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The number of idempotents in abelian group rings
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Abstract. Suppose that R is a commutative unitary ring of arbitrary characteristic and G is a multiplicative
abelian group. Our main theorem completely determines the cardinality of the set id(RG), consisting of all
idempotent elements in the group ring RG. It is explicitly calculated only in terms associated with R, G and
their divisions. This result strengthens previous estimates obtained in the literature recently.

1. Introduction

Throughout the present short paper, let R be an arbitrary commutative unitary ring and let G be
an arbitrary abelian group written multiplicatively as it is customary when investigating group rings.
Standardly, RG will always denote the group ring of G over R and G0 =

⨿
p Gp the maximal torsion part

of G with p-primary component Gp. If M ⊂ P, the set of all primes, without any confusion we shall write
Gp = 1 whenever we have

⨿
p∈M Gp and M = ∅. For any natural number n, ζn denotes the primitive nth root

of unity. Likewise, R[ζn] denotes the free R-module, algebraically generated as a ring by ζn, with dimension
equal to [R[ζn] : R]. In other words, R[ζn] is defined in terms of an overring of R. All other unexplained
explicitly notions and notations follow those from [4].

Traditionally, we define id(R) and id(RG) to be the sets of all idempotents in R and RG, respectively. Since
0 and 1 are trivial examples of such elements, the inequalities |id(RG)| ≥ |id(R)| ≥ 2 are fulfilled bearing in
mind that id(R) ⊆ id(RG). A question, which naturally arises in some aspects of the commutative group
algebras theory (see, e.g., [1] and [2]), is to calculate in an explicit form the cardinality |id(RG)| (i.e, the
number of all idempotents being finite or infinite) in a commutative group ring RG.

It was proved in [7] that |id(RG)| = 2 if and only if |id(R)| = 2 and supp(G) ∩ inv(R) = ∅, denoting
supp(G) = {p : Gp , 1} and inv(R) = {p : p.1 ∈ R∗} as well as reserving R∗ for the unit group of R (that is, the
set of all invertible elements in R). However, this paper does not give any useful strategy for computing
|id(RG)| in the nontrivial case. In this respect, in [3] we calculated the cardinality |id(RG)| in terms associated
only with R and G, provided that char(RG) = p is a prime integer.

So, the goal of this brief article is to generalize this result for the case of rings of arbitrary characteristic,
thus completely solving the indicated problem. Our calculations will substantially depend on id(R), G0
and its sections. The motivation is also of practical interest in order to obtain some major applications; in
fact, group rings and their idempotents are known to have valuable applications in coding theory - see the
survey [6] and the monograph [5], Section 9.1.
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2. The main result

We begin with some crucial preliminaries.

Lemma 2.1. Let R be a commutative unitary ring and let n ∈N. Then

R = ⊕1≤i≤nLi,

where every Li is an indecomposable unitary subring of R, if and only if |id(R)| = 2n.

Proof. ”Necessity”: Since

R =
⊕
1≤i≤n

Li � L1 × · · · × Ln,

it is easy to check that id(R) = id(L1) × · · · × id(Ln) in a set-theoretical sense. But |id(L1)| = · · · = |id(Ln)| = 2
and hence it follows that |id(R)| = 2n, as stated.

”Sufficiency”: It is well known that the set B of all idempotents of R is a Boolean algebra with infima
given by e ∧ f = e f , suprema given by e ∨ f = e + f − e f , and complements given by e′ = 1 − e. But id(R) is
finite of cardinality 2n and is formally (set-theoretically) isomorphic to the Boolean algebra B. Therefore, B
is finite. Let e1, · · · , en be the atoms of B, i.e., the primitive idempotents in R. Moreover, a simple technical
manipulation shows that the elements of B are precisely the sums

∑
i∈I ei for subsets I ⊆ {1, · · · ,n}, and

these are all distinct. Thus B has exactly 2n elements. Consequently, R = Re1 ⊕ · · · ⊕ Ren where each direct
summand Rei = Li is an indecomposable ring for i ∈ [1,n], as asserted. �

Remark 2.2. These subrings Li = Rei do not contain the same identity element as that of R; in fact, each
indecomposable summand Li has identity ei which is a primitive idempotent of R (1 ≤ i ≤ n). Moreover, it
is easily verified that all Li are even ideals of R. A simple check shows also that if the natural number k is
invertible in R, then the same can be said of each of the Li’s too.

A similar approach is demonstrated in both [1] and [2].

Theorem 2.3. ([8]) Suppose that P is a commutative indecomposable unitary ring and F is a finite abelian group of
exp(F) ∈ P∗. Then

PF � ⊕d/exp(F) ⊕a(d) P[ζd],

where a(d) = |{a∈F:order(a)=d}|
[P[ζd]:P] , and

∑
d/exp(F) a(d)[P[ζd] : P] = |F|.

