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A problem related to Bárány–Grünbaum conjecture
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Abstract. In this paper we prove that for any absolute continuous Borel probability measure µ on
the sphere S2 and any t ∈ [0, 1

4 ] there exist four great semi-circles `1, . . . , `4 emanating from a point
x ∈ S2 that partition sphere S2 into four angular sectors σ1, . . . , σ4, counter clockwise oriented, such that
µ(σ1) = µ(σ4) = t, µ(σ2) = µ(σ3) = 1

4 − t, and area(σ1) = area(σ4), area(σ2) = area(σ3).

1. Introduction and statement of results

Let P be a convex body in the plane. It is know that there exist two orthogonal lines that part P into
four pieces of equal area. The following natural question was asked jointly by Imre Bárány and Branko
Grünbaum.

Conjecture 1.1 (Bárány–Grünbaum conjecture in R2). Let P be a convex body in the plane of area 1 and
t ∈ [0, 1

4 ]. There exist two orthogonal lines that partition P into four pieces of area t, t, 1
2 − t and 1

2 − t in counter
clockwise order.

In the case when the diameter of P is at least
√

37 times the minimum width, the conjecture is settled by
Arocha, Jernimo-Castro, Montejano, and Roldn-Pensado in [1].
The conjecture can be naturally generalized to the following question:

Let µ be an absolutely continuous, Borel, probablity measure on R2 and t ∈ [0, 1
4 ]. There exist two

orthogonal lines that partition R2 into four pieces that contain t, t, 1
2 − t and 1

2 − t amount of measure
µ, in counter clockwise order.

Moving the problem from the plane to the sphere S2 we get a similar, not equivalent, but equally resistant
conjecture.

Conjecture 1.2 (Bárány–Grünbaum conjecture on S2). Let µ be an absolutely continuous, Borel, probablity
measure on the sphere S2 and t ∈ [0, 1

4 ]. There exist two great circles `1 and `2 that are mutually orthogonal and
partition sphere S2 into four angular sectors σ1, σ2, σ3, σ4, counter clockwise oriented, with the property that

µ(σ1) = µ(σ2) = µ(σ3) = µ(σ4).
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Figure 1: An example of a 4-fan

The great circles `1 and `2 on the sphere S2 are mutually orthogonal if the unit tangent vectors v1 and v2
to `1 and `2 at one of two antipodal intersection points are orthogonal, i.e., v1 ⊥ v2.

In this paper we prove the following weaker version of the Bárány–Grünbaum conjecture on S2.

Theorem 1.3. Let µ be an absolutely continuous, Borel, probability measure on the sphere S2 and t ∈ [0, 1
4 ]. There

exist four great semi-circles `1, . . . , `4 emanating from a point x ∈ S2 that partition sphere S2 into four angular
sectors counter clockwise oriented:

σ1 = (`1, `2), σ2 = (`2, `3), σ3 = (`3, `4), σ4 = (`4, `1),

having property that

µ(σ1) = µ(σ4) = t, µ(σ2) = µ(σ3) = 1
4 − t and area(σ1) = area(σ4), area(σ2) = area(σ3).

The condition about the areas can be reformulated in terms of angles that determine angular sectors. Let
us denote by

α1 = ^(`1, `2), α2 = ^(`2, `3), α3 = ^(`3, `4), α4 = ^(`4, `1).

Then area(σi) = αi
2π area(S2) for each i ∈ {1, 2, 3, 4}. Therefore, condition on areas read off in terms of

angles as α1 = α4 and α2 = α3, which implies that `1 ∪ `3 is a great circle, or `1 = −`3.

2. From geometric problem to an equivariant problem

The proof of Theorem 1.3 is obtained via the configuration test map method. In this section we relate
the claim of the theorem with the non-existence of a Z/2-equivariant map from the Stiefel manifold
V2(R3) into the sphere S1.

A 4-fan (x; `1, . . . , `4) on the sphere S2 consists of a point x ∈ S2 on the sphere and four pairwise
different great semi-circles `1, . . . , `4 emanating from x oriented in the counter clockwise order. For a
4-fan (x; `1, . . . , `4) we can also use notation

1. (x; σ1, . . . , σ4) where σi denotes the open angular sector between `i and `i+1, i ∈ {1, . . . , 4}, `5 ≡ `1; or
2. (x; v1, . . . , v4) where vi ∈ TxS2 denotes the unite tangent vector determined by the great semicircle

curve `i, i ∈ {1, . . . , 4}. Observe that v1, . . . , v4 ∈ span(x)⊥.
Further on, F4 denotes the space of all 4-fans on S2.

