B*inv(A). If A is an n × n matrix and B
is a row vector with n elements, or a matrix with several such rows, then X = B/A is the solution of the
equation XA = B computed by using Gaussian elimination with partial pivoting. If B is an m × n matrix
with m ∼= n and A is a column vector with m components, or a matrix with several such columns, then X

= B/A is a solution in the least-squares sense to the under- or overdetermined system of equations XA = B.
In other words, X minimizes norm(A*X - B). The rank k of A is determined from the QR decomposition
with column pivoting. The computed solution X has at most k nonzero elements per column. If k < n,
this is usually not the same solution as X = B*pinv(A), which returns a least-squares solution with the
smallest norm ∥X∥. The presented results show that using the pseudo inverse approach leads to better
improvements than solving the system directly. The respective comparison is illustrated in the next figure.
The left image in Figure 4.3 shows the restoration determined by using the solution of the system (15), while
the right image shows the restoration based on the usage of the Moore-Penrose inverse.

Figure 4.3. a) Restoration arising from the LS solution; b) Restoration based on the Moore-Penrose inverse

The next two examples refer to the case when, in the inception, the image is degraded by including
an image noise and later it is followed by a uniform linear blur. The corresponding mathematical model
generalizes the horizontal blurring process presented with (2) and it becomes

GN = (F +N)HT = FNHT, (16)

where N is an additive noise and GN is the blurred noisy image. To obtain approximation of the original
image, we apply two steps:
1. Calculate the restored matrix FN by using (5), to produce F̃N = GN(H†)T;
2. Obtain the restored image F̃ by applying filtering process on the image F̃N obtained in Step 1.

Similarly, we can formulate a process in the case of having two ways degraded image (with noise and
vertical blur). The noisy image, the blurred noisy image and the restored images obtained by using different
methods are presented in Figure 4.4.

Figure 4.4. Removal of blur, caused by noise and uniform horizontal motion with r = 843, n = 1050 and l = 40.
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The results for ISNR and the peak signal-to-noise ratio (PSNR) [4] for the original image given in Figure
4.1, are presented in Figure 4.5. The original image is degraded in two ways: by ”salt and pepper” (white
and black) noise with noise density of 0.03 and after that it is blurred by a uniform linear motion with l
pixels. The 2-D median filtering is used for the image restoration. The image restoration procedures based
on the Moore-Penrose inverse, applied to images degraded by both the motion blur and noise, are more
reliable and accurate compared to other image restoration methods.
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Figure 4.5. (left) Improvement in signal-to-noise-ratio vs. length of the blurring process

(right) Peak signal-to-noise ratio vs. length of the blurring process.

The ISNR and PSNR values presented in Figure 4.5 indicate that MP method is the best among the other
methods.

Similar numerical results are generated when the image is blurred by a non-uniform motion detrmined
with the relations (10) and (11). The case when the image is blurred by a non-uniform blurring with
parameters lc = 35 and lr = 25, is presented in Figure 4.6.

Figure 4.6. Removal of blur, caused by the non-uniform blurring model with lc = 35 and lr = 25.

A confirmation that the proposed MP method is faster than the other methods for computing the
Moore-Penrose inverse is illustrated in Figure 4.7.
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Figure 4.7. Computational time versus variable length lr and lc = 25 of the blurring process.

The results presented in Figure 4.7 are made on an Intel(R) Core(TM) i5 CPU M430 @ 2.27 GHz 64/32-bit
system with 4 GB RAM memory.

5. Conclusions

We introduce a new method for restoration of images which are blurred by a uniform linear motion. The
method is based on the usage of the Moore-Penrose inverse solution of the matrix equation which presents
a model of the motion blur. Our method exploits the structure of the blurring matrix and generates its
pseudoinverse directly, without any iterations. The main advantage of the method is found in the decrease of
the CPU time with respect to other methods for paseudoinverse computation. We illustrate the theoretical
findings by comparing the Moore-Penrose inverse method against the Wiener filter, Constrained least-
squares filter and Lucy-Richardson algorithm. Also, we present numerical results in which we compare
our method (called MP method) with well-known Pappas1, Pappas2 and Courrieu methods.
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