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Abstract. Aiming at the study of the compression of Khalimsky topological spaces which is an interesting
field in digital geometry and computer science, the present paper develops a new homotopy thinning
suitable for the work. Since Khalimsky continuity of maps between Khalimsky topological spaces has
some limitations of performing a discrete geometric transformation, the paper uses another continuity (see
Definition 3.4) that can support the discrete geometric transformation and a homotopic thinning suitable
for studying Khalimsky topological spaces. By using this homotopy, we can develop a new homotopic
thinning for compressing the spaces and can write an algorithm for compressing 2D Khalimsky topological
spaces.

1. Introduction

Digital geometry is an approach to understanding and compressing qualitative properties of digital
images which have been studied in computer science, viewed as non-Hausdorff subspaces of Zn with some
particular choices of non-Hausdorff topology, n ∈ N, where Zn is the set of points in the Euclidean nD
space with integer coordinates and N represents the set of natural numbers. The idea of this subject is that
qualitative features of images are often in the center of interest in computer image processing, and further
that they provide a useful compression of images.

In digital geometry one of the interesting areas is the Khalimsky nD space which is a locally finite space
and satisfies the separation axiom T0 instead of the Hausdorff separation axiom if n ≥ 2. In addition, the
Khalimsky 1D space satisfies the separation axiom T1 [21]. Thus the present paper mainly studies subspaces
of the Khalimsky nD space from the viewpoint of digital geometry.

In relation to the study of discrete objects in Zn, we have used many tools from combinatorial topology,
graph theory, Khalimsky topology and so forth [7–9, 20, 21, 23, 24, 26, 30]. Motivated by Alexandroff
spaces in [1], the Khalimsky nD space, denoted by (Zn,Tn), was established and its study includes the
papers [8, 13, 21, 28, 31]. Since the topology (Zn,Tn) is established on the Euclidean nD space, it is useful to
consider a subset X ⊂ Zn to be a subspace of (Zn,Tn) denoted by (X,Tn

X), n ≥ 1 [1, 13].
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In this regard, both a Khalimsky continuous map and a Khalimsky homeomorphism have been often
used in digital geometry [5, 6, 13, 18, 20–22, 24, 28, 31]. But it is well known that the graph k-connectivity
of Zn and every topological connectedness as well as Khalimsky connectedness are partially compatible
with each other [4, 5, 25]. Besides, a Khalimsky continuous map has some limitations of performing a
discrete geometric transformation such as a rotation by 90◦ and a parallel translation with an odd vector
(see Remark 3.3). In order to overcome this difficulty, it can be helpful to take into account a reasonable
k-adjacency relations of Zn on (X,Tn

X). Thus, considering a Khalimsky topological space (X,Tn
X) with one

of the graph k-adjacency relations of (2.1), we call it a space if there is no danger of ambiguity and use the
notation (X, k,Tn

X) := Xn,k. The paper [13] introduced the category (briefly, CTC) consisting of both a set
Ob(CTC) of Xn,k and a set Mor(Xn0,k0 ,Yn1,k1 ) of (k0, k1)-continuous maps between each pair Xn0,k0 and Yn1,k1

in Ob(CTC) (see Definition 3.4). The present paper uses the continuity in CTC (see Definition 3.4) instead
of both the Khalimsky continuity and the digital continuity in [3, 29] which leads to the development of a
homotopy suitable for studying Khalimsky topological spaces.

The paper proposes that an approach to the study of (X,Tn
X) from the viewpoint of CTC can overcome

the limitation of Khalimsky continuity mentioned above. This is one of the reasons why we study a
Khalimsky topological space with graph k-connectivity and continuity of map in CTC. Finally, in relation
to the compression of Khalimsky topological spaces in CTC, we can use a homotopy in CTC and develop a
homotopic thinning which can substantially contribute to the compression of the spaces Xn,k.

This paper is organized as follows. Section 2 provides some basic notions. Section 3 compares a
Khalimksy continuous map with continuous maps in CTC and further, it refers to some utilities of the
category CTC. Section 4 develops a homotopy thinning in CTC and proposes a method of compressing
Khalimsky topological spaces in terms of the homotopic thinning in CTC. In addition it suggests an
algorithm for compressing spaces X2,k. Section 5 concludes the paper with a summary and a further work.

2. Preliminaries

Let us now review some basic notions and properties of Khalimsky nD spaces. Khalimsky topology
arises from the Khalimsky line. More precisely, Khalimsky line topology on Z is induced from the subbase
{[2n−1, 2n+1]Z : n ∈ Z} [1] (see also [21]). Namely, the family of the subset {{2n+1}, [2m−1, 2m+1]Z : m,n ∈ Z}
is a basis of the Khalimsky line topology on Z denoted by (Z,T). Indeed, Khalimsky line topology has
useful properties. For instance, the Khalimsky line (Z,T) is connected and if one point is removed, then it
consists of two components and is finally not connected [21], which is the similar property of the real line
with the usual topology (R,U), where R means the set of real numbers. Furthermore, the usual product
topology on Zn induced from (Z,T), denoted by (Zn,Tn), is called the Khalimsky nD space. In the present
paper each space X ⊂ Zn will be considered to be a subspace (X,Tn

X) induced from the Khalimsky nD space
(Zn,Tn).

Let us recall basic terminology of the structure of (Zn,Tn). A point x = (x1, x2, · · · , xn) ∈ Zn is called pure
open if all coordinates are odd, and pure closed if each of the coordinates is even [21] and the other points in
Zn is called mixed [21]. In each of the spaces of Figures 1, 2, 3, 4, 5, 6 and 7 a black big dot stands for a pure
open point and the symbols � and •mean a pure closed point and a mixed point, respectively.