Let µ be an absolutely continuous, Borel, probablity measure on the sphere S2 and t ∈ [0, 1
4 ]. Consider

the following configuration space determined by µ and give t:

Xµ,t := {(x; σ1, . . . , σ4) ∈ F4 : µ(σ1) = µ(σ4) = t, µ(σ2) = µ(σ3) = 1
4 − t}.
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Every point (x; v1, . . . , v4) = (x; `1, . . . , `4) in the space Xµ,t is completely determined by the point x and
the first tangent vector v1 to `1. After fixing (x, v1) ∈ V2(R3) the remaining tangent vectors v2, v3, v4 can
be obtain from the condition µ(σ1) = µ(σ4) = t, µ(σ2) = µ(σ3) = 1

4 − t. Thus, Xµ,t ≈ V2(R3). Moreover, the
configuration space Xµ,t has a natural free Z/2 = 〈ε〉 action given by

ε · (x; `1, `2, `3, `4) = (−x; `1, `4, `3, `2) or ε · (x; σ1, σ2, σ3, σ4) = (−x; σ4, σ3, σ2, σ1).

Let us define a continuous map fµ,t : X→ R2 by

(x; σ1, σ2, σ3, σ4) 7−→ (area(σ1) − area(σ4), area(σ2) − area(σ3)).

If we introduce the antipodal Z/2-action on R2 it is not hard to see that the map τ is a Z/2-equivariant
map. Indeed, the following diagram commutes

(x; σ1, σ2, σ3, σ4)
fµ,t

//

ε

��

(area(σ1) − area(σ4), area(σ2) − area(σ3))

ε

��

(−x; σ4, σ3, σ2, σ1)
fµ,t

// (area(σ4) − area(σ1), area(σ3) − area(σ2)).

The main properties of this map, coming from its construction, are summarised in the following propo-
sition.

Proposition 2.1. (i) If for the given µ and t the claim of Theorem 1.3 holds, then 0 ∈ im fµ,t ⊂ R2.
(ii) If for the given t the claim of Theorem 1.3 does not hold, then there exists a measure µ such that 0 < im fµ,t ⊂
R2. Consequently, the map fµ,t factors in the following way

V2(R3) ≈ X
fµ,t

//

1µ,t
&&LLLLLLLLLL R2

R2
\{0}

<<yyyyyyyyy

where 1µ,t : V2(R3)→ R2
\{0} is a Z/2-equivariant map.

(iii) If for the given t the claim of Theorem 1.3 does not hold, then there exists aZ/2-equivariant map V2(R3)→ S1.
The action on S1 is assumed to be antipodal.

(iv) If there is noZ/2-equivariant map V2(R3)→ S1, then the claim of Theorem 1.3 holds for every t and any µ.

Thus, if we prove that there is noZ/2-equivariant map V2(R3)→ S1 we have concluded the proof of
Theorem 1.3.

3. Non existence of an equivaraint map

The non-existence of a Z/2-equivariant map V2(R3) → S1 will be proved via the Fadell–Husseini
ideal valued index theory applied to the group Z/2 and integer coefficients. We make a quick review
of basic properties of the Fadell–Husseini index theory. For further details consult the original paper of
Fadell and Husseini [3] and for use of integer coefficients [2].

Consider a finite group G. Let X be a G-space, R a commutative ring with unit and pX : X → pt the
G-equivariant projection. The Fadell–Husseini index of the G-space X is the kernel ideal of the induced
map p∗X : H∗G(pt; R)→ H∗G(X; R) in the equivariant cohomology, i.e.,

IndexG(X; R) := ker
(
p∗X : H∗G(pt; R)→ H∗G(X; R)

)
.

