Filomat 27:1 (2013), 57–63 DOI 10.2298/FIL1301057A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On one-factorizations of replacement products

Alireza Abdollahi^a, Amir Loghman^b

^aDepartment of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran and School of Mathematics, Institute for Research in Fundamental Sciences, P.O. box 19395-5746, Tehran, Iran. ^bDepartment of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran.

Abstract. Let *G* be an (n, m)-graph (n vertices and m-regular) and *H* be an (m, d)-graph. Randomly number the edges around each vertex of *G* by $\{1, \ldots, m\}$ and fix it. Then the replacement product *G*®*H* of graphs *G* and *H* (with respect to the numbering) has vertex set $V(G \otimes H) = V(G) \times V(H)$ and there is an edge between (v, k) and (w, l) if v = w and $kl \in E(H)$ or $vw \in E(G)$ and kth edge incident on vertex v in *G* is connected to the vertex w and this edge is the *l*th edge incident on w in *G*, where the numberings k and l refers to the random numberings of edges adjacent to any vertex of *G*. If the set of edges of a graph can be partitioned to a set of complete matchings, then the graph is called 1-factorizable and any such partition is called a 1-factorization. In this paper, 1-factorizability of the replacement product *G*®*H* of graphs *G* and *H* is studied. As an application we show that fullerene C_{60} and C_4C_8 nanotorus are 1-factorizable.

1. Introduction

Graphs considered in this paper are finite, simple and undirected. Let *G* be a simple graph. The vertex set, edge set, maximum degree and minimum degree of *G* will be denoted by V(G), E(G), $\Delta(G)$, $\delta(G)$ respectively. The order of *G* is |V(G)|, i.e. the number of vertices of *G*. A graph *G* is called regular if $\delta(G) = \Delta(G)$ and the latter integer is called the degree of *G* and denoted by d(G). A *d*-regular graph *G* on *n* vertices is called an (n, d)-graph. A graph is called cubic if it is 3-regular. We denote by K_n and C_n the complete graph of order *n* and the cycle of order *n*, respectively. We denote by $N_G(x)$ the neighborhoods of $x \in V(G)$, that is, the set of vertices adjacent to *x*.

A spanning subgraph of a graph G is a subgraph H of G such that V(H) = V(G). An r-regular spanning subgraph of G is called an r-factor. A 1-factorization of G is a set of edge-disjoint 1-factors of G whose union is E(G). The graph G is said to be 1-factorizable if it has a 1-factorization. A necessary condition for a graph G to be 1-factorizable is that G is a regular graph of even order. The concept of 1-factorization can be expressed by the concept of edge coloring. An edge coloring of a graph G is a map $\theta : E(G) \to C$, where C is a set, called the color set, and $\theta(e) \neq \theta(f)$ for any pair e and f of adjacent edges of G. If α is a color, the set $\theta^{-1}(\{\alpha\})$, i.e. the set of edges of G colored α , is called the α -color class. If |C| = m we say that θ is an m-edge coloring. The least integer m for which an m-edge coloring of G exists is called the edge chromatic index of G and denoted by $\chi'(G)$. It is easily seen that $\chi'(G) \ge \Delta(G)$ for any graph G. Vizing [9] proved that

²⁰¹⁰ Mathematics Subject Classification. Primary 05C15; Secondary 05C70

Keywords. Replacement product; One-factorization; Fullerene; Nanotorus.

Received: 12 April 2011; Accepted: 23 August 2011

Communicated by Dragan Stevanović

This research was in part supported by a grant from IPM (No. 90050219). This research was also in part supported by the Center of Excellence for Mathematics, University of Isfahan.

Email addresses: a.abdollahi@math.ui.ac.ir (Alireza Abdollahi), aloghman@math.ui.ac.ir (Amir Loghman)

Theorem 1.1 (Vizing's Theorem). $\chi'(G) \leq \Delta(G) + 1$ for any graph G.

If in a regular graph *G*, we have $\chi'(G) = \Delta(G)$ then edges of each color class consists a 1-factor and *G* is 1-factorizable. We call a graph Hamiltonian if it contains a spanning cycle. Such a cycle is called a Hamiltonian cycle. Any Hamiltonian graph of even order has a 1-factor, for if *C* is a Hamiltonian cycle of *G* and we select alternate edges of *C*, we eventually end up with a 1-factor of *G*. A 2-factor all of whose components are even is called an even 2-factor.

