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On (p, 1)-total labelling of plane graphs with independent crossings

Xin Zhanga, Guizhen Liua, Yong Yua

aSchool of Mathematics, Shandong University, Jinan 250100, China

Abstract. Two distinct crossings are independent if the end-vertices of the crossed pair of edges are
mutually different. If a graph G has a drawing in the plane so that every two crossings are independent,
then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, it is
proved that the (p, 1)-total labelling number of every IC-planar graph G is at most ∆(G) + 2p − 2 provided
that∆(G) ≥ ∆ and 1(G) ≥ 1, where (∆, 1) ∈ {(6p+2, 3), (4p+2, 4), (2p+5, 5)}. As a consequence, we generalize
and improve some results obtained in [F. Bazzaro, M. Montassier, A. Raspaud, (d, 1)-Total labelling of planar
graphs with large girth and high maximum degree, Discrete Math. 307 (2007) 2141–2151].

1. Introduction

In the channel assignment problems, we need to assign different channels to close transmitters so
that they can avoid interference and communication link failure. Moreover, a sufficient separation of the
channels assigned to two close transmitters is also necessary. An L(p, q)-labeling is a popular graph theoretic
model for this problem. An L(p, q)-labelling of a graph G is a mapping f form the set of vertices V(G) to the
set of integersZk = {0, 1, · · · , k} such that | f (x)− f (y)| ≥ p if x and y are adjacent and | f (x)− f (y)| ≥ q if x and
y are at distance 2. This notion has been studied many times and gives many challenging problems. The
interested readers can refer to the surveys by Calamoneri [3] and by Yeh [11].

The incidence graph I(G) of a graph G is the graph obtained from G by replacing each edge with a path
of length 2. Given a graph G, Whittlesey et al. [9] studied the L(2, 1)-labelling of I(G) in 1995. Indeed, such a
labelling of I(G) is equivalent to an assignment of the integer set {0, 1, · · · , k} to each element of V(G)∪ E(G)
such that the restrained vertex coloring and edge coloring of G is proper and the difference between the
integer assigned to a vertex and these assigned to its incident edges is at least 2. This assignment introduced
by Havet and Yu [4, 5] is called a (2, 1)-total labelling of G and can be generalized to the notation of (p, 1)-total
labelling.

A k-(p, 1)-total labelling of a graph G is a function f from V(G) ∪ E(G) to the color set {0, 1, · · · , k} such
that | f (u) − f (v)| ≥ 1 if uv ∈ E(G), | f (e1) − f (e2)| ≥ 1 if e1 and e2 are two adjacent edges and | f (u) − f (e)| ≥ p
if the vertex u is incident to the edge e. The minimum k such that G has a k-(p, 1)-total labelling, denoted
by λT

p (G), is called the (p, 1)-total labelling number of G. One can easily see that the (1, 1)-total labelling and
the total coloring are equivalent and thus the following (p, 1)-Total Labelling Conjecture can be seen as a
generalization of the well-known Total Coloring Conjecture, which asserts that every graph is (∆ + 2)-total
colorable.
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Conjecture 1. [5, 6] Let G be a graph. Then λT
p (G) ≤ min{∆(G) + 2p − 1, 2∆(G) + p − 1}.

This conjecture is now confirmed for some planar graphs with high girth and high maximum degree
[2] and for graphs with a given maximum average degree [10]. In particular, Bazzaro et al. [2] proved the
following theorem for planar graphs.

Theorem 2. [2] Let G be a planar graph with maximum degree ∆ and girth g. Then λT
p (G) ≤ ∆+ 2p− 2 with p ≥ 2

in the following cases:
(1) ∆ ≥ 2p + 1 and 1 ≥ 11;
(2) ∆ ≥ 2p + 2 and 1 ≥ 6;
(3) ∆ ≥ 2p + 3 and 1 ≥ 5;
(4) ∆ ≥ 8p + 2.

In this paper, we focus on plane graphs with independent crossings. Two distinct crossings are inde-
pendent if the end-vertices of the crossed pair of edges are mutually different. If a graph G has a drawing
in the plane in which every two crossings are independent, then we call G a plane graph with independent
crossings or IC-planar graph for short throughout this paper. This definition of IC-planar graph was intro-
duced by Alberson [1] in 2008. Setting a conjecture of Alberson [1], Král and Stacho [7] showed that every
IC-planar graph is 5-colorable.

