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Abstract. We are looking for the graphs with minimal detour index in the class of connected bicyclic
graphs. For the fixed number of vertices, we split the problem into two cases: bicyclic graphs without
common edges between cycles and the complement of it. In both cases, we find graphs with minimal
detour index.

1. Introduction

Topological indices are the numbers that reflect certain structural characteristics of organic molecules,
obtained from the respective graphs. One of the oldest and the most completely analyzed is the Wiener
index or the Wiener number.

Let G = (V,E) be a simple connected graph. The distance between vertices u, v ∈ V in G is the length of
the shortest path between them denoted by d(u, v) or dG(u, v). The Wiener index of the graph G is defined
as

W(G) =
∑

{u,v}⊆V(G)

dG(u, v).

That is

W(G) =
1
2

∑
u∈V

DG(u)

where DG(u) is the sum DG(u) =
∑
v∈V

dG(u, v), for any vertex u ∈ V.

The Wiener index was first proposed by Harold Wiener [3] as an aid to determining the boiling point of
paraffin. In particular, he mentions in his article that the boiling point tB can be quite closely approximated
by the formula

tB = aw + bp + c,

where w is the Wiener index, p the polarity number and a, b and c are constants for a given isomeric group.
Since then, it was observed that the Wiener index has a connection to a host of other properties of molecules
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(viewed as graphs). For more information about the Wiener index in chemistry and mathematics see [5]
and [4], respectively.

Another topological index, called the detour index, is conceptually close to Wiener index, except that its
definition refers to the longest distance instead of the shortest distance between two graph vertices. The detour
index ω(G), where G denotes the underlying graph, has been introduced by Amić and Trinajstić [8] and by
John [9] independently

ω(G) =
∑

{u,v}⊆V(G)

lG(u, v),

where lG(u, v) is the length of the longest path between two vertices.

The length lG(u, v) of the longest path is also called detour distance between vertices u, v ∈ V in G. When
it is clear from a context which underlying graph G is assumed, we simply write l(u, v) instead of lG(u, v).
Also, we define

ω(G) =
1
2

∑
u∈V

LG(u)

where LG(u) is the sum LG(u) =
∑
v∈V

lG(u, v), for any vertex u ∈ V.

Recently, as for Wiener index, it’s been presented significance of detour index in the structure-boiling point
relation [6], [7].

The main goal of this paper is to find graphs with minimal detour index among the class of connected
bicyclic graphs with n vertices. For the rest of paper, we treat exclusively connected type of graphs.

In the Section 2 we give review of important terminology and theory regarding main problem, mostly
based on papers [1] and [2].

The case of bicyclic graphs without common edges between two cycles is treated in Section 3. We found,
by Theorem 3, that the smallest detour index in the corresponding class is n2 + 2n − 7. It is attained at so
called n−vertex butterfly, that looks like two triangles having one vertex in common and all other n − 5
vertices are attached as pendent vertices to that common vertex (Figure 1).

The most interesting and consequently the most complex case, subject of Section 4, is about bicyclic
graphs with common edges between two cycles. The central role in this section has a Theorem 4 which
brings out an iterative procedure of converting given graph to the one with smaller detour index. According
to our result, the smallest detour index for this class has the graph that looks like two glued triangles by
one side, making a parallelogram, and all other n − 4 pendent vertices are attached to one of two common
vertices of those triangles (Figure 3).

2. Preliminaries

Let H = (V(H),E(H)) be graph without pendent vertices and V(H) = {v1, v2, . . . , vn}. Let T1,T2, . . . ,Tn be
vertex disjoint trees such that H and Ti have exactly one vertex vi in common, for 1 ≤ i ≤ n. Such graph
is denoted by H(T1,T2, . . . ,Tn). Let Sn and Pn be the n-vertex star and path, respectively. Let Cn be a cycle
graph with n vertices.