Proposition 2.4. ([9]) Suppose that P is a commutative indecomposable unitary ring and n ≥ 1. Then P[ζn] is also
a commutative indecomposable unitary ring.

Now we have all the ingredients necessary to prove the following main result, which is in the focus of
our investigation.

Theorem 2.5. Let R be a commutative unitary ring and G an abelian group. Then the following conditions hold:

(1) |id(RG)| = |id(R)| if supp(G) ∩ inv(K) = ∅, for each indecomposable subring K of R;

(2) |id(RG)| = |id(R)| · |G0/
⨿

p<inv(K) Gp| if either |id(R)| ≥ ℵ0 or |G0/
⨿

p<inv(K) Gp| ≥ ℵ0 and supp(G)∩ inv(K) , ∅,
for some indecomposable subring K of R;

(3) |id(RG)| = 2
∑

1≤i≤lo12 |id(R)|
∑

d/exp(
⨿

q∈inv(Re1)∩inv(Rei) Gq) ai(d)
if |id(R)| < ℵ0 with primitive idempotents {e1, · · · , en} and

1 < |⨿q∈inv(Re1) Gq| < ℵ0, where

ai(d) =
|{1 ∈⨿q∈inv(Re1)∩inv(Rei) Gq : order(1) = d}|

[(Rei)[ζd] : (Rei)]
.
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Proof. Letting e ∈ id(RG), we have e ∈ id(FG) for some finitely generated subring F of R. Thus one may
observe that id(RG) =

∪
F≤R id(FG) and id(R) =

∪
F≤R id(F). Moreover, one can decompose F = K1 × · · · × Kn

for some indecomposable subrings K1, · · · ,Kn of F where n ∈N. But then FG = K1G × · · · × KnG, whence it
is easily checked that id(FG) = id(K1G) × · · · × id(KnG) in a set-theoretic sense. That is why we may further
assume that R is finitely generated or even indecomposable.

Invoking the chief result of [7], every idempotent e from RG is either an idempotent from R, i.e. belongs
to id(R), or is nontrivial and lies in R(

⨿
q∈inv(R) Gq) provided that id(R) = {0, 1}. In fact, there are idempotents

of the form e = 1
|C|
∑

c∈C c, where C ≤ ⨿q∈inv(R) Gq ≤ G0 is a finite subgroup such that |C| inverts in some
subring P of R. It is evident that id(RG) = id(RG0) since supp(G) = supp(G0).

Supposing now that the intersection supp(G) ∩ inv(K) is empty for every indecomposable subring K of
R, it follows in virtue of the result from [7] mentioned above that |id(KiG)| = |id(Ki)| = 2. Consequently,
|id(FG)| = 2n = |id(F)| and, by what we have already noted, we derive that |id(RG)| = |id(R)|, and we are done
in this case. Note that in this situation supp(G) ∩ inv(F) = ∅.

Let us now suppose that there exists an indecomposable subring K of R such that supp(G) and inv(K)
have non-empty intersection. Without loss of generality we may assume that such a ring K is a member of
the decomposition of some finitely generated subring of R. Furthermore, denote G′0 =

⨿
q∈inv(K) Gq. On the

other hand, one may write

G0 =
⨿

l

Gl =
⨿

q∈inv(K)

Gq ×
⨿

p<inv(K)

Gp = G′0 ×
⨿

p<inv(K)

Gp.

Again from the result of [7] cited above, it is easily verified that id(KG) = id(KG0). Moreover,

KG0 = (KG′0)
( ⨿

p<inv(K)

Gp

)
=
(
K
( ⨿

p<inv(K)

Gp

))
G′0.

Since K is indecomposable, it plainly follows from [7] that so is K(
⨿

p<inv(K) Gp), whence id(KG0) = id(KG′0),
because inv(K) = inv(K(

⨿
p<inv(K))). Thus, id(KG) = id(KG′0).

Suppose first that G′0 is infinite. Since K is indecomposable, any its subring with identity contains the
identity of K, i.e. it has the same identity. So, in view of [7], it follows that |id(KG)| = |M|where M is the set
of all finite subgroups S of G′0. But G′0 = ∪S∈MS and this assures that |G′0| = |M|. Thus |id(KG)| = |G′0| if G′0
is infinite. In the case where G′0 is finite, it follows from our arguments presented below that |id(KG)| = 2t,
where t =

∑
d/exp(G′0) a(d) with

a(d) =
|{1 ∈ G′0 : order(1) = d}|

[K[ζd] : K]
.