Throughout this paper, we always assume that every IC-planar graph has already been drawn in the
plane with all its crossings independent and with the number of crossings minimum. Such a drawing is
called IC-plane graph. The associated plane graph G× of an IC-plane graph G is the graph obtained from
G by turning all crossings of G into new 4-valent vertices. A vertex in G× is called false if it is a new added
vertex and is called true otherwise. We call a face in G× false or true according to whether it is incident with
a false vertex or not. A crossed edge in G is an edge e ∈ E(G) \ E(G×). By the definition of IC-plane graph,
one can see that every vertex in G× is adjacent to at most one false vertex and is incident with at most two
false faces in G×. For other basic undefined concepts we refer the reader to [8].

2. Main results and their proofs

This section is dedicated to the proof the following main theorem. Note that IC-planar graphs is a larger
class than planar graphs. So Theorem 3(3) improves and generalizes Theorem 2(4) in some sense. On the
other hand, one can also see that the bound for ∆ in Theorem 3(1) is very close to the corresponding one in
Theorem 2(3), even though we consider a larger class.

Theorem 3. Let G be an IC-planar graph with maximum degree ∆ and girth g. Then λT
p (G) ≤ ∆+ 2p− 2 with p ≥ 2

in the following cases:
(1) ∆ ≥ 2p + 5 and 1 ≥ 5;
(2) ∆ ≥ 4p + 2 and 1 ≥ 4;
(3) ∆ ≥ 6p + 2.

Instead of proving Theorem 3 directly, we would prove the following slightly stronger theorem. Indeed,
this is only a technical strengthening of Theorems 3, without which we would get complications when
considering a subgraph G′ ⊂ G such that ∆(G′) < ∆(G) (the readers can make themselves sure of that). Of
course, the interesting case of it is when M = ∆.

Theorem 4. Let G be an IC-planar graph with maximum degree ∆ ≤M and girth g. Then λT
p (G) ≤M+ 2p− 2 with

p ≥ 2 in the following cases:
(1) M ≥ 2p + 5 and 1 ≥ 5;
(2) M ≥ 4p + 2 and 1 ≥ 4;
(3) M ≥ 6p + 2.

Before proving it, let us recall some useful lemmas on the minimum counterexample G to Theorem 4 in
terms of |V(G)| + |E(G)|.
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Figure 1: Depictions of some useful configurations

Lemma 5. [13] For any edge uv ∈ E(G), if min{dG(u), dG(v)} ≤ ⌊M+2p−2
2p ⌋, then dG(u) + dG(v) ≥M + 2.

Lemma 6. [13] For any edge uv ∈ E(G), dG(u) + dG(v) ≥M − 2p + 3.

Lemma 7. [13] For any integer 2 ≤ k ≤ ⌊M+2p−2
2p ⌋, let Xk = {x ∈ V(G) | dG(x) ≤ k} and Yk =

∪
x∈Xk

NG(x). If
Xk , ∅, then there exists a bipartite subgraph Mk of G with partite sets Xk and Yk such that dMk (x) = 1 for every
x ∈ Xk and dMk (y) ≤ k − 1 for every y ∈ Yk.

Let Mk and Xk be the bipartite graph and the vertex set stated in Lemma 7. If xy ∈ Mk and x ∈ Xk, then
we call y the k-master of x and x the k-dependent of y. By this definition, the following corollary of Lemma
7 is natural.

Corollary 8. Every i-vertex in G has a j-master when 2 ≤ i ≤ j ≤ ⌊M+2p−2
2p ⌋ and every vertex in G has at most k − 1

k-dependents when 2 ≤ k ≤ ⌊M+2p−2
2p ⌋.

Let v be a 3-vertex in G with v1, v2, v3 being its neighbors in G× in a clockwise order. Let fi (1 ≤ i ≤ 3)
be the face incident with the path vivvi+1 in G×, where i is taken modular 3. If v1 is false and dG× ( f2) = 4,
then we call v a minor 3-vertex; if v1 is false, dG× ( f1) = dG× ( f3) = 4 and dG× ( f2) ≥ 5, then we call v a major
3-vertex (see the first two configurations of Figure 1). We call a 4-vertex v in G bad if v is incident with a
false 3-face uvw in G× so that u is a false vertex and w is a 4-vertex in G (see the third configuration of Figure
1). A 5+-vertex in G is called good if it is incident with no false 3-faces. The following lemmas deal with
the structural properties of G as an IC-plane graph.

Lemma 9. There is no 2-vertices that is incident with a false 3-face in G×.

Proof. The same result has already been proved for 1-planar graphs (i.e., graphs that can be draw in the
plane so that each edge is crossed by at most one other edge) in [12]. So this lemma follows from the fact
that every IC-planar graph is 1-planar.

Lemma 10. If 1(G) ≥ 5 and the neighbors of any 3-vertex in G are of degree at least 5, then every 3-vertex that is
not major in G is either incident with at least two 5+-faces in G×, or incident with one 5+-face G× and adjacent to two
good 5+-vertices in G, or adjacent to three good 5+-vertices in G.