Since a Khalimsky continuous map f need not preserve the digital connectivity of Dom( f ), it is meaning-
ful to study a multi-dimensional Khalimsky topological space (X,TX) with k-connectivity denoted by Xn,k. Thus
let us recall the digital k-connectivity of Zn, as follows.
As a generalization of the commonly used k-adjacency relations of Z2 and Z3 [26, 29], the k-adjacency
relations of Zn were represented in [7] (see also [9]) as follows.
For a natural number m with 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,

are k(m,n)-(briefly, k-)adjacent if
• there are at most m indices i such that | pi − qi| = 1 and
• for all other indices i such that | pi − qi| , 1, pi = qi.
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In this operator k := k(m,n) is the number of points q which are k-adjacent to a given point p according to
the numbers m and n in N, where “ :=” means equal by definition. Indeed, this k(m,n)-adjacency is another
presentation of the k-adjacency of [7, 9] (for more details, see [17]). Consequently, this operator leads to the
representation of the k-adjacency relations of Zn [16]:

k := k(m,n) =
n−1∑

i=n−m

2n−iCn
i , (2.1)

where Cn
i =

n!
n−i)! i! .

For instance, 8-, 32-, 64- and 80-adjacency relations of Z4 are considered and further, 10-, 50-, 130-, 210- and
242-adjacency relations of Z5 are obtained.

Owing to the digital k-connectivity paradox [26], a set X ⊂ Zn with one of the k-adjacency relations of
Zn is usually considered in a quadruple (Zn, k, k̄,X), where n ∈ N, X ⊂ Zn is the set of points we regard
as belonging to the set depicted, k represents an adjacency relation for X and k̄ represents an adjacency
relation for Zn − X, where k , k̄ except X ⊂ Z [29]. But the paper is not concerned with the k̄-adjacency
of X. We say that the pair (X, k) is a digital space with k-adjacency (briefly, (binary) digital space) in Zn and
a subset (X, k) of (Zn, k) is k-connected if it is not a union of two disjoint non-empty sets not k-adjacent to
each other [26]. In other words, for a set (X, k) in Zn, two distinct points x, y ∈ X are called k-connected if
there is a k-path f : [0,m]Z → X whose image is a sequence (x0, x1, · · · , xm) consisting of the set of points
{ f (0) = x0 = x, f (1) = x1, · · · , f (m) = xm = y} such that xi and xi+1 are k-adjacent, i ∈ [0,m − 1]Z,m ≥ 1. The
number m is called the length of this k-path [26]. For a digital space (X, k) and a point x ∈ X, we say that
the maximal k-connected subset of (X, k) containing the point x ∈ X is the k-(connected) component of a point
x ∈ X [26]. For a digital graph connectivity k, a simple k-path in X is the sequence (xi)i∈[0,m]Z such that xi and
x j are k-adjacent if and only if either j = i + 1 or i = j + 1 [26]. Further, a simple closed k-curve with l
elements in Zn, denoted by SCn,l

k [10], is the simple k-path (xi)i∈[0,l−1]Z , where xi and x j are k-adjacent if and
only if j = i + 1(mod l) or i = j + 1(mod l) [26].

3. Comparison of a Khalimsky continuous map and continuous maps in CTC

In this section by comparing a Khalimsky continuous map with a continuous map in CTC, we refer
to some limitations of Khalimsky continuity of maps between Khalimsky topological spaces so that we
can speak out merits of a Khalimsky topological space with digital k-connectivity and justify the (k0, k1)-
continuity of Definition 3.4 which will be used in the paper. In the Khalimsky nD space (Zn,Tn), as usual,
consider a subset X ⊂ Zn to be a subspace (X,Tn

X) induced from (Zn,Tn), where Tn
X = {O ∩ X|O ∈ Tn}.

In this paper we mainly study spaces (X,Tn
X) with one of the k-adjacency relations of Zn that is denoted by

(X, k,Tn
X) := Xn,k [13] and is called a space. In relation to the establishment of various kinds of continuities of

maps between spaces Xn,k [13], in digital geometry we have often used the following digital k-neighborhood,
denoted by Nk(x, ε), [8] (see also [9]) based on the notions of both digital adjacency and a simple k-path in
Section 2.

Definition 3.1. ([8]; see also [9]) Let (X, k) be a digital space, X ⊂ Zn, x, y ∈ X, and ε ∈ N. By the digital
k-neighborhood Nk(x, ε) we denote the set

{y ∈ X : lk(x, y) ≤ ε} ∪ {x},
where lk(x, y) is the length of a shortest simple k-path x to y in X. Besides, we put lk(x, y) = ∞ if there is no
k-path from x to y. Thus, if the k-component of x is the singleton {x}, then we assume that Nk(x, ε) = {x} for
any ε ∈ N.

Consider digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 and further, a map f : (X, k0) → (Y, k1). Then the
digital continuity of f in [3] can be equivalently represented in this way [15]:
The map f is digitally (k0, k1)-continuous at a point x ∈ X if and only if

f (Nk0 (x, 1)) ⊂ Nk1 ( f (x), 1). (3.1)
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By using the digital (k0, k1)-continuity of (3.1), we obtain a digital topological category, briefly DTC,
consisting of the following two sets [9] (see also [13]):
(1) A set of objects (X, k) in Zn;
(2) For every ordered pair of objects (X, k0) in Zn0 and (Y, k1) in Zn1 , a set of all digitally (k0, k1)-continuous
maps f : (X, k0)→ (Y, k1) as morphisms.

In DTC, for {a, b} ⊂ Z with a � b we assume [a, b]Z = {n ∈ Z| a ≤ n ≤ b}with 2-adjacency [26].
Let us now recall the Khalimksy topological k-neighborhood which can be used for establishing continuity

of maps between the spaces Xn,k in CTC (see Definition 3.4).

Definition 3.2. ([8]; see also [13, 20]) Consider a space Xn,k := X, x, y ∈ X, and ε ∈ N.
(1) A subset V of X is called a Khalimsky topological neighborhood of x if there exists Ox ∈ Tn

X such that
x ∈ Ox ⊆ V.

(2) If a digital k-neighborhood Nk(x, ε) is a Khalimsky topological neighborhood of x in (X,Tn
X), then this

set is called a Khalimsky topological k-neighborhood of x with radius ε and we use the notation N∗k(x, ε)
instead of Nk(x, ε).