Next, if now one of id(R) or G′0 is infinite, we observe as we have done above that |id(RG)| ≥ ℵ0. Therefore,
combining both cases, we have

|id(RG)| = |id(R)| + |G′0| = |id(R)| · |G′0| = max(|id(R)|, |G′0|),

and we are done in this situation.
Finally, let us assume that both id(R) and G0/

⨿
p<inv(K) Gp � G′0 are finite, and supp(G) ∩ inv(K) , ∅ for

some indecomposable subring K of R. Since id(R) is finite, according to Lemma 2.1, R can be decomposed
like this:

R =
⊕
1≤i≤n

Ri,

where each subring Ri = Rei is indecomposable and 1 ≤ i ≤ n = lo12|id(R)| - thereby {e1, · · · , en} are the
primitive idempotents of R.

As aforementioned, we will assume that K = R1 = Re1 and thus G′0 =
⨿

q∈inv(R1) Gq. Clearly exp(G′0) ∈ R∗1
- note that G′0 , 1 is tantamount to supp(G) ∩ inv(R1) , ∅.
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Furthermore, we deduce that

RG =
⊕
1≤i≤n

RiG,

and

RG′0 �
⊕
1≤i≤n

RiG′0.

and, as a consequence, by what we have shown above

id(RG) = id(R1G) × · · · × id(RiG) = id(R1G′0) × · · · × id(RiG′0) = id(RG′0)

written in a set-theoretical sense.
On the other hand, for any i ∈ (1,n], we have the equalities

RiG′0 = Ri

( ⨿
q∈inv(R1)

Gq

)
=
(
Ri

( ⨿
q∈inv(R1)∩inv(Ri)

Gq

))( ⨿
q∈inv(R1)\inv(Ri)

Gq

)
=
(
Ri

( ⨿
q∈inv(R1)\inv(Ri)

Gq

))( ⨿
q∈inv(R1)∩inv(Ri)

Gq

)
.

Since Ri is indecomposable, it follows from [7] that the same can be said of the ring Ri(
⨿

q∈inv(R1)\inv(Ri) Gq).
Moreover inv(Ri(

⨿
q∈inv(R1)\inv(Ri) Gq)) = inv(Ri), and hence

id(RiG′0) = id
(
Ri

( ⨿
q∈inv(R1)∩inv(Ri)

Gq

))
.

Note that if inv(R1) ∩ inv(Ri) = ∅we write
⨿

q∈inv(R1)∩inv(Ri) Gq = 1 and so this forces at once that∣∣∣id(Ri

( ⨿
q∈inv(R1)∩inv(Ri)

Gq

))∣∣∣ = |id(Ri)| = 2,

for each i with 1 < i ≤ n which satisfies the above intersection requirement.
Since exp(

⨿
q∈inv(R1)∩inv(Ri) Gq) ∈ R∗i , by Theorem 2.3, we obtain

Ri

( ⨿
q∈inv(R1)∩inv(Ri)

Gq

)
�

⊕
d/exp(

⨿
q∈inv(R1)∩inv(Ri) Gq)

⊕ai(d)Ri[ζd]

where

ai(d) =
|{1 ∈⨿q∈inv(R1)∩inv(Ri) Gq : order(1) = d}|

[Ri[ζd] : Ri]
.

However, Proposition 2.4 tells us that the ring extensions Ri[ζd] are indecomposable as well, and their
number is

∑
d/exp(

⨿
q∈inv(R1)∩inv(Ri) Gq) ai(d). That is why

R
( ⨿

q∈inv(R1)∩inv(Ri)

Gq

)
�
⊕
1≤i≤n

⊕
d/exp(

⨿
q∈inv(R1)∩inv(Ri ) Gq)

⊕
ai(d)

Ri[ζd] =
⊕

d/exp(
⨿

q∈inv(R1)∩inv(Ri) Gq)

⊕
1≤i≤n

⊕
ai(d)

Ri[ζd].

Thus we conclude that the number of all irreducible summands is equal to∑
d/exp(

⨿
q∈inv(R1)∩inv(Ri ) Gq)

∑
1≤i≤lo12 |id(R)|

ai(d) =
∑

1≤i≤lo12 |id(R)|

∑
d/exp(

⨿
q∈inv(R1)∩inv(Ri) Gq)

ai(d).

Finally, we again apply Lemma 2.1 to obtain the desired equality, which completes the proof in all
generality.
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[6] A.V. Kelarev, P. Solé, Error-correcting codes as ideals in group rings, Contemporary Mathematics 273 (2001) 11-18.
[7] W. May, Group algebras over finitely generated rings, J. Algebra 39 (1976) 483–511.
[8] T. Mollov, N. Nachev, Unit groups of commutative group rings, Commun. Algebra 34 (2006), 3835–3857.
[9] N. Nachev, Nilpotent elements and idempotents in commutative group rings, Commun. Algebra 33 (2005) 3631–3637.