Proof. We prove this lemma by contradiction. Let v be a 3-vertex in G with v1, v2, v3 being its neighbors in
G× in a clockwise order. Let fi (1 ≤ i ≤ 3) be the face incident with the path vivvi+1 in G×, where i is taken
modular 3. First suppose that all of v1, v2 and v3 are true. Since 1(G) ≥ 5, v1v2, v2v3, v3v1 < E(G×) and thus
f1, f2, f3 are all 4+-faces. If v is incident with at most one 5+-faces in G×, then v would be incident with
at least two 4-faces in G×. Without loss of generality, assume that dG× ( f1) = dG× ( f2) = 4. Since 1(G) ≥ 5
and v1v3 < E(G×), there exist two different false vertices x and y such that xv1, xv2, yv2, yv3 ∈ E(G×). This is
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impossible since v2 is adjacent two false vertices x and y now. Thus v is incident with at least two 5+-faces
in G×.

Now we assume that only one of v1, v2 and v3, say v1, is false, and in addition assume that the 3-vertex v
is incident with at most one 5+-face in G×. If dG×( f1) = 3, then y , v3 and v3y < E(G×), where is assumed that
vx crosses v2y in G at the point v1, because otherwise vv2v3 or vv2yv3 would be a triangle or a quadrilateral
in G, a contradiction to 1(G) ≥ 5. This implies that dG× ( f3) ≥ 5 and thus the degree of f2 in G× must be
4 by our assumption since v2v3 < E(G×), which follows that there exists a false vertex z , v1 such that
zv2, zv3 ∈ E(G×). However, this is impossible since v2 is adjacent two false vertices z and v1 now. Thus we
shall assume that min{dG×( f1), dG×( f3)} ≥ 4.

If dG× ( f2) = 4, then there exists a false vertex x , v1 such that xv2, xv3 ∈ E(G×). Suppose that v2y crosses
v3z at x. Then v2z < E(G×), because otherwise vv2zv3 would be a quadrilateral in G, a contradiction to
1(G) ≥ 5. This follows that v2 is incident with no false 3-faces in G× and thus v2 is a good 5+-vertex in G.
Similarly one can show that v3 is also a good 5+-vertex in G. Since v is now adjacent to two good 5+-vertices
in G, by our assumption, we have to assume that dG× ( f1) = dG× ( f3) = 4. Suppose that vx1 crosses y1z1 at
v1. Then y1v3, z1v2 ∈ E(G×). This implies that x1y1, x1z1 < E(G×), because otherwise a quadrilateral would
appear in G. So x1 is incident with no false 3-faces in G× and thus x1 is the third good 5+-vertex in G that is
adjacent to v in G.

The last case is when dG× ( f2) ≥ 5. However, under this case we shall assume dG× ( f1) = dG× ( f3) = 4, which
implies that v is a major 3-vertex in G, a contradiction.

By the proof of Lemma 10, we also have the following useful lemma as a corollary.

Lemma 11. If 1(G) ≥ 5 and v is a 3-vertex in G that is neither minor nor major, then v is incident with at least two
5+-faces in G×.

Lemma 12. If 1(G) ≥ 5, then every 5+-vertex is adjacent to at most three minor 3-vertices in G.

Proof. Suppose, to the contrary, that v is a 5+-vertex that is adjacent to four minor 3-vertices v1, v2, v3 and
v4 in G, which are lying in a clockwise order. Since v is adjacent to at most one false vertex in G×, without
loss of generality, assume that vv1 and vv2 are not crossed edges. Since 1(G) ≥ 5 and v2 is a minor 3-vertex,
vv2 must be incident with an edge vv0 such that vv0 is crossed by another edge xy at a false vertex z and
xv2 ∈ E(G×). Furthermore, the three neighbors v1, v0, v3 of v should be lying in a clockwise order. First
suppose that v0 = v3. Then consider the 3-vertex v1. Since v1 is minor and vv0 is the unique crossed edge
that is incident with v, there exists an edge x1y1 in G such that x1v1 ∈ E(G×) and x1y1 crosses vv0 in G. Note
that vv0 has already been crossed by xy at z, we should have x1y1 = xy and x1z, y1z ∈ E(G×). This implies
that the four vertices v1, x1, z and v cannot form a 4-face in G×, a contradiction to the definition of minor
3-vertices. Thus we shall assume that v0 , v3. Under this case we consider the minor 3-vertex v4. Let s be a
vertex in G such that sv4 ∈ E(G×). By a similar argument as above one can also show that s ∈ {x, y} and thus
the face incident with the path vv4s in G× cannot be of degree 4 by the drawing of G. This contradiction
completes the proof.