We shall also need the following well known sufficient condition for the existence of a Hamilton cycle in a graph due to Dirac [4].

Theorem 1.2 (Dirac's Theorem). Let G be a graph of order at least three such that $\delta(G) \geq \frac{|V(G)|}{2}$. Then G is Hamiltonian.

Let *A* and *B* be finite groups. Assume that *B* acts on *A*, namely we are fixing a homomorphism ϕ from *B* to the automorphism group of *A* and for elements $a \in A$, $b \in B$ we denote by a^b the element $a^{b^{\phi}}$ the action of *b* on *a*. We also use a^B to denote the orbit of *a* under this action.

The Cayley graph C(H, S) of a group H and a generating set $S = S^{-1} := \{s^{-1} \mid s \in S\}$, is an undirected graph whose vertices are the elements of H, and where $\{g, h\}$ is an edge if $g^{-1}h \in S$. The Cayley graph C(H, S) is |S|-regular.

2. 1-Factorizations of replacement products

In this section we describe the replacement product and investigate 1-factorizability of replacement product.

Let *G* be any (n,k)-graph and let $[k] = \{1,...,k\}$. By a random numbering of *G* we mean a random numbering of the edges around each vertex of *G* by the numbers in $\{1,...,k\}$. More precisely, a random numbering of *G* is a set φ_G consisting of bijection maps $\varphi_G^x : N_G(x) \to [k]$ for any $x \in V(G)$. Thus the graph *G* has $(k!)^n$ random numberings.

Example 2.1. Suppose G = C(A, S) is a Cayley graph. Then the edges around each vertex of G are naturally labeled by the elements of S: if $\{x, y\} \in E(G)$ then $\varphi_G^x(y) = f(x^{-1}y)$, where f is a bijection map from S to [|S|].

Definition 2.2. Let G be an (n, k)-graph and let H be a (k, k')-graph with $V(H) = [k] = \{1, ..., k\}$ and fix a random numbering φ_G of G. The replacement product $G\otimes_{\varphi_G} H$ is the graph whose vertex set is $V(G) \times V(H)$ and there is an edge between vertices (v, k) and (w, l) whenever v = w and $kl \in E(H)$ or $vw \in E(G)$, $\varphi_G^v(w) = k$ and $\varphi_G^w(v) = l$.

Note that the definition of $G \otimes_{\varphi_G} H$ clearly depends on φ_G . Thus for given any two regular graphs G and H as above, there are $(|V(H)|!)^{|V(G)|}$ replacement products which are not necessarily isomorphic. It follows from the definition that $G \otimes_{\varphi_G} H$ is a regular graph and in fact it is a (nk, k' + 1)-graph (see [1, 7, 8]).

Example 2.3. Let $G = K_5$ and $H = C_4$ and let φ_G , φ'_G be as shown in Figure 1. Then the replacement product $G(\mathbb{R}_{\varphi_G}H)$ and $G(\mathbb{R}_{\varphi'_G}H)$ are not isomorphic, (see Figure 2) since the determinants of the adjacency matrices of $G(\mathbb{R}_{\varphi'_G}H)$ and $G(\mathbb{R}_{\varphi'_G}H)$ are 9 and 12, respectively.

Lemma 2.4. Let G be an (n,k)-graph. Then G is 1-factorizable if and only if there exists a random numbering φ_G such that for any edge xx' of G we have $\varphi_G^x(x') = \varphi_G^{x'}(x)$.

Proof. \Rightarrow : Let *G* have a 1-factorization. Then, since *G* is *k*-regular, there exists an edge coloring $\theta : E(G) \rightarrow [k]$ for *G*. Now define the map φ_G^x from $N_G(x)$ to [k] for any $x \in V(G)$ as $\varphi_G^x(y) = \theta(xy)$ for all $y \in N_G(x)$. Clearly φ_G^x is a bijection and we have