In A2,4 of Figure 1(a), no N∗4(ai, 1) exists, i ∈ {0, 8} because the smallest open set containing the point
a0 (resp, a8) is the set {a11, a0, a1, a2} (resp. {a6, a7, a8, a9}). In addition, we can obtain that N∗4(a0, 2) =
{a10, a11, a0, a1, a2} and further, N∗4(a8, 2) = {a6, a7, a8, a9, a10}.

Let us recall Khalimsky (briefly, K-)continuity of maps between Khalimsky topological spaces: As usual,
for two Khalimsky topological spaces (X,Tn0

X ) := X and (Y,Tn1
Y ) := Y a map f : X→ Y is called continuous at

the point x ∈ X if for any open set O f (x) ⊂ Y containing the point f (x) there is an open set Ox ⊂ X containing
the point x such that f (Ox) ⊂ O f (x). In terms of the Khalimsky continuity of the map f , we obtain the
Khalimsky topological category, briefly KTC, consisting of the following two sets [13]:
(1) A set of objects (X,Tn

X);
(2) For every ordered pair of objects (X,Tn0

X ) and (Y,Tn1
Y ) a set of all Khalimsky (briefly, K-)continuous maps

f : (X,Tn0
X )→ (Y,Tn1

Y ) as morphisms.
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Figure 1: Existence of N∗k(x, ε).

Hereafter, SCn,l
k established in Section 2 is assumed to be a subspace of (Zn,Tn). As already mentioned

above, we can observe the following limitations of K-continuous maps in Mor(KTC).

Remark 3.3. (1) Let f : Xn0,k0 → Yn1,k1 be a K-continuous map. Then f need not map a k0-connected subset
into a k1-connected one [13] (see also the maps f and 1 in Figure 2(a) and (b) of the present paper). More
precisely, let us consider the two maps:
f : X1 → Y1 and 1 : X2 → Y2 in Figure 2(a) and (b), respectively. While they are K-continuous maps, f (resp.
1) cannot preserve the 4-connectivity (resp. the 8-connectivity).



J.M. Kang, S.-E. Han / Filomat 26:6 (2012), 1101–1114 1105

(2) Regard SCn,l
k := (ci)i∈[0,l−1]Z as a subspace induced from the Khalimsky nD space (Zn,Tn) and consider

the self-map f : SCn,l
k → SCn,l

k given by f (ci) = ci+1(mod l). Then f need not be a K-continuous map.
More precisely, assume SC3,4

26 := (ci)i∈[0,3]Z as a subspace of (Z3,T3) (see Figure 1(b)) and the self-map
f : SC3,4

26 → SC3,4
26 given by f (ci) = ci+1(mod 4). Then we can clearly observe that f cannot be a K-continuous

map because Oc0 = {c3, c0, c1}, Oc1 = {c1}, Oc2 = {c1, c2, c3}, and Oc3 = {c3}, where Ox means the smallest open
set containing the point x.

(3) Let us consider the map f : (Z,T) → (Z,T) given by f (t) = t + 1 which is a parallel translation with
an odd vector. Then we can clearly observe that f cannot be a K-continuous map.

In view of Remark 3.3, to study spaces Xn,k, we need to use another continuity that can support the
digital geometric transformation mentioned in Remark 3.3.

Definition 3.4. ([13]) For two spaces Xn0,k0 := X and Yn1,k1 := Y a function f : X → Y is said to be (k0, k1)-
continuous at a point x ∈ X if f (N∗k0

(x, r)) ⊂ N∗k1
( f (x), s), where the number r is the least element of N such

that N∗k0
(x, r) contains an open set including the point x and s is the least element of N such that N∗k1

( f (x), s)
contains an open set including the point f (x).
Furthermore, we say that a map f : X→ Y is (k0, k1)-continuous if the map f is (k0, k1)-continuous at every
point x ∈ X.

In Definition 3.4 if such a neighborhood N∗k1
( f (x), ε) does not exist, then we clearly say that f cannot

be (k0, k1)-continuous at the point x. Further, in Definition 3.4 if k0 = k1 and n0 = n1, then we call it a
k0-continuous map.

Let us now recall the category [13], denoted by CTC, consisting of the following two sets:
• A set of objects Xn,k denoted by Ob(CTC);
• For every ordered pair of spaces Xn0,k0 and Yn1,k1 in Ob(CTC) a set Mor(Xn0,k0 ,Yn1,k1 ) of (k0, k1)-continuous
maps as morphisms.

In CTC, for {a, b} ⊂ Z with a � b, [a, b]Z = {a ≤ n ≤ b} can be assumed to be a subspace of (Z,T) if it is
related to the Khalimsky topology (Z,T). Then ([a, b]Z,T[a,b]Z ) is called a Khalimsky interval [28] and is briefly
denoted by [a, b]Z. For a map f : Xn,k → Yn,k let us compare K-continuity of f in KTC with k-continuity of
f in CTC. Indeed, according to the dimension n and connectedness of Xn,k and Yn,k, some intrinsic features
appear.

Theorem 3.5. Let f : X1,2 → Y1,2 be a map. Then K-continuity of f in KTC implies 2-continuity of f in CTC. But
the converse does not hold.

Proof. In the Khalimsky line (Z,T) each point t ∈ Z has N∗2(t, 1) = {t − 1, t, t + 1} ⊂ Z and further, the point t
is connected to the points t − 1 and t + 1. Thus a K-continuous map f : X1,2 → Y1,2 implies a 2-continuous
map in CTC because a K-continuous map preserves connectedness under the Khalimsky line topology. Let
us now examine if the assertion is true or not with the following four cases at every point x ∈ X1,2 and its
image f (x) := y ∈ Y1,2.

(Case 1) Assume that both x and y are pure closed points. Then a K-continuous map f : X1,2 → Y1,2
is equivalent to a 2-continuous map in CTC because N∗2(x, 1) = Ox and N∗2(y, 1) = Oy, where Ot means the
smallest open set containing t ∈ Z under the subspace topologies on X1,2 and Y1,2.