Lemma 13. Let uv be a crossed edge in G such that u is a 5+-vertex and v is a major 3-vertex. If 1(G) ≥ 5, then u is
a good 5+-vertex that is adjacent to at most two minor 3-vertices in G.

Proof. Let v1, v2, v3 be the neighbors of v in G× in a clockwise order. Without loss of generality, assume that
xy crosses uv in G at v1. Since v is a major 3-vertex, we can also assume that xv2, yv3 ∈ E(G). This follows
that ux,uy < E(G), because otherwise there would be a quadrilateral in G. Thus u is a good 5+-vertex. Let
z be a minor 3-vertex that is adjacent to u in G. Then uz ∈ E(G×) since uv is a crossed edge in G and v , z.
This implies that zx ∈ E(G) ∩ E(G×) or zy ∈ E(G) ∩ E(G×) by the definition of z (recall that 1(G) ≥ 5 here).
Suppose that u is adjacent to three minor 3-vertices z1, z2 and z3 in G. Then by the above argument, there are
at least two vertices among them, say z1 and z2, such that z1x, z2x ∈ E(G) ∩ E(G×). Since z1 and z2 are both
minor and z1x, z1u, z2x, z2u ∈ E(G)∩ E(G×), by the definition of minor 3-vertices, there must exist a 4-face h1
that is incident with the four vertices u, z1, x, v1 and another 4-face h2 that is incident with the four vertices
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u, z2, x, v1. However, h1 and h2 cannot simultaneously appear in G× by the drawing of G unless z1 = z2. This
is a contradiction.

Lemma 14. Let uv be an edge that is crossed by xy in G such that u, x, y are 5+-vertices and v is a major 3-vertex. If
1(G) ≥ 5, then x is a good 5+-vertex that is adjacent to at most one minor 3-vertex in G.

Proof. Let v1, v2, v3 be the neighbors of v in G× in a clockwise order. Without loss of generality, assume that
v1 is the false vertex such that uv1, vv1, xv1, yv1 ∈ E(G×). By a similar argument as in Lemma 13, we have
ux < E(G). Since v is a major 3-vertex, the face incident with the path xv1v in G× is of degree 4. These
two facts implies that x is a good 5+-vertex. Let z , y be a minor 3-vertex that is adjacent to x in G. Then
xz ∈ E(G×) since xy is a crossed edge in G and y , z. This implies that zu ∈ E(G) and there is a 4-face in
G× that is incident with x, z,u and v1 by the definition of minor 3-vertices (here, also remind that 1(G) ≥ 5).
Suppose that x is adjacent to two minor 3-vertices z1 and z2 in G. Then by a similar argument as in Lemma
13, one can claim that z1 = z2. Thus this lemma follows.

Let u (resp. x) be the vertex stated in Lemma 13 (resp. Lemma 14). If u (resp. x) is adjacent to exactly
two (resp. one) minor 3-vertices in G, then u (resp. x) is called inferiorly (resp. superiorly) good 5+-vertex
(see Figure 2). Other good 5+-vertices (neither superior nor inferior) contained in G is called to be generally
good 5+-vertices from now on. By Lemmas 13 and 14 along with the proofs of them, one can deduce the
following lemma as a corollary (see Figure 3).

Lemma 15. Let v be a minor 3-vertex in G. If 1(G) ≥ 5 and the neighbors of any 3-vertex in G are of degree at least
5, then v is adjacent to an inferiorly good 5+-vertex in G only if v is also adjacent to a superiorly good 5+-vertex in G.
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Lemma 16. Let v be a bad 4-vertex in G with v1, v2, v3, v4 being its neighbors in G× in a clockwise order, where v1 is
false. Let fi (1 ≤ i ≤ 4) be the face incident with the path vivvi+1 in G×, where i is taken modular 4. If 1(G) ≥ 5 and
dG× ( f4) = 3, then min{dG×( f1), dG×( f3)} ≥ 5. Furthermore, if dG× ( f2) = 4, then v3 cannot be a bad 4-vertex.