$$\varphi_G^x(x') = \theta(xx') = \theta(x'x) = \varphi_G^x(x)$$

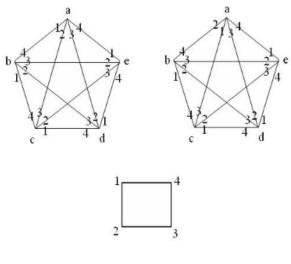


Figure 1: $G = K_5$ and $H = C_4$

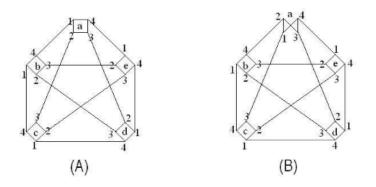


Figure 2: (A) is $G \mathbb{R}_{\varphi_G} H$ and (B) is $G \mathbb{R}_{\varphi'_G} H$

for any $xx' \in E(G)$. Thus $\varphi_G = \{\varphi_G^x \mid x \in V(G)\}$ is the desired random numbering of *G*.

 \leftarrow : Suppose that *G* has a random numbering φ_G with the mentioned property in the lemma. Let *β* be the map from *E*(*G*) to [*k*] defined by $\beta(xy) = \varphi_G^x(y)$ for any $xy \in E(G)$. Since $\varphi_G^x(y) = \varphi_G^y(x)$ ($\beta(xy) = \beta(yx)$), then *β* is well-defined. Now we show that *β* is an edge coloring for *G*. To do this, suppose *e*, *f* be two adjacent edges of *E*(*G*). Then there exist *x*, *y*, *y*' ∈ *V*(*G*) with *e* = *xy*, *f* = *xy*' and *y* ≠ *y*'. Hence $\varphi_G^x(y) \neq \varphi_G^x(y')$, as φ_G^x is one-to-one. This implies that $\beta(e) \neq \beta(f)$, as required. \Box

If *G* is a 1-factorizable graph, a random numbering φ_G is called a 1-factorizable numbering whenever for any edge xx' of *G* we have $\varphi_G^x(x') = \varphi_G^{x'}(x)$. Thus it follows from Lemma 2.4 that every 1-factorizable graph has a 1-factorizable numbering.

We now consider the case when the two components of the product graph are Cayley graphs $G = C(A, S_A)$ and $H = C(B, S_B)$. Furthermore, suppose that *B* acts on *A* in such a way that $S_A = \alpha^B$ for some $\alpha \in S_A$. So the edges around each vertex of *G* are naturally labeled by the elements of *B*. This enables us to define the replacement product of *G* and *H*.

The following result is well-known and we give a proof by using Lemma 2.4.

Lemma 2.5. Let G be a cubic graph. Then the following properties are equivalent:
(i) G is 1-factorizable.
(ii) G has an even 2-factor.
(iii) G_{φ_G}C₃ is 1-factorizable for any 1-factorizable numbering φ_G.

Proof. (*i*) \Leftrightarrow (*ii*) Suppose that *G* is 1-factorizable. Then, since *G* is 3-regular, there exists an edge coloring $\theta : E(G) \rightarrow [3]$. For any two colors α , β , the subgraph generated by the union of α - and β -color classes is a spanning subgraph of *G* which is the union of some cycle subgraphs C_1, \ldots, C_s of *G* with disjoint vertices and even length.

If *G* has an even 2-factor then *G* contains a spanning subgraph $\bigcup_{i=1}^{s} C_i$ where C_i are disjoint cycles of even length. Thus C_i are 1-factorizable and by Lemma 2.4, there exists a random numbering φ_{C_i} such that for any edge *ab* of C_i we have $\varphi_{C_i}^a(b) = \varphi_{C_i}^b(a)$. Now define φ_G^x for each $x \in V(G)$ as follows:

$$\varphi_G^x(y) = \begin{cases} \varphi_{C_i}^x(y) & xy \in E(C_i) \\ 3 & \text{otherwise.} \end{cases}$$

It is easy to see that φ_G is a random numbering of G satisfying the conditions of Lemma 2.4.

