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Abstract. For a nontrivial graph G, its first and second Zagreb coindices are defined, respectively, as
M1(G) =

∑
uv<E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv<E(G)
dG(u)dG(v), where dG(x) is the degree of vertex x in G. In

this paper, we explore further properties of Zagreb coindices. First, we investigate Zagreb coindices of two
classes of composite graphs, namely, Mycielski graph and edge corona, and we present explicit formulas
for Zagreb coindices of these two composite graphs. Then we we give two estimations on Zagreb coindices
of graphs in terms of the number of pendent vertices and Merrifield-Simmons index, respectively. Finally,
we give several Nordhaus-Gaddum type bounds for the first Zagreb coindex.

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For a graph G, let dG(v) be the degree
of a vertex v in G.

A graph invariant is a function defined on a graph which is independent of the labeling of its vertices.
Till now, hundreds of different graph invariants have been employed in QSAR/QSPR studies, some of which
have been proved to be successful (see [23]). Among those successful invariants, there are two invariants
called the first Zagreb index and the second Zagreb index (see [7, 9, 15, 17, 19, 21, 22, 24, 27–29]), defined as

M1(G) =
∑

u∈V(G)

(dG(u))2 and M2(G) =
∑

uv∈E(G)

dG(u)dG(v),

respectively.
In fact, one can rewrite the first Zagreb index as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)).
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Noticing that contribution of nonadjacent vertex pairs should be taken into account when computing
the weighted Wiener polynomials of certain composite graphs, Došlić [8] proposed the first Zagreb coindex
and second Zagreb coindex as

M1(G) =
∑

uv<E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv<E(G)

dG(u)dG(v),

respectively.
It is well known that many graphs arise from simpler graphs via various graph operations. Hence, it is

important and of interest to understand how certain invariants of such composite graphs are related to the
corresponding invariants of the original graphs.

Ashrafi et al. [2] explored basic mathematical properties of Zagreb coindices and, in particular, presented
explicit formulas for these new graph invariants under several graph operations, such as, union, join,
Cartesian product, disjunction product, vertex corona and so on. Ashrafi et al. [3] determined the extremal
values of Zagreb coindices over some special classes of graphs. Hossein-Zadeh et al. [10] obtained some
new extremal values of Zagreb coindices over some special classes of graphs. Hua and Zhang [14] revealed
some relations between Zagreb coindices and some other distance-based topological indices.

In this paper, we explore further properties of Zagreb coindices. In Section 2, we investigate Zagreb
coindices of two classes of composite graphs, namely, Mycielski graph and edge corona, and we present
explicit formulas for Zagreb coindices of these two composite graphs. In Section 3, we we present two
estimations on Zagreb coindices in terms of the number of pendent vertices and Merrifield-Simmons index,
respectively. In Section 4, we give several Nordhaus-Gaddum type bounds for the first Zagreb coindex.

2. Mycielski graph and edge corona of two graphs

We begin with some notations and terminology used in the proof of our results.
Let the n vertices of the given graph G be v1, v2, . . . , vn. Mycielski [20] introduced the following composite

graph, which is well-studied by authors in [4–6].

Definition 2.1. The Mycielski graph µ(G) of G contains G itself as an isomorphic subgraph, together with n + 1
additional vertices: a vertex ui corresponding to each vertex vi of G, and another vertex w. Each vertex ui is connected
by an edge to w, so that these vertices form a subgraph in the form of a star K1,n. In addition, for each edge viv j of G,
the Mycielski graph includes two edges, uiv j and viu j.

By Definition 2.1, if G has n vertices and m edges, then µ(G) has 2n + 1 vertices and 3m + n edges.
Moreover, we have the following lemma by Definition 2.1.

Lemma 2.2. Let G be a nontrivial graph of order n and size m, and let µ(G) be its Mycielski graph. Then, for each
i = 1, . . . , n, we have dµ(G)(vi) = 2dG(vi), dµ(G)(ui) = dG(vi) + 1 and dµ(G)(w) = n.

Let ||n − 1||G denote the number of vertices of degree n − 1 in G. Now, we are in a position to state and
prove the result of the Mycielski graph.