(Case 2) Assume that both x and y are pure open points so that Ox = {x} and Oy = {y}. Since from the
hypothesis we obtain that f (Ox) ⊂ Oy, we clearly observe that f (N∗2(x, 1)) ⊂ N∗2(y, 1) because Ox ⊂ N∗2(x, 1)
and Oy ⊂ N∗2(y, 1) and further, if there is a point x1 ∈ N∗2(x, 1) with x1 , x such that f (x1) < N∗2(y, 1), then
f cannot be a K-continuous map at the point x1 because f does not preserve connectedness between the
points x1 and x.

(Case 3) Assume that x is a pure closed point and y is a pure open point. Owing to both the hypothesis
of the K-continuity of f and the fact that N∗2(x, 1) = Ox, we obtain that f (N∗2(x, 1)) ⊂ Oy = {y}, which implies
that f (N∗2(x, 1)) ⊂ N∗2(y, 1) because Oy ⊂ N∗2(y, 1).
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(Case 4) Assume that x is a pure open point and y is a pure closed point. Owing to the hypothesis of the K-
continuity of f , we obtain that f (Ox) ⊂ Oy = N∗2(y, 1). Further, we clearly observe that f (N∗2(x, 1)) ⊂ N∗2(y, 1).
If not, suppose that there is a point x1 ∈ N∗2(x, 1) with x1 , x such that f (x1) < N∗2(y, 1). Then the map
f cannot be a K-continuous map at the point x1 because f does not preserve connectedness between the
points x1 and x.

In view of the above four cases, we can conclude that a K-continuous map f : X1,2 → Y1,2 implies a
2-continuous map in CTC.

But the converse does not hold as demonstrated by the following example: Consider the map f in
Remark 3.3(3) which is a parallel translation with an odd vector. While f is a 2-continuous map in CTC, as
already mentioned in Remark 3.3(3), it cannot be a K-continuous map.

Remark 3.6. Regardless of connectedness and disconnectedness of the two spaces X1,2 and Y1,2, the assertion
of Theorem 3.2 is valid.

Unlike Theorem 3.2, if n ≥ 2, then we obtain the following:

Theorem 3.7. Let f : Xn,k → Yn,k be a map, n ≥ 2. Then none of K-continuity of f and k-continuity of f in CTC
implies the other.

Proof. Assume that f : Xn,k → Yn,k is a K-continuous map on Xn,k, n ≥ 2. Namely, for each point x ∈ Xn,k
and its image f (x) ∈ Yn,k under the map f we can obtain that for the smallest open set O f (x) ⊂ Y containing
the point f (x) there is the smallest open set Ox ⊂ X containing the point x such that

f (Ox) ⊂ O f (x). (3.2)

But the property (3.2) need not imply the property

f (N∗k(x, δ)) ⊂ N∗k( f (x), ϵ) (3.3)

for some δ and ϵ in N (see Cases 1-1, 1-2 and 2 below), which means that K-continuity of f does not imply
k-continuity of f in CTC.
Conversely, assume that f : Xn,k → Yn,k satisfies the property (3.3). Then we can observe that the property
(3.3) need not imply the property (3.2) (see Cases 1-3, 1-4 and 2 below), which means that k-continuity of f
in CTC does not propose K-continuity of f .

(Case 1) In case n = 2, by using several examples described in 2D Khalimsky spaces, we can prove the
assertion.

(Case 1-1) In Figure 2(a) assume the map f : X1 := {xi | i ∈ [0, 3]Z} → Y1 := {yi | i ∈ [0, 1]Z} defined by
f ({x0, x1}) = {y0} and f ({x2, x3}) = {y1}. While the map f is K-continuous on X1, it cannot be 4-continuous in
CTC (see the point x2). More precisely, since the smallest open set containing x2 is the set {x2, x3}, we obtain
that N∗4(x2, 1) = {x1, x2, x3} and further, N∗4(y1, 1) = {y1}. Since f (N∗4(x2, 1)) cannot be a subset of N∗4(y1, 1), we
can conclude that f cannot be 4-continuous at the point x2.

(Case 1-2) In Figure 2(b) consider the map 1 : X2 := {xi | i ∈ [0, 2]Z} → Y2 := {yi | i ∈ [0, 2]Z} given by
1({x0}) = {y0} and 1({x1, x2}) = {y2}. Indeed, the map 1 is K-continuous on X2 because Ox0 and Ox1 are the
sets {x0} and {x1, x2}, respectively. But it cannot be 8-continuous in CTC (see the points x0 and x1) because
1(N∗8(x0, 1)) cannot be a subset of N∗8(y0, 1) = {y0}, where N∗8(x0, 1) = {x0, x1}.

(Case 1-3) In Figure 2(c) assume the map h : X3 := {xi | i ∈ [0, 2]Z} → Y3 := {yi | i ∈ [0, 1]Z} defined by
h({x0, x1}) = {y0} and h({x2}) = {y1}. While the map h is 8-continuous in CTC, it cannot be K-continuous on
X3 (see the point x1) because Ox1 is the total set X3 and for each yi ∈ Y3 we obtain that Oyi = {yi}, i ∈ {0, 1}.

(Case 1-4) In Figure 2(d) consider the map i : X4 := {x j | j ∈ [0, 2]Z} → Y4 := {y j | j ∈ [0, 1]Z} given by
i({x0, x1}) = {y1} and i({x2}) = {y0}. While the map i is 4-continuous in CTC because N∗4(y0, 1) = N∗4(y1, 1) = Y4
and N∗4(x2, 1) = {x1, x2}, it cannot be K-continuous on X4 (see the point x1) because Ox1 is the total set X4
which implies that N∗4(x1, 1) = X4.

In view of the above four cases, if n = 2, then the proof is completed.
(Case 2) In case n ≥ 3, by using a method similar to that used in the proof of the case that n = 2, we can

prove the assertion.
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Figure 2: Comparison of K-continuity of KTC and k-continuity of CTC, k ∈ {4, 8}.

In relation to the proof of Theorem 3.4, we can observe that the two spaces X2 and Y2 in Figure 2(b) are
not connected. In addition, we can also observe that Y3 in Figure 2(c) cannot be connected either. Thus, in
Theorem 3.4 if we further assume that Dom( f ) and Codom( f ) are connected, then we can obtain the result
different from Theorem 3.4.