(*i*) \Leftrightarrow (*iii*) We know *G* is 1-factorizable if only if there exists a 1-factorizable numbering φ_G such that for any $xy \in E(G)$ we have $\varphi_G^x(y) = \varphi_G^y(x)$. Assume *G* is 1-factorizable and φ_G is a 1-factorizable numbering. If $V(C_3) = [3] = \{1, 2, 3\}$ then we define $\varphi_{G\mathbb{R}_{\varphi_G}C_3}^{(x,i)}$ for $(x, i) \in V(G\mathbb{R}_{\varphi_G}C_3)$ as follows:

$$\varphi_{G\mathbb{R}_{\varphi_G}C_3}^{(x,i)}((y,j)) = \begin{cases} [3]{-}\{i,j\} & x = y, ij \in E(C_3) \\ \varphi_G^x(y) & xy \in E(G) \end{cases}$$

where $(y, j) \in N_{G_{\mathbb{R}_{\varphi_{G}}C_{3}}}((x, i))$. It is obvious that $\varphi_{G_{\mathbb{R}}H}^{(x,i)}((y, j)) = \varphi_{G_{\mathbb{R}}H}^{(y,j)}((x, i))$. Now Lemma 2.4 completes the proof. \Box

Corollary 2.6. Let G be a 1-factorizable graph and φ_G is 1-factorizable numbering of G. Assume also that G^1 denotes $G\mathbb{R}_{\varphi_G}C_3$ and recursively let $G^r = G^{r-1}\mathbb{R}_{\varphi_{Cr-1}}C_3$. Then $\{G^r\}_{r\geq 1}$ is an infinite family of 1-factorizable cubic graphs.

Theorem 2.7. Let G be an (n, k)-graph and let H be a (k, k')-graph with V(H) = [k]. If H has a 1-factorization, then the replacement product $G \otimes_{\varphi_G} H$ is 1-factorizable for any random numbering φ_G of G.

Proof. Let $G \otimes H = G \otimes_{\varphi_G} H$. By Lemma 2.4, there exists a set $\varphi_H = \{\varphi_H^a : N_H(a) \to [k'] \mid a \in V(H)\}$ such that for any $ab \in E(H)$ we have $\varphi_H^a(b) = \varphi_H^b(a)$. Now define $\varphi_{G \otimes H}^{(x,a)}$ for any $(x, a) \in V(G \otimes H)$ and $(y, b) \in N_{G \otimes H}(x, a)$ as follows:

$$\varphi_{G \otimes H}^{(x,a)}((y,b)) = \begin{cases} \varphi_H^a(b) & x = y \\ k' + 1 & \text{otherwise.} \end{cases}$$

It is obvious that $\varphi_{G \otimes H}^{(x,a)}((y,b)) = \varphi_{G \otimes H}^{(y,b)}((x,a))$. Now Lemma 2.4 completes the proof. \Box

Example 2.8. Let C_n be a cycle of length *n*. Then for any random numbering φ_{C_n} , we have

$$C_n \mathbb{R}_{\varphi_{C_n}} K_2 \cong C_{2n}$$

If *n* is odd then C_n is not 1-factorizable but $C_n \otimes_{\varphi_{C_n}} K_2 \cong C_{2n}$ is 1-factorizable. If *n* is even then C_{n-1} is not 1-factorizable. Therefore for any random numbering φ_{K_n} , the graph $K_n \otimes_{\varphi_{K_n}} C_{n-1}$ is cubic having an even 2-factor. Then by Lemma 2.5, $K_n \otimes_{\varphi_{K_n}} C_{n-1}$ is a 1-factorizable graph.

Theorem 2.9. Let G be an (n, m)-graph. Then the replacement product $G\mathbb{R}_{\varphi_G}K_m$ is 1-factorizable whenever one of the following conditions holds:

- (a) *m* is even and φ_G is any random numbering of *G*.
- (b) *G* is 1-factorizable and φ_G is any 1-factorizable numbering of *G*.

Proof. The complete graph K_m is 1-factorizable whenever m is even. Then by Theorem 2.7, $G \bigotimes_{\varphi_G} K_m$ is 1-factorizable for any random numbering φ_G of G. If m is odd and G is 1-factorizable then by Lemma 2.4, there exists a random numbering φ_G such that for $x \in V(G)$ and $y \in N_G(x)$, we have $\varphi_G^x(y) = \varphi_G^y(x)$. For any $(x, i) \in V(G \bigotimes_{\varphi_G} K_m)$ and $(y, j) \in N_{G \bigotimes_{\varphi_G} K_m}((x, i))$, where $i, j \in V(K_m) = [m]$, we define $\varphi_{G \bigotimes_{\varphi_G} K_m}^{(x,i)}$ as follows:

$$\varphi_{G^{(x,i)}}^{(x,i)}((y,j)) = \begin{cases} \frac{\varphi_G^x(y)}{\frac{i+j}{2}} & x \in E(G) \\ \frac{m}{\frac{i+j+m}{2}} & x = y \text{ and } \frac{i+j}{i+j} \text{ is non-zero and even} \\ \frac{m}{\frac{i+j+m}{2}} & x = y \text{ and } \frac{i+j}{i+j} \text{ is odd} \end{cases},$$

where $\overline{i+j}$ is the remainder when i+j is divided by *m*. It is easy to see that $\varphi_{G \otimes K_m}^{(x,i)}((y, j)) = \varphi_{G \otimes K_m}^{(y,j)}((x, i))$. This completes the proof. \Box

For the replacement product $G \otimes C_k$, $k \ge 4$, we derive the following result.

Theorem 2.10. Let G be an (n, k)-graph and C_k a cycle of length $k \ge 4$. Then the replacement product $G\mathbb{R}_{\varphi_G}C_k$ is 1-factorizable if one of the following conditions holds:

(a) k is even and φ_G is any random numbering of G

(b) *G* has an even 2-factor $H = \bigcup_{i=1}^{s} C_i$ and $\varphi_G |_{C_i} = \varphi_{C_i}$, where φ_{C_i} are 1-factorizable numbering of C_i .

Proof. If *k* is even then $C_k = (123...k)$ has 1-factorization and by Theorem 2.7, $G(\mathbb{R}_{\varphi_G}C_k)$ is 1-factorizable. Let *G* have an even 2-factor. Thus there exist disjoint cycles $C_i(1 \le i \le s)$ with even lengths, whose $\bigcup_{i=1}^{s} C_i$ is a spanning subgraph of the graph *G*. Cycles $C_i = (a_{i1}a_{i2}...a_{in_i}), 1 \le i \le s$, are 1-factorizable and $n = \sum_{i=1}^{s} n_i$. Because each n_i is even then by Lemma 2.4, there are φ_{C_i} where for any edge a_{il}, a_{im} of C_i we have $\varphi_{C_i}^{a_{il}}(a_{im}) = \varphi_{C_i}^{a_{im}}(a_{il})$. Let $\varphi_{C_i}^{a_{il}}(a_{i2}) = \varphi_{C_i}^{a_{i2}}(a_{i1}) = 1$ thus we define cycle T_i as follows:

$$T_{i} = ((a_{i1}, 1)(a_{i2}, 1)(a_{i2}, k)(a_{i2}, k - 1) \dots (a_{i2}, 3)(a_{i2}, 2)(a_{i3}, 2)(a_{i3}, 3))$$
$$\dots (a_{i3}, k - 1)(a_{i3}, k)(a_{i3}, 1) \dots (a_{in_{i}}, 1)(a_{in_{i}}, k)(a_{in_{i}}, k - 1)$$
$$\dots (a_{in_{i}}, 3)(a_{in_{i}}, 2)(a_{i1}, 2)(a_{i1}, 3) \dots (a_{i1}, k - 1)(a_{i1}, k))$$

 T_i are cycles of length kn_i and $\bigcup_{i=1}^{s} T_i$ is a spanning subgraph of the replacement product $G\mathbb{R}_{\varphi_G}C_k$, where $\varphi_G|_{C_i} = \varphi_{C_i}$. Then by Lemma 2.5, $G\mathbb{R}_{\varphi_G}C_k$ has 1-factorization. \Box

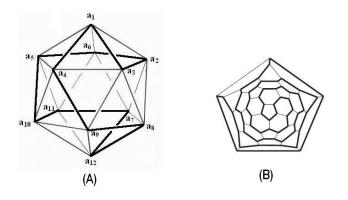


Figure 3: (A) is Icosahedron and (B) is Fullerene C_{60}

Corollary 2.11. Let G be an (n, k)-graph and $2k \ge n$. Then by Dirac's Theorem, the replacement product $G \otimes C_k$ is 1-factorizable.

Let us end the paper with two applications of the above result.

