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Generalized weighted composition operators from Bloch spaces into
Bers-type spaces
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Abstract. New criteria for the boundedness and the compactness of the generalized weighted composition
operators from Bloch spaces into Bers-type spaces are given in this paper.

1. Introduction

LetD be the unit disk of complex plane C, and H(D) the class of functions analytic inD. We denote by
H∞ = H∞(D) the bounded analytic function space on D. Recall that an f ∈ H(D) is said to belong to the
Bloch space B if

∥ f ∥b = sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

With the norm ∥ f ∥B = | f (0)| + ∥ f ∥b, B is a Banach space. Let B0 be the space which consists of all f ∈ B
satisfying

lim
|z|→1

(1 − |z|2)| f ′(z)| = 0.

This space is called the little Bloch space. See [25] for more information on Bloch spaces.
Let α ≥ 0. The Bers-type space, denoted by H∞α , is a Banach space consisting of all f ∈ H(D) such that

∥ f ∥H∞α = sup
z∈D

(1 − |z|2)α
∣∣∣ f (z)
∣∣∣ < ∞.

It is clear that H∞0 = H∞.
In this paper, let φ always denote an analytic self-map ofD. The composition operator Cφ, induced by

φ, is defined by
Cφ f = f ◦ φ, f ∈ H(D).

A fundamental and interesting problem concerning composition operators is to relate function theoretic
properties of φ to operator theoretic properties of Cφ on various spaces. See [3] for more topics about the
composition operator.

Let u ∈ H(D). The weighted composition operator uCφ, induced by φ and u, is defined by

(uCφ f )(z) = u(z) · f (φ(z)), f ∈ H(D), z ∈ D.
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Let D be the differentiation operator and n be a nonnegative integer. Write

D f = f ′, Dn f = f (n), f ∈ H(D).

The generalized weighted composition operator Dn
φ,u, which introduced by the author of this paper, is

defined as follows (see, e.g., [26–28]).

(Dn
φ,u f )(z) = u(z) · f (n)(φ(z)), f ∈ H(D), z ∈ D.

When n = 0, then Dn
φ,u = uCφ. When n = 0 and u(z) ≡ 1, then Dn

φ,u = Cφ. When n = 1, u(z) = φ′(z), then
Dn
φ,u = DCφ. When n = 1 and u(z) = 1, then Dn

φ,u = CφD. The operators DCφ and CφD were studied, for
example, in [7, 9, 12, 17, 20, 22].

Composition operators, weighted composition operators and generalized weighted composition oper-
ators between Bloch spaces and some other spaces in one and several complex variables were studied, for
example, in [1, 2, 8, 10, 11, 13–15, 18–24, 27]. See [4–6, 16–19, 23, 26, 29] for corresponding operators between
Bers-type spaces and some other spaces.

In this paper, motivated by [1, 2], we give some new criteria for the boundedness or compactness of the
operator Dn

φ,u from Bloch spaces to Bers-type spaces.
Throughout the paper, C denotes a positive constant which may differ from one occurrence to the other.

The notation A ≍ B means that there exists a positive constant C such that B/C ≤ A ≤ CB.

2. Main results and proofs

In this section we give our main results and proofs. For this purpose, we need the following lemma,
which can be proved in a standard way (see, for example, Theorem 3.11 in [3]).

Lemma 2.1. Let n be a nonnegative integer, α ≥ 0, u ∈ H(D) and let φ be an analytic self-map of D. Then
Dn
φ,u : B(or B0)→ H∞α is compact if and only if Dn

φ,u : B(or B0)→ H∞α is bounded and for any bounded sequence
( fk)k∈N in B(or B0) which converges to zero uniformly on compact subsets ofD, Dn

φ,u fk → 0 in H∞α as k→∞.

For w ∈ D, set

fw(z) =
1 − |w|2
1 − wz

.

Next, we will this family functions and zm to characterize the generalized weighted composition operator
Dn
φ,u from B and B0 into H∞α .

Theorem 2.2. Let n be a positive integer, α > 0, u ∈ H(D) and φ be an analytic self-map ofD. Then the following
statements are equivalent.