Theorem 2.3. Let G be a nontrivial graph of order n and size m. Then
(i) M1(µ(G)) = n2−n−2m+6

2 M1(G) +mM1(G) + 4m2 − 2mn2 + 2mn + 11m +
n4−2n3+4n2+3n

2 − (n − 1)||n − 1||G;
(ii) M2(µ(G)) = n2−n−2m

2 M1(G) + n2−n−2m+12
2 M2(G) + (m + 2)M1(G) + mM2(G) + 3m2 − mn2 + 5mn + 12m +

n2(n−1)2

4 − 2(n − 1)||n − 1||G.

Proof. As stated in Definition 2.1, we label all vertices in µ(G) as v1, . . . , vn; u1, . . . , un; w, where v1, . . . , vn
are also vertices in the underlying graph G.

By Lemma 2.1, for each vi in G, we have dµ(G)(vi) = 2dG(vi), dµ(G)(ui) = dG(vi) + 1 and dµ(G)(w) = n.
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Suppose that viv j < E(G). Then viu j < E(G) and uiv j < E(G) by the structure of Mycielski graph. So, there
are five types of nonadjacent vertex pairs in µ(G) subjecting to the above assumption, namely,
• Type 1: The nonadjacent vertex pairs {vi, v j} in µ(G);
• Type 2: The nonadjacent vertex pairs {ui, u j} in µ(G);
• Type 3: The nonadjacent vertex pairs {ui, vi} in µ(G) for each i = 1, . . . , n;
• Type 4: The nonadjacent vertex pairs {ui, v j} in µ(G);
• Type 5: The nonadjacent vertex pairs {w, vi} in µ(G) for each i = 1, . . . , n.
To complete the proof, it is sufficient to consider the respective contribution of the above five types of

nonadjacent vertex pairs both to M1(G∗) and to M2(G∗).
The total contribution of nonadjacent vertex pairs of type 1 to M1(µ(G)) and M2(µ(G)) are, respectively,

given by∑
viv j<E(µ(G))

(dµ(G)(vi) + dµ(G)(v j)) =
∑

viv j<E(G)

(2dG(vi) + 2dG(v j))

= 2
∑

viv j<E(G)

(dG(vi) + dG(v j))

= 2M1(G)

and ∑
viv j<E(µ(G))

dµ(G)(vi)dµ(G)(v j) =
∑

viv j<E(G)

(2dG(vi)) · (2dG(v j))

= 4
∑

viv j<E(G)

dG(vi)dG(v j)

= 4M2(G).

Now, we consider the total contribution of nonadjacent vertex pairs of type 2 to M1(µ(G)) and M2(µ(G)),
respectively. There are the following two distinct cases.

Case 2.4. uiu j < E(µ(G)) and viv j < E(G).

In this case, we have∑
uiu j<E(µ(G))

(dµ(G)(ui) + dµ(G)(u j)) =
∑

viv j<E(G)

(dG(vi) + dG(v j) + 2)

=
∑

viv j<E(G)

(dG(vi) + dG(v j)) + 2
[(

n
2

)
−m

]
= M1(G) + n(n − 1) − 2m

and ∑
viv j<E(µ(G))

dµ(G)(vi)dµ(G)(v j) =
∑

viv j<E(G)

(dG(vi) + 1) · (dG(v j) + 1)

=
∑

viv j<E(G)

dG(vi)dG(v j) +
∑

viv j<E(G)

(dG(vi) + dG(v j)) +[(
n
2

)
−m

]
= M1(G) +M2(G) +

n(n − 1)
2

−m.

Case 2.5. uiu j < E(µ(G)), but viv j ∈ E(G).
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In this case, we have∑
uiu j<E(µ(G))

(dµ(G)(ui) + dµ(G)(u j)) =
∑

viv j∈E(G)

(dG(vi) + dG(v j) + 2)

=
∑

viv j∈E(G)

(dG(vi) + dG(v j)) + 2m

= M1(G) + 2m

and ∑
viv j<E(µ(G))

dµ(G)(vi)dµ(G)(v j) =
∑

viv j∈E(G)

(dG(vi) + 1) · (dG(v j) + 1)

=
∑

viv j∈E(G)

dG(vi)dG(v j) +
∑

viv j∈E(G)

(dG(vi) + dG(v j)) +m

= M1(G) +M2(G) +m.