Theorem 3.8. Let f : Xn,k → Yn,k be a map such that k = 3n − 1, n ≥ 2, and let both Xn,k and Yn,k be connected.
Then K-continuity of f implies (3n − 1)-continuity of f in CTC. But the converse does not hold.

Proof. Assume that f : Xn,3n−1 → Yn,3n−1 is a K-continuous map. For every connected space An,k ⊂ Xn,k,
k = 3n − 1 its image f (An,k) is connected in Yn,k. Owing to this property, for every point x ∈ Xn,k and its
image f (x) ∈ Yn,k there are Ox ⊂ Xn,k and O f (x) ⊂ Yn,k such that f (Ox) ⊂ O f (x) and further, N∗3n−1(x, 1) ⊂ Xn,k
and N∗3n−1( f (x), 1) ⊂ Yn,k such that Ox ⊂ N∗3n−1(x, 1) and O f (x) ⊂ N∗3n−1( f (x), 1). Finally, we obtain that

f (N∗3n−1(x, 1)) ⊂ N∗3n−1( f (x), 1).

If not, suppose that there is a point x ∈ N∗3n−1(x, 1) \Ox such that f (x) < N∗3n−1( f (x), 1), then the map f cannot
be a K-continuous map at the point x, which contradicts the hypothesis.

Let us now prove that the converse does not hold in terms of the following example. Consider the space
SCn,4

3n−1 := (ci)i∈[0,3]Z in which two points are pure open and the others are pure closed, and the self-map
f : SCn,4

3n−1 → SCn,4
3n−1 given by f (ci) = ci+1(mod 4). Then we can observe that f is (3n − 1)-continuous from the

viewpoint of CTC. But it cannot be a K-continuous map. For instance, consider the space SC3,4
26 := (ci)i∈[0,3]Z

in Remark 3.3(2) and the self-map f : SC3,4
26 → SC3,4

26 . While f is 26-continuous in CTC, it cannot be a
K-continuous map.

In Theorem 3.5 if we replace the (3n − 1)-adjacency by a k-adjacency of (2.1) with k , 3n − 1, then the
assertion of Theorem 3.5 cannot be true.

Theorem 3.9. In Theorem 3.5, if k , 3n − 1, then unlike the assertion of Theorem 3.5, we obtain the following: Let
f : Xn,k → Yn,k be a map with k , 3n − 1 and n ≥ 2 such that Xn,k and Yn,k are connected. Then none of K-continuity
of f and k-continuity of f in CTC implies the other.

Proof. (Case 1) In case n = 2, let us prove that K-continuity of f need not imply 4-continuity of f in CTC:
Assume the self-map f : X2,4 → X2,4 in Figure 3(a) given by f ({x0}) = {x0} and f ({x1, x2}) = {x2}. While the
map f is a K-continuous map, it cannot be a 4-continuous map in CTC (see the point x1).
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Conversely, let us prove that 4-continuity in CTC need not imply K-continuity in KTC with the following
example: Consider the self-map f : X2,4 → X2,4 in Figure 3(b) given by f (xi) = xi+1(mod 8). While f is a
4-continuous map in CTC, it cannot be a K-continuous map.

(Case 2) In case n = 3, let us now prove that K-continuity need not imply k-continuity in CTC, k , 26.
(Case 2-1) In case k = 18, assume the map f : X3,18 → Y3,18 in Figure 3(c) given by f ({x0, x1}) = {y0}
and f ({x2, x3}) = {y2}. Then we observe that both X3,18 and Y3,18 are connected, and f is K-continuous.
But it cannot be 18-continuous at the point x2 because f (N∗18(x2, 1)) is not a subset of N∗18( f (x2), 1), where
N∗18(x2, 1) = {x1, x2, x3} and N∗18( f (x2), 1) = {y1, y2} because Ox2 = {x2, x3} and O f (x2) = { f (x2)} with f (x2) = y2.
In view of this investigation, we can obtain that K-continuity of f in KTC cannot support 18-continuity of f
in CTC.

Conversely, let us prove that 18-continuity in CTC need not imply K-continuity in KTC with the following
example: Consider the self-map f : W3,18 → W3,18 in Figure 3(d) given by f (wi) = wi+1(mod 4). While f is an
18-continuous map in CTC, it cannot be a K-continuous map.

(Case 2-2) In case k = 6, let us prove that K-continuity of f in KTC need not imply 6-continuity of f
in CTC: Assume the map f : X3,6 → Y3,6 in Figure 3(e) given by f ({x0}) = {y0} and f ({x1, x2, x3}) = {y3}.
Then we can observe that both X3,6 and Y3,6 are connected and further, f is K-continuous. But it cannot be
6-continuous at the point x1 because f (N∗6(x1, 2)) is not a subset of N∗6( f (x1), 1), where N∗6(x1, 2) is the smallest
6-neighborhood of the point x1 so that N∗6(x1, 2) is the total set X3,6.

Conversely, let us prove that 6-continuity of a map f in CTC need not imply K-continuity of f in KTC
with the following example: Consider the self-map f : Z3,6 → Z3,6 in Figure 3(f) given by f (zi) = zi+1(mod 12).
Since each point zi ∈ Z3,6 has N∗6(zi, 1) = {zi−1(mod 12), zi, zi+1(mod 12)}, f is a 6-continuous map in CTC. But f
cannot be a K-continuous map.

In view of this investigation, in case n = 3 if k , 26, then it turns out that none of K-continuity of f in
KTC and k-continuity of f in CTC implies the other.

(Case 3) In case n ≥ 4 and k , 3n − 1 with the hypothesis that Xn,k and Yn,k are connected, by using the
similar methods used for proving Cases 1 and 2 above, we can clearly prove that none of K-continuity of f
in KTC and k-continuity of f in CTC implies the other.

As already mentioned in Remark 3.3, while K-continuous maps in KTC have some limitations of pro-
ceeding the digital geometric transformation related to a rotation, a parallel translation and so forth, we
can observe that a (k0, k1)-continuous map f : Xn0,k0 → Yn1,k1 in CTC overcomes the limitations (see Remark
3.10), which invokes strong merits of CTC.