The next assertion is valid for arbitrary cyclic graph. Although the proof of the next lemma is almost
the same as for similar assertion proved in paper by Zhou and Cai [1], as well as in [11], we include it to
facilitate reading the rest of the paper.
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Lemma 1. Let H = (V(H),E(H)) be graph without pendent vertices and G = H(T1,T2, . . . ,Tn). Then

ω(G) =
n∑

i=1

W(Ti) +
∑

1≤i< j≤n

[|Ti|DT j (v j) + |T j|DTi (vi) + |Ti||T j|lH(vi, v j)].

Proof. From the definition of detour index

ω(G) =
∑

{x,y}⊆V(G)

lG(x, y) =
n∑

i=1

∑
{x,y}⊆V(Ti)

lTi (x, y) +
1
2

n∑
i=1

n∑
j=1
j,i

∑
x∈V(Ti)
y∈V(T j)

lG(x, y).

For each 1 ≤ i ≤ n, it obviously follows that∑
{x,y}⊆V(Ti)

lTi (x, y) =W(Ti).

On the other hand,

1
2

n∑
i=1

n∑
j=1
j,i

∑
x∈V(Ti)
y∈V(T j)

lG(x, y) =

=
∑

1≤i< j≤n

∑
x∈V(Ti)
y∈V(T j)

[
dTi (x, vi) + lH(vi, v j) + dT j (y, v j)

]

=
∑

1≤i< j≤n


∑

x∈V(Ti)

dTi (x, vi)
∑

y∈V(T j)

1 + lH(vi, v j)
∑

x∈V(Ti)
y∈V(T j)

1+
∑

y∈V(T j)

dT j (y, v j)
∑

x∈V(Ti)

1


=
∑

1≤i< j≤n

[|T j|DTi (vi) + |Ti||T j|lH(vi, v j) + |Ti|DT j (v j)],

which completes the proof.

We will also use the following lemmas.

Lemma 2. [2] Let T be n-vertex tree different from n-vertex star Sn. Then

(n − 1)2 =W(Sn) <W(T).

Lemma 3. [1] Let T be n-vertex tree where n ≥ 3 and u ∈ V(T). Let x be the center of star Sn. Then

n − 1 = DSn (x) ≤ DT(u).

Equality holds exactly when T = Sn and u = x.

Denote byUn,r the class of unicyclic graphs with n vertices and cycle length r, where 3 ≤ r ≤ n. Subclass of
Un,r where all n − r pendent vertices are attached to a single vertex of the cycle Cr is denoted by Sn,r. For
fixed n and r, all graphs from Sn,r are isomorphic, so concrete instance of this class we denote by Sn,r.

Proposition 1. [1] Among n-vertex unicyclic graphs, Sn,3 for n ≥ 3 is the unique graph with the smallest detour
index, which is equal to n2 − 3.
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3. Bicyclic graphs with cycles without common edges

Let Bn;k,m be a class of bicyclic graphs with n−vertices, whose cycles have k and m vertices and don’t
have common edges. We are going to prove that the smallest detour index in

∪
3≤k≤m

Bn;k,m, for n ≥ 5, has the

so called n-vertex butterfly B ∈ Bn;3,3, the graph presented in the next figure

v1

v2

v3

v4

v5

v6

vn

Figure 1: n-vertex butterfly B ∈ Bn;3,3.

Theorem 1. Let G be unicyclic graph with n vertices. Then for each u ∈ V(G)

LG(u) ≥ n + 1

with equality if and only if G = Sn,3 and u is the vertex at the cycle with n − 3 attached pendent vertices.

Proof. Let G be unicyclic graph with n vertices. For any fixed u ∈ G there are at least two vertices such that
lG(u, v) ≥ 2. Thus

LG(u) ≥ 2 · 2 + 1 · (n − 1 − 2) = n + 1.