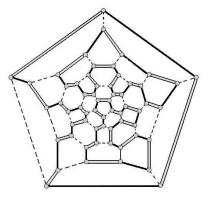


Figure 4: Coloring the edges of C_{60} .

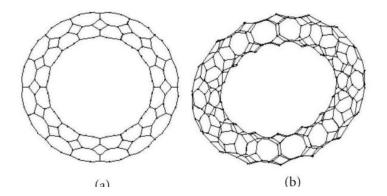


Figure 5: A $TC_4C_8(R)$ tori (a) Top view (b) Side view

Example 2.12. A fullerene graph (in short a fullerene) is a 3-connected cubic planar graph, all of whose faces are pentagons and hexagons. By Euler formula the number of pentagons equals 12. The first fullerenes, C_{60} and C_{70} , were isolated in 1990. The smaller version, C_{60} , is in the shape of a soccer ball. Graph-theoretic observations on structural properties of fullerenes are important in this respect [3, 5, 6]. Suppose F is a fullerene C_{60} and A is the icosahedron ((12,5)-graph). By Figure 3(A), $C = (a_1a_3a_2a_6a_5a_{10}a_{11}a_7a_{12}a_8a_9a_4)$ is a Hamiltonian cycle of A and A is hamiltonian. If φ_A for any edges a_ia_j are defined in Table I, then $A \circledast_{\varphi_A} C_5 = F$ is Hamiltonian, see Figure 3(B). By Lemma 2.5, F is 1-factorizable. There are many different ways to color the edges of the graph C_{60} (for example see Figure 4).

Example 2.13. Consider C_4 nanotorus S. Then $S = C_k \times C_m$, where C_n is the cycle of order n and S be an (km, 4)-graph (S is the Cartesian product of cycles). Suppose T is a $T = TC_4C_8[k, m](R)$ nanotorus (which k is the number of squares in every row and m is the number of squares in every column, Figure 5), [2]. Then T is an (4km, 3)-graph. It is easy to see that $T = S \otimes_{\varphi_S} C_4$, for some of random numbering φ_S of graph S. Because C_4 is 1-factorizable then by Theorem 2.10, nanotorus T is 1-factorizable.