Remark 3.10. (1) For a (k0, k1)-continuous map f : Xn0,k0 → Yn1,k1 in CTC, regardless of connectedness or
disconnectedness of Dom( f ), f maps a k0-connected subset into a k1-connected one if ki = 3ni − 1,ni ∈ N, i ∈
{0, 1}. More precisely, in a Khalimsky topological space (X,Tn

X) since each point x ∈ Xn0,k0 (resp. y ∈ Yn1,k1 )
has N∗3n0−1(x, 1) (resp. N∗3n1−1(y, 1)) which is equal to N3n0−1(x, 1) (resp. N3n1−1(y, 1)), we can clearly observe
that a (3n0 − 1, 3n1 − 1)-continuous map in CTC is equivalent to a digitally (3n0 − 1, 3n1 − 1)-continuous map
in DTC.

(2) Assume SCn,l
k := (ci)i∈[0,l−1]Z to be a subspace of (Zn,Tn), where k = 3n − 1. Consider the self-map

f : SCn,l
k → SCn,l

k in Remark 3.3(2) given by

f (ci) = ci+1(mod l). (3.4)

While f need not be a K-continuous map, f is a k-continuous map in CTC because each point ci ∈ SCn,l
k has

N∗k(ci, 1) ⊂ SCn,l
k .

If k , 3n − 1, then the map of (3.4) need not be a k-continuous map in CTC.
For instance, consider the set A2,4 := (ai)i∈[0,11]Z in Figure 1(a). Assume the set A2,4 with Khalimsky topology.
Then the space can be regarded as SC2,12

4 in KTC or CTC. Let us consider the self-map f : A2,4 → A2,4 defined
by f (ai) = ai+1(mod 12) from the viewpoint of KTC or CTC. Then we can observe that f is neither K-continuous
nor 4-continuous (see the point a0).
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Figure 3: Comparison of K-continuity of KTC and k-continuity of CTC, k , 3n − 1.

If for SCn,l
k := (ci)i∈[0,l−1]Z in CTC each point ci ∈ SCn,l

k := (ci)i∈[0,l−1]Z ⊂ (Zn,Tn) has N∗k(ci, 1) ⊂ SCn,l
k , then the

self-map defined by the map of (3.4) is always a k-continuous map.
(3) Consider the map f : (Z,T)→ (Z,T) given by f (t) = t + (2m + 1) which is a parallel translation with

an odd vector, m ∈ N (see Remark 3.3(3)). Then we can clearly observe that f is a 2-continuous map in CTC
because each point t ∈ Z has N∗2(t, 1) = {t − 1, t, t + 1}.

In view of Remark 3.10, by using the continuity of Definition 3.4, we can study Khalimsky topological
spaces without the limitations of K-continuity of f in KTC discussed in Remark 3.3.

In relation to the classification of spaces Xn,k, we can also observe some utilities of CTC. Let us now recall
a Khalimsky homeomorphism in KTC and a (k0, k1)-homeomorphism in CTC, as follows. In KTC we can
say that for two Khalimsky spaces (X,Tn0

X ) := X and (Y,Tn1
Y ) := Y a map h : X → Y is a Khalimsky (briefly,

K-) homeomorphism if h is a K-continuous bijection and further, h−1 : Y→ X is K-continuous [13].
In view of Remarks 3.3 and 3.10, we need to use another homeomorphism in CTC for classifying spaces

Xn,k in CTC. In relation to the classification of the spaces Xn,k, by using the continuity of Definition 3.4, we
can establish the following:

Definition 3.11. ([13]) In CTC, for two spaces Xn0,k0 := X and Yn1,k1 := Y a function f : X→ Y is said to be a
(k0, k1)-homeomorphism if
(1) f is bijective, and
(2) f is a (k0, k1)-continuous map and further, f−1 is a (k1, k0)-continuous map.
Then we say that the space X is (k0, k1)-homeomorphic to Y.

In Definition 3.11 if k0 = k1 and n0 = n1, then we use the terminology k0-homeomorphism instead of
(k0, k1)-homeomorphism. By comparing a K-homeomorphism with a k-homeomorphism, we can observe
some merits of a k-homeomorphism.

Example 3.12. (1) Let us consider the map f : X → Y in Figure 4(a) defined by f (xi) = yi, i ∈ [0, 7]Z. Even
though the spaces X and Y have the same cardinality, the bijection f cannot be a K-homeomorphism (see
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the points x3 and x5). Meanwhile, we can observe that the map f is an 8-homeomorphism in CTC because
each point x ∈ X (resp. y ∈ Y) has N∗8(x, 1) (resp. N∗8(y, 1)).

(2) Consider the map 1 : Z := (zi)i∈[0,3]Z → W := (wi)i∈[0,3]Z in Figure 4(b) given by 1(zi) = wi, i ∈ [0, 3]Z.
Then we can observe that the bijection 1 can be a K-homeomorphism. But we may undergo an eccentric
situation at the points w2 and w3 which are the images of 1(z2) and 1(z3), respectively. More precisely, while
z3 ∈ N8(z2, 1), we can obtain 1(z3) < N8(1(z2), 1) in which we can do an unusual experience.
Meanwhile, we can observe that the map 1 cannot be an 8-homeomorphism in CTC in which a k-
homoeomorphism in CTC is substantially helpful tool for classifying Khalimsky topological spaces.

(3) In Figure 4(c) consider the map h : B := (bi)i∈[0,5]Z → C := (ci)i∈[0,5]Z in Z3 given by h(bi) = ci, i ∈ [0, 5]Z.
While the bijection h cannot be a K-homeomorphism, it can be an 18-homeomorphism in CTC. More
precisely, we can observe that (B,T3

B) has a base

{{b0}, {b1, b2}, {b3}, {b4, b5}, {b2}, {b4}}

and (C,T3
C) has a base

{{c0, c1, c5}, {c2, c3, c4}, {c1}, {c5}, {c2}, {c4}}.
While h cannot be a K-homeomorphism, it is an 18-homeomorphism because each point bi ∈ B (resp. ci ∈ C)
has N∗18(bi, 1) (resp. N∗18(ci, 1)).
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Figure 4: Comparison of two spaces with the same cardinality up to a k-homeomorphism in CTC.