Clearly, equality holds if and only if there are exactly two vertices v1, v2 such that lG(u, v1) = lG(u, v2) = 2
and lG(u,w) = 1 for all other vertices w , u, v1, v2. Therefore, equality holds if and only if G = Sn,3 and u is
the vertex at the cycle with n − 3 attached pendent vertices.

Let G1 = (V1,E1) and G2 = (V2,E2) be vertex-disjoint graphs and a1 ∈ V1, a2 ∈ V2. Denote by Ga1
1 ∗ Ga2

2
graph obtained by ”gluing” vertices a1 and a2 into a new vertex a∗, that is: V(Ga1

1 ∗G
a2
2 ) = V1\{a1}∪V2\{a2}∪{a∗}

and

E(Ga1
1 ∗G

a2
2 ) = {(u, a∗)|(u, a1) ∈ E1}∪{(u, a∗)|(u, a2) ∈ E2}∪{(u, v)|(u, v) ∈ E1, u, v , a1}∪{(u, v)|(u, v) ∈ E2, u, v , a2}.

We use this notation in the proof of the following theorem, for which we have been informed that similar
version was recently proved in [10].

Theorem 2. Let G1 = (V1,E1), G2 = (V2,E2) and G = Ga1
1 ∗ Ga2

2 . Then

ω(G) = ω(G1) + ω(G2) + LG1 (a1)|V2 − 1| + LG2 (a2)|V1 − 1|.
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Proof.

ω(G) =
∑
{u,v}⊆V1

l(u, v) +
∑
{u,v}⊆V2

l(u, v) +
∑

u∈V1\{a1}, v∈V2\{a2}
l(u, v)

= ω(G1) + ω(G2) +
∑

u∈V1\{a1}

∑
v∈V2\{a2}

(l(u, a∗) + l(a∗, v))

= ω(G1) + ω(G2) + LG1 (a1)|V2 − 1| + LG2 (a2)|V1 − 1|.

Theorem 3. Let G be a n-vertex bicyclic graph whose cycles have no common edges and n ≥ 5. Then

ω(G) ≥ ω(B) = n2 + 2n − 7,

where B is the n−vertex butterfly (Figure 1).

Proof. Let G be an arbitrary bicyclic graph with n vertices whose cycles have no common edges. Then
G = Ga1

1 ∗Ga2
2 for some unicyclic graphs G1 ∈ Un1,p and G2 ∈ Un2,q such that n = n1 + n2 − 1. Due to previous

theorem

ω(G) = ω(G1) + ω(G2) + LG1 (a1)(n2 − 1) + LG2 (a2)(n1 − 1).

By Proposition 1 we have

ω(G1) ≥ ω(Sn1,3) and ω(G2) ≥ ω(Sn2,3) with equalities if and only if G1 = Sn1,3 and G2 = Sn2,3.

From Theorem 1 it follows

LG1 (a1) ≥ n1 + 1 and LG2 (a2) ≥ n2 + 1,

with equalities if and only if a1 and a2 are vertices in Sn1,3 and Sn2,3 with n1 − 2 and n2 − 2 pendent vertices,
respectivelly. Hence

ω(G) ≥ ω(Sn1,3) + ω(Sn2,3) + (n1 + 1)(n2 − 1) + (n2 + 1)(n1 − 1)
= n2

1 − 3 + n2
2 − 3 + 2n1n2 − 2 = n2 + 2n − 7.

We conclude that ω(G) = n2 + 2n − 7 if and only if Gi = Sni,3 and ai has ni − 2 pendent vertices, for i = 1, 2.
In this case, G is actually B, the n-vertex butterfly.

4. Bicyclic graphs with cycles with common edges

Denote by En(s, p1, p2), s ≥ p1 ≥ p2 ≥ 1, p1 ≥ 2, the class of n−vertex bicyclic graphs, n ≥ 4, whose cycles
R1, R2 have at least one common edge, where

s = |E(R1) ∩ E(R2)|, p1 = |E(R1) \ E(R2)| and p2 = |E(R2) \ E(R1)|.