Here H∗G(X; R) := H∗(EG ×G X; R) and therefore H∗G(pt; R) � H∗(G; R).
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Let X and Y be G-spaces and f : X → Y a G-equivariant map. There are following commutative
triangles of G-spaces and related cohomology groups:

X
f

//

pX
��

======== Y

pY
����������

H∗G(X; R) H∗G(Y; R)
f ∗

oo

pt H∗G(pt; R).
p∗X

ffLLLLLLLLLL p∗Y

88rrrrrrrrrr

Consequently, ker p∗Y ⊆ ker p∗X, i.e.,

IndexG(Y; R) ⊆ IndexG(X; R) ⊆ H∗G(pt; R) = H∗(G; R). (1)

Let us recall that the cohomology ring of the groupZ/2, orZ/2-equivariant cohomology of the point,
with integer coefficients Z can be presented by

H∗(Z/2;Z) = Z[T]/〈2T〉

where deg(T) = 2.
In computation of indexes that follows we use the Serre spectral sequence of the Borel construction

fibrations:

S1
−→ EZ/2 ×Z/2 S1

−→ BZ/2 and V2(R3) −→ EZ/2 ×Z/2 V2(R3) −→ BZ/2.

The E2-terms, with Z coefficients, of these spectral sequences Er,s
t (S1) and Er,s

t (V2(R3)) are given by

Er,s
2 (S1) = Hr(Z/2; Hs(S1;Z)) and Er,s

2 (V2(R3)) = Hr(Z/2; Hs(V2(R3);Z)).

3.1. IndexZ/2(S1;Z)

The groupZ/2 acts on the sphere S1 antipodally and therefore orientation preserving. Consequently,
Hs(V2(R3);Z) is a trivialZ/2-module and so the E2-term of the Er,s

t (S1) spectral sequence transforms into
the tensor product

Er,s
2 (S1) = Hr(Z/2; Hs(S1;Z)) � Hr(Z/2;Z) ⊗Hs(S1;Z) �

{
Hr(Z/2;Z), for s = 0, 1
0, otherwise.

Since, S1 is a free Z/2 space we have that EZ/2 ×Z/2 S1
' S1/(Z/2). The spectral sequence Er,s

t (S1)
converges to H∗(EZ/2 ×Z/2 S1;Z) � H∗(S1/(Z/2);Z). Therefore, Er,s

3 (S1) � Er,s
∞ (S1) = 0 for all r + s ≥ 2 and

so

IndexZ/2(S1;Z) = 〈T〉. (2)

3.2. IndexZ/2(V2(R3);Z)

In order to describe the spectral sequence Er,s
t (V2(R3)) recall that the cohomology of the Stiefel

manifold is given by

Hs(V2(R3);Z) �


Z, s = 0, 3,
Z/2, s = 2,
0, otherwise.

The E2-term of the spectral sequence Er,s
t (V2(R3)) can be now determined in more details

Er,s
2 (V2(R3)) = Hr(Z/2; Hs(V2(R3);Z)) =


Hr(Z/2;Z), s = 0, 3,
Hr(Z/2;Z/2), s = 2,
0, otherwise.
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In particular, the 1-row of the E2 term vanishes. Therefore, 0 , T ∈ E2,0
2 (V2(R3)) � E2,0

∞ (V2(R3)) and
consequently

T < IndexZ/2(V2(R3);Z). (3)

The relation (3) will be enough to conclude the proof of Theorem 1.3. Nevertheless, let us point out
that the spectral sequence Er,s

t (V2(R3)) can be computed in all details and it can be proved that

IndexZ/2(V2(R3);Z) = 〈T2
〉.

4. Proof of Theorem 1.3

According to Proposition 2.1 in order to prove Theorem 1.3 we need to prove the non-existence of a
Z/2-equivariant map V2(R3)→ S1. The Z/2-actions on V2(R3) and S1 are assumed to be as introduced
in Section 2.

Assume the opposite, let f : V2(R3) → S1 be a Z/2-equivariant map. The basic property of the
Fadell–Husseini index theory (1) implies that

IndexZ/2(S1;Z) ⊆ IndexZ/2(V2(R3);Z).

This contradicts the fact that IndexZ/2(S1;Z) = 〈T〉, (2), and T < IndexZ/2(V2(R3);Z), (3). Thus, there can
not be Z/2-equivariant map V2(R3)→ S1 and consequently Theorem 1.3 holds.
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convex sets, Periodica Math. Hungar. 60 (2010) 41–47.
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