1	2	3	4	5
$ \begin{array}{c} \varphi^{a_1}_A(a_4) \\ \varphi^{a_4}_A(a_{10}) \\ \varphi^{a_3}_A(a_9) \end{array} $	$\varphi_A^{a_1}(a_3)$	$\varphi_A^{a_1}(a_2)$	$\varphi_A^{a_1}(a_6)$	$\varphi_A^{a_1}(a_5)$
$\varphi_{A}^{\bar{a_{4}}}(a_{10})$	$\varphi_{A}^{a_{4}}(a_{9})$	$\varphi_A^{a_4}(a_3)$	$arphi_A^{a_4}(a_1) \ arphi_A^{a_3}(a_1)$	$\varphi_{A}^{a_{4}}(a_{5})$
$\varphi_A^{a_3}(a_9)$	$\varphi_{A}^{u_{3}}(a_{8})$	$\varphi_{A}^{a_{3}}(a_{2})$	$\varphi_A^{a_3}(a_1)$	$\varphi_{A}^{u_{3}}(a_{4})$
$\left[\begin{array}{c} \varphi_{A}^{a_{2}}(a_{8}) \\ \varphi_{A}^{a_{6}}(a_{7}) \end{array} ight]$		$\varphi_{A}^{a_{2}}(a_{6})$	$\varphi_{A}^{u_{2}}(a_{1})$	$\varphi_{A}^{a_{2}}(a_{3})$
$\varphi_{A}^{a_{6}}(a_{7})$	$\varphi_{A}^{a_{6}}(a_{11})$	$\varphi_{A}^{a_{6}}(a_{5})$	$\varphi^{a_6}_{A}(a_1)$	$\varphi_{A}^{u_{6}}(a_{2})$
$\varphi_{A}^{a_{5}}(a_{11})$	$\varphi_{A}^{u_{5}}(a_{10})$	$\varphi_A^{\hat{a}_5}(a_4)$	$\varphi_A^{a_5}(a_1)$	$\varphi_{A}^{a_{5}}(a_{6})$
$\varphi_A^{a_{12}}(a_{11})$	$\varphi^{a_{12}}_{A}(a_7)$	$\varphi_{A}^{a_{12}}(a_{8})$		$\varphi_{A}^{a_{12}}(a_{10})$
$\varphi_{A}^{a_{11}}(a_{6})$	$\varphi_{A}^{a_{11}}(a_{6}) = \varphi_{A}^{a_{7}}(a_{2})$	$\varphi_A^{\hat{a}_{11}}(a_7)$	$\varphi_{A}^{a_{11}}(a_{12})$	$\varphi_{A}^{a_{11}}(a_{10})$
$\varphi_A^{a_7}(a_5)$	$\varphi_A^{a_7}(a_2)$	$\varphi_{A}^{a_{7}}(a_{8})$	$\varphi_{A}^{a_{7}}(a_{12})$	$\varphi_{A}^{a_{7}}(a_{11})$
$\varphi_A^{a_8}(a_4)$	$\varphi_A^{a_8}(a_3)$	$ \varphi_{\Lambda}(u_9) \rangle$	$\varphi_{A}^{a_{8}}(a_{12})$	$\varphi_A^{a_8}(a_7)$
$\begin{array}{c} \varphi_{A}^{a}(a_{7}) \\ \varphi_{A}^{a_{5}}(a_{11}) \\ \varphi_{A}^{a_{12}}(a_{11}) \\ \varphi_{A}^{a_{11}}(a_{6}) \\ \varphi_{A}^{a_{7}}(a_{5}) \\ \varphi_{A}^{a_{8}}(a_{4}) \\ \varphi_{A}^{a_{9}}(a_{3}) \\ \varphi_{A}^{a_{10}}(a_{2}) \end{array}$	$arphi^{a_8}_A(a_3) \ arphi^{a_9}_A(a_4)$	$\varphi_{A}^{a_{9}}(a_{10})$	$\begin{array}{c} \varphi_{A}^{a}(a_{3})\\ \varphi_{A}^{a_{1}}(a_{12})\\ \varphi_{A}^{a_{7}}(a_{12})\\ \varphi_{A}^{a_{8}}(a_{12})\\ \varphi_{A}^{a_{9}}(a_{12})\\ \varphi_{A}^{a_{10}}(a_{12}) \end{array}$	$\varphi_{A}^{a_{1}}(a_{10})$ $\varphi_{A}^{a_{7}}(a_{11})$ $\varphi_{A}^{a_{8}}(a_{7})$ $\varphi_{A}^{a_{9}}(a_{8})$
$\varphi_{A}^{a_{10}}(a_{2})$	$\varphi_{A}^{a_{10}}(a_{5})$	$\varphi_{A}^{\vec{a}_{10}}(a_{11})$	$\varphi_A^{a_{10}}(a_{12})$	$\varphi_{A}^{a_{10}}(a_{9})$

A. Abdollahi, A. Loghman / Filomat 27:1 (2013), 57-63

Table 1: Table I

Acknowledgement. The authors are grateful to the referee for his/her invaluable comments improving the original version of the paper.

References

- N. Alon, A. Lubotzky, and A. Wigderson, Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract). In 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), pages 630.637. IEEE Computer Society, 2001.
- [2] A. R. Ashrafi and A. Loghman, Computing Padmakar-Ivan index of $TUC_4C_8(S)$ Nanotorus, J. Comput. Theor. Nanosci. **3**(3) (2006) 1431-1434.
- [3] G. Brinkmann, B.D. McKay, Construction of planar triangulations with minimum degree 5, Discrete Math. 301 (2005) 147-163.
- [4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2(1952), 69-81.
- [5] J.E. Graver, The independence numbers of fullerenes and benzenoids, European J. Combin. 27 (2006) 850-863.
- [6] J.E. Graver, Encoding fullerenes and geodesic domes, SIAM. J. Discrete Math. 17 (2004) 596-614.
- [7] C. A. Kelley, D. Sridhara and J. Rosenthal, Zig-Zag and Replacement product graphs and LDPC codes, Advances in Mathematics of Communications, 2(4)(2008) 347-372.
- [8] O. Reingold, S. Vadhan and A. Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. of Math. 2,(155) (2002), 157-187.
- [9] V.G. Vizing, On an estimate of the chromatic index of a p-graph, Metody Diskret Analiz, 3(1964), 25-30.