Described class is illustrated in the following figure
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Figure 2: Graph G ∈ En(s, p1, p2)

We prove that minimal detour index in
∪

s≥p1≥p2≥1
p1≥2

En(s, p1, p2) has the graph depictured in the following

figure
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Figure 3: A graph E ∈ En(2, 2, 1).

with

ω(E) = n2 + 3n − 11.

Based on Lemmas 1 - 3, it is easy to see that if any tree on a graph G ∈ En(s, p1, p2) is replaced by a star with
the same number of vertices, then the detour index will be decreased. Since we are looking for the graph
with the least detour index, we can begin with the assumption that all attached trees are stars. Denote by
E∗n(s, p1, p2), s ≥ p1 ≥ p2 ≥ 1, p1 ≥ 2, the family of bicylic graphs from En(s, p1, p2) whose all attached trees
are stars.

Theorem 4. Let G ∈ E∗n(s, p1, p2) be a bicyclic graph whose cycles R1 and R2 have a common s − path P =
{(a, v1), (v1, v2), . . . , (vs−1, b)} and let

G′ = G · (vs−1, b) + (b, vs−1)

be the graph formed from G merging the edge (vs−1, b) into a vertex b and attaching a new pendent vertex vs−1 at b.
Then ω(G) > ω(G′).
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Figure 4: Transformation of G into G′

Proof. Let S = V(G)\{vs−1} and T = V(G)\{b, vs−1}. Note that T ⊆ S. As stated, the goal is to show that
difference of detour indices of G and G′

ω(G) − ω(G′) =
∑
{u,v}⊆T

[lG(u, v) − lG′(u, v)] + (lG(b, vs−1) − lG′ (b, vs−1))+

+
∑
u∈T

[lG(u, b) − lG′ (u, b)] +
∑
u∈T

[lG(u, vs−1) − lG′ (u, vs−1)

is positive. Therefore, we are going to analyze each particular summand in the upper sum.

Let {u, v} ⊆ S and 1̃ be an (u, v)−path in the graph G′ such that its length is lG′(u, v). There are two
possibilities: the edge e′ = (vs−2, b) is an edge of path 1̃ or the edge e′ = (vs−2, b) is not an edge of path 1̃.
In the case of e′ ∈ 1̃, replacing the edge e′ by two edges (vs−2, vs−1) and (vs−1, b) we obtain the (u, v)−path in
the graph G with length |1̃| + 1. Thus,

lG(u, v) ≥ |1̃| + 1 = lG′ (u, v) + 1.

In the case of e′ < 1̃, 1̃ is (u, v)−path in the graph G, and so

lG(u, v) ≥ |1̃| = lG′(u, v).

Therefore, in both cases,

lG(u, v) − lG′(u, v) ≥ 0, for {u, v} ⊆ S. (1)

Since s ≥ p1 ≥ p2 ≥ 1, p1 ≥ 2, detour distance between b and vs−1 is lG(b, vs−1) = s − 1 + p1. Hence

lG(b, vs−1) − lG′ (b, vs−1) = s + p1 − 2 ≥ 2. (2)

Clearly, by inequalities (1) and (2), we verified that the first two summand from ω(G) − ω(G′) are positive.

Denote by A the set of vertices u ∈ T that satisfy the condition: there is (u, vs−1)−path in the graph G
with the length lG(u, vs−1) that doesn’t pass across the vertex b.

Let B be the set of all other vertices in T, i.e. B = T∩Ac. That means u ∈ B iff every longest (u, vs−1)−path
must pass across the vertex b.
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For u ∈ B, let 1′ be an (u, b)−path in G′ with length lG′ (u, b). There are two possibilities: e′ = (vs−2, b) < 1′

or e′ = (vs−2, b) ∈ 1′. Suppose that e′ = (vs−2, b) < 1′. Then, 1 = 1′ + (b, vs−1) is (u, vs−1)−path in G and so

lG(u, vs−1) ≥ |1| = |1′| + 1 = lG′ (u, b) + 1 = lG′ (u, vs−1).