(a) The operator Dn
φ,u : B → H∞α is bounded;

(b) The operator Dn
φ,u : B0 → H∞α is bounded;

(c) sup
m≥n
∥Dn
φ,uIm(z)∥H∞α < ∞, where Im(z) = zm;

(d) u ∈ H∞α and sup
w∈D
∥Dn
φ,u fφ(w)∥H∞α < ∞;

(e)

sup
z∈D

(1 − |z|2)α|u(z)|
(1 − |φ(z)|2)n < ∞ .

Proof. (a)⇒ (b) This implication is obvious.
(b) ⇒ (c) For m ∈ N, the function Im is bounded in B0 and ∥Im∥B ≤ C, here C > 0, independent of m.

Therefore, by the boundedness of Dn
φ,u, we get

∥Dn
φ,uIm(z)∥H∞α ≤ C∥Dn

φ,u∥ < ∞,



Xiangling Zhu / Filomat 26:6 (2012), 1163–1169 1165

proving (c).
(c)⇒ (d) Suppose (c) holds. It is easy to see that (Dn

φ,uIn)(z) = u(z)n!, z ∈ D,while for k < n, (Dn
φ,uIk)(z) = 0.

Thus,

sup
z∈D

(1 − |z|2)α|u(z)| ≤ 1
n!
∥Dn
φ,uIn∥H∞α ≤

1
n!

sup
m≥n
∥Dn
φ,uIm∥H∞α < ∞,

i.e. u ∈ H∞α . For any given w ∈ D, it is easy to check that fw is bounded in B. Write

fw(z) = (1 − |w|2)
∞∑

k=0

wkzk.

Using linearity, we get

∥Dn
φ,u fw∥H∞α ≤ (1 − |w|2)

∞∑
k=0

|w|k∥Dn
φ,uIk∥H∞α < ∞.

Therefore,
sup
w∈D
∥Dn
φ,u fw∥H∞α < ∞.

(d)⇒ (e) For λ ∈ D, it follows from the condition that

C ≥ ∥Dn
φ,u fφ(λ)∥H∞α ≥

n!(1 − |λ|2)α|u(λ)||φ(λ)|n
(1 − |φ(λ)|2)n . (1)

For any fixed r ∈ (0, 1), from (1), we have

sup
|φ(λ)|>r

(1 − |λ|2)α|u(λ)|
(1 − |φ(λ)|2)n ≤ sup

|φ(λ)|>r

|φ(λ)|n
rn

(1 − |λ|2)α|u(λ)|
(1 − |φ(λ)|2)n ≤ C

rnn!
. (2)

From u ∈ H∞α , we have

sup
|φ(λ)|≤r

(1 − |λ|2)α|u(λ)|
(1 − |φ(λ)|2)n ≤ 1

(1 − r2)n sup
|φ(λ)|≤r

(1 − |λ|2)α|u(λ)| < ∞. (3)

Therefore, (2) and (3) yield the inequality of (e).
(e)⇒ (a) By Theorem 5.1.5 of [25], if f ∈ B and k ∈N, then

B( f ) ≍ | f ′(0)| + · · · + | f (k−1)(0)| + sup
z∈D

(1 − |z|2)k| f (k)(z)|,

which implies that
sup
z∈D

(1 − |z|2)k| f (k)(z)| ≤ Ck∥ f ∥B,

where Ck is a constant only depending on k. Therefore, for z ∈ D, we have

(1 − |z|2)α|(Dn
φ,u f )(z)| = (1 − |z|2)α|u(z)|| f (n)(φ(z))| ≤ C

(1 − |z|2)α|u(z)|
(1 − |φ(z)|2)n ∥ f ∥B, (4)

where C is a suitable constant depending only on n. Taking the supremum in (4) overD and then using the
condition (e) we see that Dn

φ,u : B → H∞α is bounded. The proof is completed.