Note that for any 1 ≤ i, j ≤ n, i , j, we always have uiu j < E(µ(G)). There are m edges viv j ∈ E(G) and(n
2
) − m nonadjacent vertex pairs {vi, v j} in G as well as µ(G). By above analysis, the total contributions of

nonadjacent vertex pairs of type 2 to M1(µ(G)) and M2(µ(G)) are, respectively, given by[(
n
2

)
−m

]
(M1(G) + n(n − 1) − 2m) +m(M1(G) + 2m)

and [(
n
2

)
−m

]
(M1(G) +M2(G) +

n(n − 1)
2

−m) +m(M1(G) +M2(G) +m).

The total contribution of nonadjacent vertex pairs of type 3 to M1(µ(G)) and M2(µ(G)) are, respectively,
given by

n∑
i=1

(dµ(G)(ui) + dµ(G)(vi)) =

n∑
i=1

(2dG(vi) + dG(vi) + 1)

= 3
n∑

i=1

dG(vi) + n

= 6m + n

and

n∑
i=1

dµ(G)(ui)dµ(G)(vi) =

n∑
i=1

2dG(vi)(dG(vi) + 1)

= 2
n∑

i=1

(dG(vi))2 + 2
n∑

i=1

dG(vi)

= 2M1(G) + 4m.

The total contribution of nonadjacent vertex pairs of type 4 to M1(µ(G)) and M2(µ(G)) are, respectively,
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given by∑
uiv j<E(µ(G))

(dµ(G)(ui) + dµ(G)(v j)) =
∑

viv j<E(G)

(dG(vi) + 1 + 2dG(v j))

=
∑

viv j<E(G)

(dG(vi) + dG(v j)) +
[(

n
2

)
−m

]
+∑

viv j<E(G)

dG(v j)

= M1(G) +
n(n − 1)

2
−m +

∑
vk∈V(G)

dG(vk) −

(n − 1)||n − 1||G
= M1(G) +

n(n − 1)
2

+m − (n − 1)||n − 1||G,

and ∑
viv j<E(µ(G))

dµ(G)(vi)dµ(G)(v j) =
∑

viv j<E(G)

(dG(vi) + 1) · (2dG(v j))

= 2
∑

viv j<E(G)

dG(vi)dG(v j) + 2
∑

viv j<E(G)

dG(v j)

= 2M2(G) + 2
∑

vk∈V(G)

dG(vk) − 2(n − 1)||n − 1||G

= 2M2(G) + 4m − 2(n − 1)||n − 1||G.

The total contribution of nonadjacent vertex pairs of type 5 to M1(µ(G)) and M2(µ(G)) are, respectively,
given by∑

viw<E(µ(G))

(dµ(G)(vi) + dµ(G)(w)) =
∑

vi∈V(G)

(2dG(vi) + n + 1)

= 4m + n(n + 1)

and ∑
viw<E(µ(G))

dµ(G)(vi)dµ(G)(w) =
∑

vi∈V(G)

(2dG(vi))(n + 1)

= 4m(n + 1).

Summarizing the total contributions of five types of nonadjacent vertex pairs, we can obtain the desired
result. This completes the proof.

Hou and Shiu [11] introduced a kind of new graph operation, named edge corona, as introduced in the
following definition. In [11], the adjacency spectrum and Laplacian spectrum of edge corona of G1 and G2
were presented in terms of the spectrum and Laplacian spectrum of G1 and G2, respectively.

Definition 2.6. Let G1 and G2 be two graphs on disjoint sets of n1 and n2 vertices, m1 and m2 edges, respectively.
The edge corona G1 ⋄ G2 of G1 and G2 is defined as the graph obtained by taking one copy of G1 and m1 copies of
G2, and then joining two end-vertices of the i-th edge of G1 to every vertex in the i-th copy of G2.