If e′ = (vs−2, b) ∈ 1′, replace the edge e′ by (vs−2, vs−1). We obtain an (u, vs−1)−path in the graph G. Path
1 = 1′−(b, vs−2)+(vs−2, vs−1) doesn’t pass across the vertex b and, since u ∈ B, it is not the longest (u, vs−1)−path.
Hence,

lG(u, vs−1) > |1| = |1′| = lG′(u, b) = lG′(u, vs−1) − 1.

That is

lG(u, vs−1) ≥ lG′(u, vs−1).

It follows that

lG(u, vs−1) − lG′(u, vs−1) ≥ 0, for u ∈ B.

From this inequality we conclude that∑
u∈T

[lG(u, vs−1) − lG′ (u, vs−1)] ≥
∑
u∈A

[lG(u, vs−1) − lG′ (u, vs−1)] (3)

Let u ∈ A and let 1 be an (u, vs−1)−path with length lG(u, vs−1) such that 1 doesn’t pass across b. Then
h = 1 + (vs−1, b) is an (u, b)−path. We are going to prove that its length is lG(u, b). If opposite, there is an
(u, b)−path h̃ in the graph G, such that |h̃| > |h| = lG(u, vs−1) + 1. Therefore (vs−1, b) < h̃. So, h̃ + (b, vs−1) is
(u, vs−1)−path with length |h̃| + 1 > lG(u, vs−1), that is not possible. Hence,

lG(u, b) = lG(u, vs−1) + 1

We are going to show that for u ∈ A the longest (u, b)−path in G′ passes across the vs−2.
Suppose opposite. Let 1′ be an (u, b)−path with length lG′ (u, b) such that vs−2 < 1′. Then, 1 = 1′+(b, vs−1) is

(u, vs−1)−path in G. Since u ∈ A in G there is the longest (u, vs−1)−path h such that b < h. Replacing the vertex
vs−1 on the path h with the vertex b in G′ we obtain an (u, b)−path h′. Then |h′| = |h| ≥ |1| > |1′| = lG′ (u, b),
that is not possible. So, the longest (u, b)−path in G′ passes across the vs−2. Denote by 1̃ one such path. Let
1 = 1̃ − (b, vs−2) + (vs−2, vs−1). It follows that

lG(u, vs−1) ≥ |1| = |1̃| = lG′(u, b).

Hence,

lG′ (u, vs−1) = 1 + lG′(u, b) ≤ 1 + lG(u, vs−1) and lG(u, b) = lG(u, vs−1) + 1 ≥ lG′ (u, b) + 1.

Therefore,

lG(u, vs−1) − lG′(u, vs−1) ≥ −1 for u ∈ A, (4)

lG(u, b) − lG′(u, b) ≥ 1 for u ∈ A. (5)

Since lG(u, b) − lG′(u, b) ≥ 0 for u ∈ B we have that∑
u∈T

[lG(u, b) − lG′ (u, b)] ≥
∑
u∈A

[lG(u, b) − lG′(u, b)]

and so from (1) - (3) we have

ω(G) − ω(G′) ≥ 2 +
∑
u∈A

[lG(u, vs−1) − lG′(u, vs−1)] +
∑
u∈A

[lG(u, b) − lG′ (u, b)]

Using (4) and (5) we finally conclude ω(G) − ω(G′) ≥ 2.
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Previous theorem introduces, in a subtle way, the procedure of iterative reducing cycles R1 and R2 by
absorbing two vertices into one. Namely, every bicyclic graph with common edges between two cycles,
could be isomorphically transformed into graph that belongs to class En(s, p1, p2), i.e. that middle path is
the longest one. For example, two graphs in the following picture there are two isomorphic graphs that
belong to E4(2, 2, 1).