In view of Example 3.8, by comparing a K-homeomorphism in KTC with a k-homeomorphism in CTC,
we can observe that the latter has strong merits of classifying spaces Xn,k.

4. Compressing method of Khalimsky topological spaces in CTC

In DTC established in Section 3 a digital k-homotopy has contributed to the classification of digital
spaces (X, k) in terms of a digital fundamental group and a discrete deck transformation group (or an
automorphism group) [2, 3, 9–12, 24, 27]. Similarly, in CTC we can consider a homotopy for studying the
spaces Xn,k. Thus, in this section we study a (k0, k1)-homotopy which is suitable for studying spaces Xn,k (see
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Definition 4.1). For a space Xn0,k0 and its subspace An0,k0 , consider a space pair (Xn0,k0 ,An0,k0 ) := (X,A)n0,k0 .
For two space pairs (X,A)n0,k0 and (Y,B)n1,k1 , we say that f : (X,A)n0,k0 → (Y,B)n1,k1 is (k0, k1)-continuous if
f : Xn0,k0 → Yn1,k1 is (k0, k1)-continuous and f (An0,k0 ) ⊂ Bn1,k1 . As a Khalimsky topological analogue of the
(k0, k1)-homotopy in DTC [12], in CTC we can establish a (k0, k1)-homotopy relative to (briefly, rel.)An0,k0 in
terms of the (k0, k1)-continuity of Definition 3.4.

Definition 4.1. ([19]) In CTC, for four spaces Xn0,k0 := X and Yn1,k1 := Y, a subspace An0,k0 := A ⊂ Xn0,k0 and a
Khalimsky interval [0,m]Z, let f , 1 : X→ Y be (k0, k1)-continuous functions. Suppose that there exist m ∈ N
and a function F : X × [0,m]Z → Y such that
• for all x ∈ X,F(x, 0) = f (x) and F(x,m) = 1(x);
• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by
Fx(t) = F(x, t) for all t ∈ [0,m]Z is (2, k1)-continuous;
• for all t ∈ [0,m]Z, the induced function Ft : X→ Y defined by
Ft(x) = F(x, t) for all x ∈ X is (k0, k1)-continuous.
Then we say that F is a (k0, k1)-homotopy between f and 1, and f and 1 are (k0, k1)-homotopic in Y. And

we use the notation f ≃(k0,k1) 1.
• If, further, for all t ∈ [0,m]Z, then the induced map Ft on A is a constant which is the prescribed

function from A to Y. In other words, Ft(x) = f (x) = 1(x) for all x ∈ A and for all t ∈ [0,m]Z. Then, we say
that the homotopy is a (k0, k1)-homotopy relative to (briefly, rel.)A and denote it f ≃(k0,k1)rel.A 1. In particular, if
A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-homotopy.
If X = [0,mX]Z, for all t ∈ [0,m]Z, we have F(0, t) = F(0, 0) and F(mX, t) = F(mX, 0), then we say that F holds
the endpoints fixed.

In CTC, as an analogous version of the notion of digital k-contractibility of [3], we say that a space Xn,k := X
is pointed k-contractible if the identity map 1X is pointed k-homotopic relative to {x0} in X to a constant map
with the space consisting of some point x0 ∈ X.

Example 4.2. Both of two spaces X2,8 and Y2,8 in Figure 5 are pointed 8-contractible.

Proof. First of all, let us prove the 8-contractibility of X2,8 in Figure 5(a). Let us consider the map H :
X2,8 × [0, 3]Z → X2,8 given by
H(xi, 0) = xi, i ∈ [0, 9]Z;
H({x4, x5}, 1) = {x6}, H({x2, x3}, 1) = {x1}, and H(xi, 1) = xi, i ∈ {0, 1, 6, 7, 8, 9};
H({x2, x3, x4, x5, x6}, 2) = {x1}, H({x7, x8}, 2) = {x9}, and H(xi, 2) = xi, i ∈ {0, 1, 9}; and
H(xi, 3) = x0, i ∈ [0, 9]Z.
Then we can observe that this map H is an 8-homotopy which makes X2,8 8-contractible in CTC.

By the similar method used for proving the 8-contractibility of X2,8, we can prove the 8-contractibility
of Y2,8.

For a space pair (X,A)n,k, consider the inclusion map i : An,k → Xn,k. The paper [18] established the
notion of k-retract in CTC.

Definition 4.3. ([18]) In CTC An,k := A is called a k-retract of Xn,k if there is a k-continuous map r : Xn,k → An,k
such that r(a) = a for all a ∈ An,k.

In other words, the map r satisfies the identity r◦ i = 1A. As an analogy of a strong k-deformation retract
in DTC [12], we can establish the following:

Definition 4.4. In CTC, for a space pair (X,A)n0,k0 := (Xn0,k0 := X,An0,k0 := A), An,k is said to be a strong
k-deformation retract of Xn,k if there is a k-retraction r of Xn,k to An,k such that F : i ◦ r ≃k·rel.A 1X, i.e., the
strong k-deformation satisfies the condition F(x, t) = x for x ∈ A, t ∈ [0,m]Z. Then the k-homotopy F is called
a strong k-deformation of Xn,k to An,k. Then the point x ∈ Xn,k \ An,k is called a strongly k-deformable point.
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Figure 5: 8-contractibility in CTC.

Furthermore, in relation to the compression of spaces Xn,k in CTC, we introduce the notion of k-homotopic
thinning which can be used in topology and the field of applied science.

Definition 4.5. In CTC, for a space Xn,k we can delete all strongly k-deformable points from Xn,k in terms of
a strong k-deformation retract. Then this processing is called a k-homotopic thinning.

Example 4.6. In CTC, consider the space X = {xi | i ∈ [0, 12]Z} := X3,18 in Figure 6. Then we can observe that
the subspaces X1 := (X1)3,18 and X2 := (X2)3,18 in Figure 6 are two types of strong 18-deformation retracts of
X.
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Figure 6: Different types of strong 18-deformation retracts of a given space in CTC.