Ashrafi et al. [2] obtained explicit formulas for Zagreb coindices of vertex corona of two graphs. In the
following theorem, we will give explicit formulas for Zagreb coindices of edge corona of two graphs.
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Theorem 2.7. Let G1 and G2 be two graphs on disjoint sets of n1 and n2 vertices, m1 and m2 edges, respectively.
Then

(i) M1(G1 ⋄G2) = m1M1(G2)+ (n2 + 1)M1(G1)− n2(n2 + 1)M1(G1)+ 2m1n2(m1 + 1)(m2 + n2)+ 2n2
1(m2 + n2)−

4m1(2m2 + n2);
(ii) M2(G1 ⋄G2) = m1M2(G2)+2m1M1(G2)+ (n2+1)2M2(G1)−2(m2+n2)(n2+1)M1(G1)+2m1n2

2(m1+2n1)+
2m1m2(m1m2 + 2m1n2 + 2n1n2 + 2n1 − 2n2 −m2 − 2) + 2m1n2(2n1 − 1).

Proof. We let xi j be the j-th vertex in the i-th copy of G2, where i = 1, . . . , m1, j = 1, . . . , n2, and let yk be the
k-th in G1, k = 1, . . . , n1. Also, we let x j be the j-th vertex in G2.

By the definition of edge corona, for each vertex xi j, we have dG1⋄G2 (xi j) = dG2 (x j)+2, and for every vertex
yk in G1, dG1⋄G2 (yk) = dG1 (yk) · n2 + dG1 (yk) = (n2 + 1)dG1 (yk).

Now, we need only to consider the following four types of nonadjacent vertex pairs in G1 ⋄G2, namely,
• Type 1: The nonadjacent vertex pairs {xi j, xih}, where 1 ≤ i ≤ m1, 1 ≤ j < h ≤ n2, and it is assumed that

x jxh < E(G2);
• Type 2: The nonadjacent vertex pairs {yk, ys}, where 1 ≤ k < s ≤ n1 and it is assumed that ykys < E(G1);
• Type 3: The nonadjacent vertex pairs {xi j, yk}, where 1 ≤ i ≤ m1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n1, and it is

assumed that the i-th edge ei (1 ≤ i ≤ m1) in G1 does not pass through yk;
• Type 4: The nonadjacent vertex pairs {xi j, xlh}, where 1 ≤ i < l ≤ m1, 1 ≤ j, h ≤ n2.
The total contribution of nonadjacent vertex pairs of type 1 to M1(G1 ⋄G2) and M2(G1 ⋄G2) are given by

m1∑
i=1

∑
xi jxih<E(G1⋄G2)

(dG1⋄G2 (xi j) + dG1⋄G2 (xih)) =

m1∑
i=1

∑
x jxh<E(G2)

(dG2 (x j) + dG2 (xh) + 4)

=

m1∑
i=1

{
M1(G2) + 4

[(
n2

2

)
−m2

]}
= m1M1(G2) + 2m1n2(n2 − 1) − 4m1m2

and
m1∑
i=1

∑
xi jxih<E(G1⋄G2)

dG1⋄G2 (xi j)dG1⋄G2 (xih) =

m1∑
i=1

∑
x jxh<E(G2)

(dG2 (x j) + 2)(dG2 (xh) + 2)

=

m1∑
i=1

{
M2(G2) + 2M1(G2) + 4

[(
n2

2

)
−m2

]}
= m1M2(G2) + 2m1M1(G2) + 2m1n2(n2 − 1) −

4m1m2,

respectively.
The total contribution of nonadjacent vertex pairs of type 2 to M1(G1 ⋄G2) and M2(G1 ⋄G2) are given by∑

yk ys<E(G1⋄G2)

(dG1⋄G2 (yk) + dG1⋄G2 (ys)) =
∑

yk ys<E(G1)

(n2 + 1)(dG1 (yk) + dG1 (ys))

= (n2 + 1)M1(G1)

and ∑
yk ys<E(G1⋄G2)

dG1⋄G2 (yk)dG1⋄G2 (ys) =
∑

yk ys<E(G1)

(n2 + 1)2dG1 (yk)dG1 (ys)

= (n2 + 1)2M2(G1),

respectively.
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Now, we consider the total contribution of nonadjacent vertex pairs of type 3 to M1(G) and M2(G),
respectively. Note that each yk is adjacent to all vertices of dG1 (yk) copies of G2, or equivalently, each yk is
not adjacent to any vertex of m1 − dG1 (yk) copies of G2.