C

D

v4

v1

v2

v3

v4

v1

v2

v3

Figure 5: Two isomorphic graphs (C and D) from E4(2, 2, 1).

Clearly, we can always isomorphically transform graph G in a such fashion that cycles R1 or R2 have
the longest ”piece” in common. Therefore, at the end of the procedure established in the Theorem 4, the
cycles of original graph G will be reduced to a graph D (Figure 5) belonging to E4(2, 2, 1) and all trees (stars
in our case) will be shifted and attached to the four vertices of D. The following figure corresponds to the
described situation

v4

v1

v2

v3

Figure 6: A graph F from En(2, 2, 1).

Let D be the graph from E4(2, 2, 1) depictured in the Figure 5. Then,

lD(vi, v j) =
{

2 , {i, j} = {2, 4}
3 , otherwise (6)

Let T1, T2, T3 and T4 be vertex disjoint stars such that v1, v2, v3 and v4 are their respective roots. Such
bicyclic graph will be denoted by D(T1,T2,T3,T4). For n = |T1| + |T2| + |T3| + |T4|, D(T1,T2,T3,T4) is n-vertex
graph (Figure 6). The following theorem is the final step in showing that the graph E (Figure 3) has the
minimal detour index.
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Theorem 5. Let G = D(T1,T2,T3,T4) such that |T2| ≤ |T4|. For any fixed i ∈ {1, 2, 3} let G′ be a graph obtained
from G removing all pendent vertices from the vertex vi to the vertex v4. Then ω(G) > ω(G′).

Proof.

ω(G) − ω(G′) =
∑
t∈Ti
t,vi

∑
j,i

∑
u∈T j

[lG(t,u) − lG′(t,u)]

=
∑
t∈Ti
t,vi

∑
j,i

∑
u∈T j

[(1 + lD(vi, v j) + l(v j,u))

−
∑
t∈Ti
t,vi

∑
j,i

∑
u∈T j

(1 + lD(v4, v j) + l(v j,u))]

=
∑
t∈Ti
t,vi

∑
j,i

∑
u∈T j

[lD(vi, v j) − lD(v4, v j)]

Due to (6), lD(vi, v j) − lD(v4, v j) > 0, so ω(G) > ω(G′).

5. Conlusions

In this paper we studied detour index of connected bicyclic graphs. The main goal was to find the
graphs with minimal detour index in the defined class. The problem was separated into two cases: bicyclic
graphs without and with common edges between two cycles.

In the first case, we realized that every connected bicyclic graph G, without common edges, is made by
merging two vertices of unicyclic graphs G1 and G2 into single vertex, as described in Section 3. That ob-
servation helped us to find the graph, so called n−vertex butterfly Bn;3,3, with minimal detour index n2+2n−7.

The second case, problem of bicyclic graphs with common edges, is mainly resolved in the Theorem 4.
In that theorem we introduced iterative procedure of removing a common edge between two cycles and
attaching to the specific node which resulted in getting a new graph with smaller detour index. Once we
reduced the problem to the case of parallelogram with attached stars to the four parallelogram vertices, as
showed in the Figure 6, then Theorem 5 resolves that the smallest detour index has the graph represented
in the Figure 3.

For the future research, it might be worth trying of finding the exact values of detour index for some
particular type of graphs. It looks that the case of bicyclic graphs without common edges or the case of
bicyclic graphs with just one edge in common could be, with some lengthy algebraic calculations, finally
resolved. If that is achieved, then some of the results of this paper would be easily obtained.

References

[1] B. Zhou, X. Cai, On detour index, MATCH Commun. Math. Comput. Chem 63 (2010), 199–210.
[2] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and application, Acta Appl. Math. 6 (2001), 211–249.
[3] H. Wiener, Structural determination of paraffin boiling points, J. Amer.Chem. Soc. 69 (1947), 17–20.
[4] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, Germany, 1986.
[5] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood, CA, 1990.
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