Based on the k-homotopic thinning method in CTC, we can write an algorithm for compressing 2D
spaces X2,k in CTC. In this section we assume that every point x ∈ X2,k has an N∗k(x, ϵ) ⊂ X2,k for some
element ϵ of N. If there is no hypothesis of the existence of N∗k(x, ϵ) ⊂ X2,k, then we cannot perform the
compression of a space X2,k.

[An algorithm for compressing non-empty spaces X2,k in terms of the k-homotopic thinning in CTC]

(1) Consider a space X2,k in CTC.
(2) Scan the given space X2,k row by row from the top to the bottom and from the left to the right. Finally,

if there is no point in the row, then restart to scan from the next row from the left to the right.
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(3) According to the step(2) above, we can meet the first point x ∈ X2,k and label it as x1. Next, keep
going to the labeling on the next points to the right, e.g. x2, x3, · · · and so on (see the spaces X2,4 and Y2,8 in
Figure 7 (a) and (b)).

(4) According to the step(3) above, after labeling the points in X2,k, examine if the labeled point is a
k-homotopic thinning point from the first labeled point x1 to the next x2, x3, · · · and so on (see the labeled
points in Figure 7 (a) and (b)). If yes, then delete it. Next, according to the order of the labeled points, keep
going the k-homotopic thinning of all labeled points.

(5) In (4), when examining if the point x ∈ X2,k is a k-homotopic thinning point, if the labeled point is
not a k-homotopic thinning point, then remain the point and keep going to the right and proceed the above
work (4). Finally, if there is no point in the row then restart the work of (4) from the next row.

(6) After finishing the works of (1)-(5), we can finally obtain a k-homotopic thinned space from the given
space X2,k (see the k-homotopic thinned spaces in Figure 7 (a) and (b), k ∈ {4, 8}).

Example 4.7. Consider the two spaces X2,4 := X and Y2,8 := Y in Figure 7 (a) and (b). According to the
above algorithm, we can proceed the compression of X (resp. Y) in terms of a 4-homotopic thinning of X
(resp. an 8-homotopic thinning of Y).
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Figure 7: (a) Configuration of a 4-homotopic thinning in CTC; (b) Configuration of an 8-homotopic thinning in CTC.

5. Summary and further work

In relation to the compression of Khalimsky topological spaces, we have developed a k-homotopic
thinning of spaces Xn,k in CTC and further, have suggested an algorithm for it. Such a case might be made
by demonstrating that the methods yield useful information about image processing algorithms, or provide
useful compression, or that they in any way increase our understanding of the digital images in a concretely
applicable way.

As a further work, we need to find a map between Khalimsky topological spaces expanding both a
K-continuous map and a (k0, k1)-continuous map in CTC.



J.M. Kang, S.-E. Han / Filomat 26:6 (2012), 1101–1114 1114

References

[1] P. Alexandroff, Diskrete Raume, Mat. Sb. 2 (1937) 501–518.
[2] R. Ayala, E. Domínguez, A.R. Francés, A. Quintero, Homotopy in digital spaces, Discrete Appl. Math. 125 (2003) 3–24.
[3] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999) 51–62.
[4] A. Bretto, Compatible topologies on graphs: An application to graph isomorphism problem complexity, Theoretical Computer

Science (2006) 255–272.
[5] U. Eckhardt, L.J. Latecki, Topologies for digital spaces Z2 and Z3, Computer Vision Image Understanding 95 (2003) 261–262.
[6] N.D. Georgiou, S.E. Han, Generalized topological function space and a classification of generalized computer topological spaces,

Filomat 26 (2012) 539–552.
[7] S.E. Han, Computer topology and its applications, Honam Math. J. 25 (2003) 153–162.
[8] S.E. Han, Comparison between digital continuity and computer continuity, Honam Math. J. 26 (2004) 331–339.
[9] S.E. Han, Non-product property of the digital fundamental group, Information Sci. 171 (2005) 73–91.

[10] S.E. Han, Connected sum of digital closed surfaces, Information Sci. 176 (2006) 332–348.
[11] S.E. Han, Discrete homotopy of a closed k-surface, Lecture Notes in Computer Science 1953 (2006) 214–225.
[12] S.E. Han, Strong k-deformation retract and its applications, J. Korean Math. Soc. 44 (2007) 1479–1503.
[13] S.E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc. 45 (2008) 923–952.
[14] S.E. Han, Comparison among digital fundamental groups and its applications, Information Sci. 178 (2008) 2091–2104.
[15] S.E. Han, Equivalent (k0, k1)-covering and generalized digital lifting, Information Sci. 178 (2008) 550–561.
[16] S.E. Han, The k-homotopic thinning and a torus-like digital image in Zn, J. Math. Imaging Vision 31 (2008) 1–16.
[17] S.E. Han, KD-(k0, k1)-homotopy equivalence and its applications, J. Korean Math. Soc. 47 (2010) 1031–1054.
[18] S.E. Han, Extension problem of several continuties in computer topology, Bull. Korean Math. Soc. 47 (2010) 915–932.
[19] S.E. Han, Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology Appl. 159 (2012) 1705–1714.
[20] S.E. Han, N.D. Georgiou, On computer topological function space, J. Korean Math. Soc. 46 (2009) 841–857.
[21] E. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl.

36 (1991) 1–17.
[22] In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity, Acta Appl. Math. 110 (2010) 399–408.
[23] O. Kiselman, Digital Jordan curve theorems, Lecture Notes in Computer Science 1953 (2000) 46–56.
[24] T.Y. Kong, A digital fundamental group, Comput. Graphics 13 (1989) 159–166.
[25] T.Y. Kong, The Khalimsky topologies are precisely those simply connected topologies on Zn whose connected sets include all

2n-connected set but no 3n−1-disconnected sets, Theoretical Computer Science 305 (2003) 221–235.
[26] T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
[27] R. Malgouyres, Homotopy in 2-dimensional digital images, Theoretical Computer Science 230 (2000) 221–233.
[28] E. Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology Appl. 153 (2005) 52–65.
[29] A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (1979) 76–87.
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