Then the total contribution of nonadjacent vertex pairs of type 3 to M1(G1 ⋄ G2) and M2(G1 ⋄ G2) are
given by

n1∑
k=1

(n1 − dG1 (yk))
n2∑
j=1

[dG2 (x j) + 2 + (n2 + 1)dG1 (yk)]

=

n1∑
k=1

(n1 − dG1 (yk))[2m2 + 2n2 + n2(n2 + 1)dG1 (yk)]

= 2n2
1(m2 + n2) − 4m1(m2 + n2) + 2m1n1n2(n2 + 1) − n2(n2 + 1)M1(G1)

and
n1∑

k=1
(n1 − dG1 (yk))

n2∑
j=1

(dG2 (x j) + 2)(n2 + 1)dG1 (yk)

= 2(m2 + n2)(n2 + 1)
n1∑

k=1

dG1 (yk)(n1 − dG1 (yk))

= 2(m2 + n2)(n2 + 1)(2m1n1 −M1(G1)),

respectively.
The total contribution of nonadjacent vertex pairs of type 4 to M1(G1 ⋄G2) and M2(G1 ⋄G2) are given by

∑
xi jxlh<E(G1⋄G2)

(dG1⋄G2 (xi j) + dG1⋄G2 (xlh)) =

(
m1

2

)
·

n2∑
j=1

n2∑
h=1

(dG2 (x j) + dG2 (xh) + 4)

=

(
m1

2

)
·

n2∑
j=1

(n2dG2 (x j) + 2m2 + 4n2)

=

(
m1

2

)
(4m2n2 + 4n2

2)

= 2m1n2(m1 − 1)(m2 + n2)

and

∑
xi jxlh<E(G1⋄G2)

dG1⋄G2 (xi j)dG1⋄G2 (xlh) =

(
m1

2

)
·

n2∑
j=1

n2∑
h=1

(dG2 (x j) + 2)(dG2 (xh) + 2)

=

(
m1

2

)
·

n2∑
j=1

(dG2 (x j) + 2)(2m2 + 2n2)

= 4
(
m1

2

)
(m2 + n2)2

= 2m1(m1 − 1)(m2 + n2)2,

respectively.
Summarizing the total contributions of four types of nonadjacent vertex pairs, we can obtain the desired

result. This completes the proof.
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3. Two estimations on Zagreb coindices

In this section, we build two estimations on Zagreb coindices of connected graphs involving the number
of pendent vertices and the Merrifield-Simmons index, respectively.

Theorem 3.1. Let G be a connected graph of order n and p pendent vertices. Then
(i)M1(G) ≥ −2p2 + 3pn − 4p;
(ii)M2(G) ≥ − 3

2 p2 − 5
2 p + 2pn.

Proof. When p = 0, the result holds clearly, as Mi(G) ≥ 0 (i = 1, 2). Assume that p ≥ 1.
Suppose first that G has exactly one pendent vertex, say v, and that u is the unique neighbor of v. Then

M1(G) ≥
∑

w∈V(G)\{u, v}
(dG(w) + 1)

≥
∑

w∈V(G)\{u, v}
3

= 3(n − 2)

and

M2(G) ≥
∑

w∈V(G)\{u, v}
dG(w)

≥
∑

w∈V(G)\{u, v}
2

= 2(n − 2),

as desired.
Now, we assume that p ≥ 2. Clearly, each pair of pendent vertices contributes to M1(G) and M2(G) are

2 and 1, respectively. The total contribution of pendent vertices pairs to M1(G) and M2(G) are 2
(p

2

)
and

(p
2

)
,

respectively.
Let v be a pendent vertex in G and let u be its unique neighbor. Then for any non-pendent vertex w in

V(G)\ {u, v}, the contribution of vertex pairs {v, w} to M1(G) and M2(G) are 1+dG(w) and dG(w), respectively.
The total contribution of such vertex pairs {v, w} to M1(G) and M2(G) are (n − p − 1)

(p
1

)
(1 + dG(w)) and

(n − p − 1)
(p

1

)
dG(w), respectively.