Theorem 2.3. Let n be a positive integer, α > 0, u ∈ H(D) and letφ be an analytic self-map ofD. If Dn
φ,u : B → H∞α

is bounded, then the following statements are equivalent.
(a) The operator Dn

φ,u : B → H∞α is compact;

(b) The operator Dn
φ,u : B0 → H∞α is compact;

(c) lim
m→∞

∥Dn
φ,uIm(z)∥H∞α = 0;
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(d) lim
|φ(w)|→1

∥Dn
φ,u fφ(w)∥H∞α = 0;

(e)

lim
|φ(z)|→1

(1 − |z|2)α|u(z)|
(1 − |φ(z)|2)n = 0.

Proof. (a)⇒ (b) This implication is clear.
(b)⇒ (c) Assume Dn

φ,u : B0 → H∞α is compact. Since the sequence {Im} is bounded in B0 and converges
to 0 uniformly on compact subsets, by Lemma 2.1 it follows that ∥Dn

φ,uIm∥H∞α → 0 as m→∞.
(c)⇒ (d) Suppose (c) holds. For any given ε > 0, there exists an N ∈N such that

∥Dn
φ,uI j∥H∞α < ε/2,

for all j ≥ N. Write

fφ(zk)(z) = (1 − |φ(zk)|2)
∞∑
j=0

φ(zk)
j
z j, z ∈ D.

By linearity, we have

∥Dn
φ,u fφ(zk)∥H∞α ≤ (1 − |φ(zk)|2)

∞∑
j=0

|φ(zk)| j∥Dn
φ,uI j∥H∞α

= (1 − |φ(zk)|2)
N−1∑
j=0

|φ(zk)| j∥Dn
φ,uI j∥H∞α + (1 − |φ(zk)|2)

∞∑
j=N

|φ(zk)| j∥Dn
φ,uI j∥H∞α

≤ 2(1 − |φ(zk)|N)M + ε, (5)

where M = sup0≤ j≤N−1 ∥Dn
φ,uI j∥H∞α . Since |φ(zk)| → 1 as k→∞, from (5), we deduce that

lim
k→∞
∥Dn
φ,u fφ(zk)∥H∞α ≤ ε. (6)

Since ε is an arbitrary positive number, we obtain the desired result.
(d)⇒ (e) Let {zk}k∈N be a sequence inD such that lim

k→∞
|φ(zk)| = 1. Since the sequences { fφ(zk)} are bounded

in B and converge to 0 uniformly on compact subsets ofD, by (1) and Lemma 2.1, we have

n!(1 − |zk|2)α|u(zk)||φ(zk)|n
(1 − |φ(zk)|2)n ≤ ∥Dn

φ,u fφ(zk)∥H∞α → 0

as k→∞. Therefore

lim
k→∞

(1 − |zk|2)α|u(zk)|
(1 − |φ(zk)|2)n = lim

k→∞

(1 − |zk|2)α|u(zk)||φ(zk)|n
(1 − |φ(zk)|2)n = 0, (7)

which implies (e).
(e)⇒ (a) Assume ( fk)k∈N is a bounded sequence in B converging to 0 uniformly on compact subsets of

D. By the assumption, for any ε > 0, there exists a δ ∈ (0, 1) such that

(1 − |z|2)α|u(z)|
(1 − |φ(z)|2)n < ε (8)

when δ < |φ(z)| < 1. Let Ω = {z ∈ D : |φ(z)| ≤ δ}. Since Dn
φ,u : B → H∞α is bounded, as shown in the proof of

Theorem 2.2,

C1 := sup
z∈D

(1 − |z|2)α|u(z)| < ∞. (9)
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By (8) and (9), we have

∥Dn
φ,u fk∥H∞α = sup

z∈D
(1 − |z|2)α|(Dn

φ,u fk)(z)|

≤ sup
z∈Ω

(1 − |z|2)α|u(z)|| f (n)
k (φ(z))| + C sup

z∈D\Ω

(1 − |z|2)α|u(z)|
(1 − |φ(z)|2)n ∥ fk∥B

≤ C1 sup
z∈Ω
| f (n)

k (φ(z))| + Cε∥ fk∥B. (10)

Since ( fk)k∈N converges to 0 uniformly on compact subsets ofD, by Cauchy’s estimates so do the sequences
( f (n)

k ). From (10), letting k → ∞ and using the fact that ε is an arbitrary positive number, we obtain
lim
k→∞
∥Dn
φ,u fk∥H∞α = 0. By Lemma 2.1, we deduce that the operator Dn

φ,u : B → H∞α is compact.