Proof. Let v4u and vw be two mutually crossed edges in G that intersect at v1. Then u , v2, because otherwise
vv4v2 would be a triangle in G, a contradiction. Meanwhile, uv2 < E(G) because otherwise vv4uv2 would
be a quadrilateral in G, again a contradiction. These two facts imply that dG× ( f1) ≥ 5. Since v1 is false
and 1(G) ≥ 5, v2, v3 and v4 are true and thus v3v4 < E(G). If dG× ( f3) = 4, then there exists a false vertex
x , v1 such that xv3, xv4 ∈ E(G×), which implies that v4 is adjacent to two false vertices v1 and x in G×, a
contradiction to the definition of G. Thus dG× ( f3) ≥ 5. If dG× ( f2) = 4, then there exists a false vertex y such
that yv2, yv3 ∈ E(G×). Suppose v2z2 crosses v3z1 at the false vertex y. Then v3z2 < E(G), because otherwise
vv2z2v3 would be a quadrilateral in G, a contradiction. So v3 is incident with no false 3-faces and thus v3
cannot be a bad 4-vertex.

In the following, we prove each part of Theorem 4 by discharging method. First of all, we assign an
initial charge c(v) = dG(v) − 4 to every vertex v in G and c( f ) = dG× ( f ) − 4 to every face f in G×. Then by
Euler’s formula on the plane graph G× and by the fact that dG× (v) = 4 for every v ∈ V(G×) \ V(G), we have∑

x∈V(G)∪F(G×)

c(x) =
∑

v∈V(G)

(dG(v) − 4) +
∑

f∈F(G×)

(dG×( f ) − 4)

=
∑

v∈V(G×)

(dG×(v) − 4) +
∑

f∈F(G×)

(dG× ( f ) − 4)

= −4(|V(G×)| + |F(G×)| − |E(G×)|) = −8.

Whereafter, we redistribute the initial charge by discharging rules and obtain a final charge c′(x) for every
x ∈ V(G) ∪ F(G×). We then check that the final charge on each vertex and face is nonnegative. However,
our rules only move charge around and do not affect the sum; this implies that

∑
x∈V(G)∪F(G×) c′(x) = −8, a

contradiction.

Part I. Proof of Theorem 4(1)

Let f be a face in G×. Denote by ni( f ) the number of true i-vertices that are incident with f in G× and by
n′4( f ) the number of bad 4-vertices that are incident with f in G×. By Lemma 5, Lemma 6 and Corollary 8,
G has the following basic properties.
(P1) δ(G) ≥ 2.
(P2) Every 2-vertex is adjacent to two M-vertices, one of which is the 2-master of it.
(P3) For a 3-vertex v ∈ V(G) and an edge uv ∈ E(G), dG(u) ≥M − 2p ≥ 5.
(P4) For a 4-vertex v ∈ V(G) and an edge uv ∈ E(G), dG(u) ≥M − 2p − 1 ≥ 4.
(P5) Every M-vertex has at most one 2-dependent.

Now let us discharging along the following rules.
R1. Let f = uvw be a false 3-face in G× with u being false. If dG(v) ≥ 5, then f receives 1 from v; if
dG(v) = dG(w) = 4, then f receives 1

2 from each of v and w.
R2. Let f be a 5+-face. Then f sends 1

2 to each of 3-vertices incident with it and 2dG× ( f )−n3( f )−8
2n′4( f ) to each of bad

4-vertices incident with it.
R3. Every 2-vertex receives 2 from its 2-master.
R4. Let uv be an edge of G such that u is a good 5+-vertex and v is a minor 3-vertex. Then v receives 1

2 , 1
3 or

1
4 from u if u is superiorly good, generally good or inferiorly good, respectively.
R5. Let uv be a crossed edge of G such that u is a 5+-vertex and v is a major 3-vertex. Then v receives 1

2 from
u.

Claim 1. Let f be a face in G× and let v be a bad 4-vertex that is incident with f . If dG× ( f ) ≥ 6, then f sends at least
1
3 to v, and if dG×( f ) = 5, then f sends at least 1

5 to v.
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Proof. Since every neighbor of a 3-vertex in G is of degree at least 5 by (P3), one can easily deduce that
2n3( f )+ n′4( f ) ≤ 2n3( f )+ n4( f ) ≤ dG× ( f ). So by R2, f sends to v at least 2dG× ( f )−n3( f )−8

2n′4( f ) ≥ 2dG× ( f )−n3( f )−8
2dG× ( f )−4n3( f ) ≥

dG× ( f )−4
dG× ( f )

for dG× ( f ) ≥ 5. Hence this claim follows.

Claim 2. Let f be a 5-face that is incident with at most four bad 4-vertices. Then f sends at least 1
4 to each of its

incident bad 4-vertices.

Proof. If n3( f ) = 0, then f sends at least 10−8
8 = 1

4 to each of its incident bad 4-vertices by R2. If n3( f ) ≥ 1 and
n′4( f ) ≥ 1, then n3( f ) = 1 and n′4( f ) ≤ 2 by (P3), which follows that f sends at least 10−1−8

4 = 1
4 to each of its

incident bad 4-vertices by R2.