Since dG(w) ≥ 2 for any non-pendent vertex w in G, we have

M1(G) ≥
(
p
2

)
× (1 + 1) + (n − p − 1)

(
p
1

)
× (1 + 2)

= −2p2 + 3pn − 4p.

Similarly,

M2(G) ≥
(
p
2

)
× (1 × 1) + (n − p − 1)

(
p
1

)
× (1 × 2)

= −3
2

p2 − 5
2

p + 2pn.

Since these two bounds are also valid for the case of p = 1, we have completed the proof.

Remark 3.2. Consider the sharpness of bounds in Theorem 3.1. When p = 0, both−2p2+3pn−4p and− 3
2 p2− 5

2 p+2pn
equal to zero. Clearly, the complete graph Kn and Kn attain both bounds. When p = 2, the 4-vertex path P4 attains
both bounds in (i) and (ii). When p ≥ 3, we fail to find the extremal graphs attaining bounds corresponding to each p.
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The Merrifield-Simmons index of a graph G (see [12, 13, 25]) is defined as

i(G) =
∑
k≥0

i(G; k),

where i(G; k) is the number of k-membered independent sets in G for k ≥ 1, and i(G; 0) = 1.

Theorem 3.3. Let G be a connected graph of order n and maximum vertex degree △(G). Then
(i)M1(G) ≤ 2△(G)(i(G) − n − 1);
(ii)M2(G) ≤ (△(G))2(i(G) − n − 1).

Proof. It is obvious that the number of vertex pairs {u, v} in G at distance greater than or equal to 2 is exactly
i(G; 2). Moreover, we have

i(G) ≥ 1 + n + i(G; 2)

with equality if and only if the independence number of G is equal to 2. That is,

i(G; 2) ≤ i(G) − n − 1

with equality if and only if the independence number of G is equal to 2. Then

M1(G) =
∑

uv<E(G)

(dG(u) + dG(v))

≤
∑

uv<E(G)

2△(G)

= 2△(G)i(G; 2)
≤ 2△(G)(i(G) − n − 1).

Similarly, we have M2(G) ≤ (△(G))2(i(G) − n − 1). This proves theorem.

Remark 3.4. Consider the sharpness of bounds in Theorem 3.3. It is easy to see that both bounds in (i) and (ii) are
attained if and only if G is a regular graph and the independence number of G is equal to 2. For example, the cycle C4
or C5 attains both bounds in (i) and (ii).

4. Nordhaus-Gaddum type bounds for the first Zagreb coindex

Hossein-Zadeh et al. [10] obtained Nordhaus-Gaddum type bounds for the second Zagreb coindex by
means of results in [26], but they left the case of the first Zagreb coindex untreated. In this section, we give
several Nordhaus-Gaddum type (lower) bounds for the first Zagreb coindex by means of results in [27, 28].

Lemma 4.1. ([16]) Let G be a graph of order n ≥ 2 and size m. Then

M1(G) ≤ m
( 2m

n − 1
+ n − 2

)
with equality if and only if G � Sn or Kn.

Lemma 4.2. ([27]) Let G be a connected graph of order n ≥ 2 and size m. If G is Kr+1-free, 2 ≤ r ≤ n − 1, then

M1(G) ≤ 2r − 2
r

mn

with equality if and only if G is a bipartite graph for r = 2, and regular complete r-partite graph for r ≥ 3.
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Let Wn be the graph obtained from the star Sn by adding ⌊ n−1
2 ⌋ independent edges. Let even(n) = 1 if n

is even, and 0 otherwise.

Lemma 4.3. ([28]) Let G be a connected quadrangle-free graph graph of order n ≥ 2 and size m. Then

M1(G) ≤ n(n − 1) + 2m − 2even(n)

with equality if and only if G �Wn.