From Theorems 2.2 and 2.3, we can obtain the following corollaries, which give some new criteria for
the boundedness and compactness of the operator DCφ : B → H∞α . Partial results can be found in [12].

Corollary 2.4. Let α > 0 and φ be an analytic self-map ofD. Then the following statements are equivalent.
(a) The operator DCφ : B → H∞α is bounded;

(b) The operator DCφ : B0 → H∞α is bounded;

(c) sup
m≥n
∥DCφIm(z)∥H∞α < ∞, where Im(z) = zm;

(d) φ′ ∈ H∞α and sup
w∈D
∥DCφ fφ(w)∥H∞α < ∞;

(e)

sup
z∈D

(1 − |z|2)α|φ′(z)|
1 − |φ(z)|2 < ∞ .

Corollary 2.5. Let α > 0 and φ an analytic self-map of D. If DCφ : B → H∞α is bounded, then the following
statements are equivalent.

(a) The operator DCφ : B → H∞α is compact;

(b) The operator DCφ : B0 → H∞α is compact;

(c) lim
m→∞

∥DCφIm(z)∥H∞α = 0;

(d) lim
|φ(w)|→1

∥DCφ fφ(w)∥H∞α = 0;

(e)

lim
|φ(z)|→1

(1 − |z|2)α|φ′(z)|
1 − |φ(z)|2 = 0.

Remark 1. When n is a positive integer, from the proof of Theorems 2.2 and 2.3, we see that Dn
φ,u : B → H∞α is

bounded if and only if Dn
φ,u : H∞ → H∞α is bounded; Dn

φ,u : B → H∞α is compact if and only if Dn
φ,u : H∞ → H∞α

is compact.

Next we consider the case n = 0. For w ∈ D, set

1w(z) =
(

ln
e

1 − wz

)2(
ln

e
1 − |w|2

)−1
, z ∈ D.

From [12], we see that {1φ(w)} are bounded in B0 for w ∈ D, the sequences {1φ(zk)} converge to 0 uniformly
on compact subsets of D when |φ(zk)| → 1. Using this family functions, we can obtain a new criterion for
the boundedness and compactness of weighted composition operator uCφ : B → H∞α . Since the proof is
similar to the above, we omit the details.
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Theorem 2.6. Letα > 0, u ∈ H(D) andφ be an analytic self-map ofD. Then the following statements are equivalent.

(a) The operator uCφ : B → H∞α is bounded;

(b) The operator uCφ : B0 → H∞α is bounded;

(c) u ∈ H∞α and sup
w∈D
∥uCφ1φ(w)∥H∞α < ∞;

(d) u ∈ H∞α and
sup
z∈D

(1 − |z|2)α|u(z)| ln e
1 − |φ(z)|2 < ∞.

Theorem 2.7. Let α > 0, u ∈ H(D) and φ be an analytic self-map of D. If uCφ : B → H∞α is bounded, then the
following statements are equivalent.

(a) The operator uCφ : B → H∞α is compact;

(b) The operator uCφ : B0 → H∞α is compact;

(c) lim
|φ(w)|→1

∥uCφ1φ(w)∥H∞α = 0;

(d)
lim
|φ(z)|→1

(1 − |z|2)α|u(z)| ln e
1 − |φ(z)|2 = 0.

Remark 2. Partial results of Theorems 2.6 and 2.7 have been obtained, for example, in [23].
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[12] S. Li and S. Stević, Composition followed by differentiation between H∞ and α-Bloch spaces, Houston J. Math. 35 (1) (2009),
327–340.

[13] Z. Lou, Composition operators on Bloch type spaces, Analysis (Munich), 23 (1) (2003), 81–95.
[14] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), 2679–2687.
[15] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (

2003), 191–215.
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[18] S. Stević, Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput.
211 (2009), 222-233.
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