Claim 3. Every false 5-face sends at least 1
4 to each of its incident bad 4-vertices.

Proof. Since every false 5-face is incident with at most four bad 4-vertices, this is a direct corollary of Claim
2.

Now we check the nonnegativity of the final charges of the vertices and faces. By Lemma 9 and (P3),
every false 3-face in G× is either incident with two 4-vertices or incident with at least one 5+-vertex. So by
R1 c′( f ) ≥ −1+min{2× 1

2 , 1} = 0 for any false 3-face f . Note that there is no true 3-faces (since 1(G) ≥ 5) and
every 4-face (whose initial charge is 0) has not involved in the above rules. So we only need to consider
5+-faces. By R2, for any 5+-face f ∈ F(G×), c′( f ) ≥ dG× ( f ) − 4 − 1

2 n3( f ) − 2dG× ( f )−n3( f )−8
2n′4( f ) n′4( f ) = 0.

Let v be a vertex in G. If dG(v) = 2, then by (P2) and R3, c′(v) ≥ −2 + 2 = 0.
If dG(v) = 3, then we consider three cases. First, suppose that v is neither minor nor major. Then by

Lemma 11, v is incident with at least two 5+-faces in G×, which implies that c′(v) ≥ −1 + 2 × 1
2 = 0 by

R2. Second, suppose that v is minor (also assume that v is incident with at most one 5+-face in G×). Then
by Lemma 10, we have two subcases. If v is incident with exactly one 5+-face and adjacent to two good
5+-vertices, then c′(v) ≥ −1 + 1

2 + 2 × 1
4 = 0 by R2 and R4. If v is adjacent to three good 5+-vertices x, y and

z, then by R2, R4 and Lemma 15, c′(v) ≥ −1 + 3 × 1
3 = 0 when none of x, y and z is inferiorly good and

c′(v) ≥ −1 + 1
2 + 2 × 1

4 = 0 when at least one of x, y and z is inferiorly good. Third, suppose that v is a major
3-vertex. Then by its definition, v is incident with a 5+-face in G× and is incident with a crossed edge uv in
G. So by R2, R5 and (P3), c′(v) ≥ −1 + 1

2 +
1
2 = 0.

If dG(v) = 4, then by R1, (P3) and (P4), c′(v) = c(v) = 0 unless v is incident with a false 3-face vv1v4 such
that v1 is false and v4 is a true 4-vertex in G (i.e., v is a bad 4-vertex). Let v2 and v3 be another two neighbors
of v in G× such that v1, v2, v3, v4 are lying in a clockwise order. Let fi (1 ≤ i ≤ 4) be the face incident with the
path vivvi+1 in G×, where i is taken modular 4. By Lemma 16, min{dG× ( f1), dG× ( f3)} ≥ 5. If dG× ( f2) ≥ 5, then
by R1 and Claim 1, c′(v) ≥ 0 − 1

2 + 3 × 1
5 > 0. So we assume that dG× ( f2) = 4. Under this case, f1 is a false

5+-face and f3 is a 5+-face that is incident with at most dG× ( f3)− 1 bad 4-vertices by Lemma 16. Thus by R1,
Claim 1, Claim 2 and Claim 3, c′(v) ≥ 0 − 1

2 +
1
4 +

1
4 = 0.

If dG(v) ≥ 5 and v is not good, then c′(v) ≥ dG(v) − 4 − 1 − β(v) > 0 by R1, R3 and (P5), where β(v) = 2
if dG(v) = M and β(v) = 0 otherwise. Recall that M ≥ 2p + 5 ≥ 9 here. If dG(v) ≥ 5 and v is good, then we
divide our discussions into two cases.

First, assume that v is adjacent to a major 3-vertex u such that uv is a crossed edge in G. By Lemma 13,
v is now adjacent to at most two minor 3-vertices. If v is adjacent to exactly two minor 3-vertices (i.e., v is
inferiorly good), then by R3, R4, R5 and the IC-planarity of G , c′(v) ≥ dG(v) − 4 − 1

2 − 2 × 1
4 − β(v) > 0. If v is

adjacent to at most one minor 3-vertex, then by the same rules, c′(v) ≥ dG(v) − 4 − 1
2 − 1

2 − β(v) > 0.
Second, assume that v is adjacent to no major 3-vertices u such that uv is a crossed edge in G. Then v

is not superiorly good and v sends no charges to major 3-vertices by R5. One the other hand, v is adjacent
to at most three minor 3-vertices by Lemma 12, to which v sends at most 3 × 1