Lemma 4.4. ([28]) Let G be a connected triangle- and a quadrangle-free graph of order n ≥ 2. Then

M1(G) ≤ n(n − 1)

with equality if and only if G � Sn or a Moore graph of diameter 2.

Theorem 4.5. (i) If G is a graph of order n ≥ 2 and size m, then

M1(G) +M1(G) ≥ 2mn − 4m2

n − 1

with equality if and only if G � Sn or Kn.
(ii) If G is a connected Kr+1-free graph, 2 ≤ r ≤ n − 1, then

M1(G) +M1(G) ≥ 4m(
n
r
− 1)

with equality if and only if G is a bipartite graph for r = 2, and regular complete r-partite graph for r ≥ 3.
(iii) If G is a connected quadrangle-free graph, then

M1(G) +M1(G) ≥ 4mn − 2n2 + 2n − 8m + 4even(n)

with equality if and only if G �Wn.
(iv) If G is a connected triangle- and a quadrangle-free graph, then

M1(G) +M1(G) ≥ 2(n − 1)(2m − n)

with equality if and only if G � Sn or a Moore graph of diameter 2.

Proof. It follows from [2] that for any simple graph G, M1(G) =M1(G). Hence, M1(G) +M1(G) = 2M1(G).
From [2], we also have M1(G) = 2m(n − 1) −M1(G) for any simple graph of order n and size m. So,

M1(G) +M1(G) = 4m(n − 1) − 2M1(G). (1)

By Lemmas 4.1−4.4 and Eq. (1), we have actually completed the proof.
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[8] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66-80.
[9] J. Hao, Theorems about Zagreb indices and modified Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (2011) 659-670.



H. Hua et al. / Filomat 26:6 (2012), 1215–1225 1225

[10] S. Hossein-Zadeh, A. Hamzeh, A.R. Ashrafi, Extremal properties of Zagreb coindices and degree distance of graphs, Math. Notes
(Miskolc) 11 (2011) 129-137.

[11] Y. Hou, W.-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010) 586-594.
[12] H. Hua, S. Zhang, Graphs with given number of cut vertices and extremal Merrifield-Simmons index, Discrete Appl. Math. 159

(2011) 971-980.
[13] H. Hua, A sharp upper bound for the number of stable sets in graphs with given number of cut edges, Appl. Math. Lett. 22 (2009)

1380-1385.
[14] H. Hua, S. Zhang, Relations between Zagreb coindices and some distance-based topological indices, MATCH Commun. Math.

Comput. Chem. 68 (2012) 199-208.
[15] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The first and second Zagreb indices of graph operations, Discrete Appl. Math.

157 (2009) 804-811.
[16] J.-S. Li, Y.-L. Pan, de Caen’s inequality and bounds on the largest Laplacian eigenvalue of a graph, Linear Algebra Appl. 328

(2001) 153-160.
[17] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (2011) 581-593.
[18] B. Liu, H. Hou, Y. Huang, On the Wiener polarity index of trees with maximum degree or given number of leaves, Comput.

Math. Appl. 60 (2010) 2053-2057.
[19] T. Mansour, C. Song: The a and (a,b)-Analogs of Zagreb indices and coindices of graphs, Int. Journal of Combinatorics (2012),

Articl 909285.
[20] J. Mycielski, Sur le colouriage des graphes, Colloq. Math. 3 (1955) 161-162.
[21] P.S. Ranjini et al: On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math. Computation 218 (2011) 699-702.
[22] P.S. Ranjini et al: New Bounds on Zagreb indices and Zagreb Co-indices, Bol. Soc. Paran. Mat. 31 (2012) 51-55.
[23] R. Todeschini, V. Consoni, Handbook of Molecular Descriptors, Wiley-VCH, New York, 2002.
[24] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011) 1026-1030.
[25] K. Xu, On the Hosoya index and Merrifield-Simmons index of graphs with a given clique number, Appl. Math. Lett. 23 (2010)

395-398.
[26] L. Zhang, B. Wu, The Nordhaus-Goddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem.

54 (2005) 189-194.
[27] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113-118.
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