3 = 1 by R4. Therefore,
c′(v) ≥ dG(v) − 4 − 1 − β(v) > 0 by R3 in final. �

Part II. Proof of Theorem 4(2)
Note that M ≥ 4p + 2 ≥ 10. So by Lemma 5, Lemma 6 and Corollary 8, G has the following basic

properties.
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(P1) δ(G) ≥ 2.
(P2) Every 2-vertex has one 2-master and one 3-master.
(P3) Every 3-vertex has one 3-master.
(P4) For a 4−-vertex v ∈ V(G) and an edge uv ∈ E(G), dG(u) ≥M − 2p − 1 ≥ 5.
(P5) Every M-vertex has at most one 2-dependent and at most two 3-dependents.
(P6) Every (M − 1)-vertex has no 2-dependents and has at most two 3-dependents.
Let v be a vertex in G. It is easy to see that v is incident with at most two false faces in G×. If v is incident
with exactly two false 3-faces uvx and uvy in G×, where u is a false vertex, then xy must be a crossed edge
in G and thus vxy is a triangle in G, which contradicts the fact that 1(G) ≥ 4. Hence we have the following
property (P7).
(P7) Every vertex in G is incident with at most one false 3-face in G×.

In the following, we prove this theorem by discharging along the following rules.
R1. Every false 3-face receives 1 from each of its incident 5+-vertices.
R2. Every 2-vertex receives 1 from its 2-master and 1 from its 3-master.
R3. Every 3-vertex receives 1 from its 3-master.

Now we check the nonnegativity of the final charges of the vertices and faces. Since every false 3-face
f in G× is incident with at least one 5+-vertex by (P4), c′( f ) ≥ −1 + 1 = 0 by R1. Thus we can easily claim
that c′( f ) ≥ 0 for every f ∈ F(G×) since there is no true 3-face and every 4+-face has not been involved in
the rules. Let v be a vertex in G. If dG(v) = 2, then by (P2) and R2, c′(v) ≥ −2 + 1 + 1 = 0. If dG(v) = 3, then
by (P3) and R3, c′(v) ≥ −1 + 1 = 0. If dG(v) = 4, then it is easy to see c′(v) = c(v) = 0. If 5 ≤ dG(v) ≤ M − 2,
then by (P7) and R1, c′(v) ≥ dG(v) − 4 − 1 ≥ 0. If dG(v) ≥ M − 1, then by (P5), (P6), (P7), R1, R2 and R3,
c′(v) ≥ dG(v) − 4 − 1 − 1 − 2 × 1 > 0. Thus the final charge of every vertex in G is also nonnegative. This
completes the proof of Theorem 4(2). �

Part III. Proof of Theorem 4(3)
Note that M ≥ 6p + 2 ≥ 14. So by Lemma 5, Lemma 6 and Corollary 8, G has the following basic

properties.
(P1) δ(G) ≥ 2.
(P2) Every 2-vertex has one 2-master and one 3-master.
(P3) Every 3-vertex has one 3-master.
(P4) For an edge uv ∈ E(G), if dG(v) = 2, 3, 4, 5, 6, then dG(u) ≥ 14, 13, 12, 8, 7, respectively.
(P5) Every M-vertex has at most one 2-dependent and at most two 3-dependents.
(P6) Every (M − 1)-vertex has no 2-dependents and has at most two 3-dependents.
We call a false 3-face special if it is incident with a true 6−-vertex. Let v be a 7+-vertex in G. If v is incident
with two special false 3-faces uvx and uvy in G×, where u is a false vertex, then xy must be a crossed edge
in G such that max{dG(x), dG(y)} ≤ 6. However, this is impossible since no two 6−-vertices are adjacent in G
by (P4). Hence the following property (P7) holds.
(P7) Every 7+-vertex in G is incident with at most one special false 3-face in G×.

Let u be a 2-vertex with neighbors v and w in G. If uv is crossed by another edge xy with xv, yv ∈ E(G)
and w , x, y, then we say that w is an assister of v and v needs assistance from w (see Figure 4).

Now let us discharge along the following rules.
R1. Let f = uvw be a false 3-face in G× with u being false and dG(v) ≤ dG(w). If dG(v) ≤ 4, then f receives 1
from w; if dG(v) = 5, then f receives 1

5 from v and 4
5 from w; if dG(v) = 6, then f receives 1

3 from v and 2
3 from

w; if dG(v) ≥ 7, then f receives 1
2 from each of v and w.

R2. Let f = uvw be a true 3-face in G× with dG(u) ≤ dG(v) ≤ dG(w). If dG(u) ≤ 4, then f receives 1
2 from each

of v and w; if dG(u) = 5, then f receives 1
5 from u and 2

5 from each of v and w; if dG(u) ≥ 6, then f receives 1
3

from each of u, v and w.
R3. Every 2-vertex receives 1 from its 2-master and 1 from its 3-master.
R4. Every 3-vertex receives 1 from its 3-master.
R5. If v has an assister w, then v receives 1

2 from w
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u
wv

x

y

Figure 4: w is an assister of v

In what follows, we are to check the nonnegativity of the final charges of the vertices and faces. First of
all, it is easy to check by R1 and R2 that every 3-face in G× would totally receive exactly 1 from its incident
true vertices. Meanwhile, the charge of any 4+-face would not be updated after discharging. Thus one can
claim that the final charge of every face in G× is nonnegative.

Let v be a vertex in G. If dG(v) ≤ 4, then v would not send charges to its incident faces by R1 and R2. So
by (P2), (P3), R3 and R4, c′(v) ≥ −2 + 1 + 1 = 0 if dG(v) = 2, c′(v) ≥ −1 + 1 = 0 if dG(v) = 3 and c′(v) = c(v) = 0
if dG(v) = 4. If dG(v) = 5, then by (P4), R1 and R2, v sends 1

5 to each of its incident 3-faces, which implies
that c′(v) ≥ 1 − 5 × 1

5 = 0. If dG(v) = 6, then by (P4), R1 and R2, v sends 1
3 to each of its incident 3-faces,

which follows that c′(v) ≥ 2 − 6 × 1
3 = 0. If dG(v) = 7, then by (P4), R1 and R2, v sends 1

2 to each of its
incident non-special false 3-faces, 2

3 to each of its incident special false 3-faces and 1
3 to each of its incident

true 3-faces. Thus by (P7), c′(v) ≥ 3 − 1
2 − 2

3 − 5 × 1
3 > 0. If 8 ≤ dG(v) ≤ 11, then by (P4), R1 and R2, v sends

1
2 to each of its incident non-special false 3-faces, at most 4

5 to each of its incident special false 3-faces and
at most 2

5 to each of its incident true 3-faces. Thus by (P7), c′(v) ≥ 4 − 1
2 − 4

5 − 6 × 2
5 > 0. For a 12+-vertex

v, by (P4), R1 and R2, v would sends 1
2 to each of its incident non-special false 3-faces, at most 1 to each of

its incident special false 3-faces and at most 1
2 to each of its incident true 3-faces. Thus if dG(v) = 12, then

c′(v) ≥ 8 − 1 − 11 × 1
2 > 0 by (P7). If dG(v) = 13, then by (P4), the neighbors of v in G are of degree at least 3

and thus by (P6) (note that v may be a (M − 1)-vertex since M ≥ 14), v has no 2-dependents but may has at
most two 3-dependents. So by R4 and (P7), c′(v) ≥ 9 − 1 − 12 × 1

2 − 2 × 1 = 0.
At last, if dG(v) ≥ 14, then v is possible to be a M-vertex that has one 2-dependents and two 3-dependents

and moreover, v may be assisters of some other vertices. Let a(v) be the number of vertices that need
assistance from v. It is easy to verify that v is incident with at most dG(v) − 2a(v) faces of degree 3 in G×.
First of all, if a(v) ≥ 1, then by R1–R5 and (P7), c′(v) ≥ dG(v) − 4 − 1 − 1

2 (dG(v) − 2a(v) − 1) − 1
2 a(v) − 1 − 2 × 1.

So we assume that a(v) = 0. If v is incident with at least one 4+-face, then by R1–R5 and (P7), c′(v) ≥
dG(v) − 4 − 1 − 1

2 (dG(v) − 2) − 1 − 2 × 1 = 1
2 (dG(v) − 14) ≥ 0. If v is adjacent to no 2-vertices in G, then by the

same reason we also have c′(v) ≥ dG(v)− 4− 1− 1
2 (dG(v)− 1)− 2× 1 = 1

2 (dG(v)− 13) > 0. Thus in the end we
assume that v is incident only with 3-faces in G× and v is adjacent to at least one 2-vertex in G. Actually, in
this case v can be adjacent to only one 2-vertex u and moreover, vu is a crossed edge in G. Let w be the other
neighbor of u in G and let xy be the edge that crosses uv. It is easy to check that w , x, y because otherwise
we can redraw the figure of G so that the number of crossings is reduced by 1. Thus, w is an assistant of v,
to which w sends 1

2 by R5. Therefore, c′(v) ≥ dG(v) − 4 − 1 − 1
2 (dG(v) − 1) − 1 − 2 × 1 + 1

2 =
1
2 (dG(v) − 14) ≥ 0

by R1–R4 and (P7), and then the proof of Theorem 4 is complete. �
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