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Abstract. We correlate the notion of n-isoclinism of finite groups, introduced by J. C. Bioch in 1976, with the
relative n-th nilpotency degree, recently studied in literature. We characterize also all the pairs which are
isoclinic with (C,D8) via the relative commutativity degree d(C,D8), where C is a cyclic maximal subgroup
of D8. A final conjecture is opened for the groups with few nontrivial values of d(C,G).

1. Introduction and main results

All groups are supposed to be finite. After the initial work [9] of W. Gustafson, several contributions
appeared on the probability that two randomly chosen elements x and y of a group G commute. If H is a
subgroup of G, it was introduced in [5] the relative n-th nilpotency degree of H in G,

d(n)(H,G) =
|{(x1, x2, ..., xn, 1) ∈ Hn × G : [x1, x2, ..., xn, 1] = 1}|

|H|n|G| .

In particular, d(G,G) = d(G) is the commutativity degree, largely exploited in [1, 4, 6–9, 15–17]. Two isomorphic
groups have of course the same commutativity degree, but this is also true if the two groups are isoclinic
in the sense of P. Hall [11]. The reader may find a proof of this statement in [6, Theorem 3.8] in very
weak hypotheses. The original ideas of P. Hall on isoclinic groups in [11, 12] were successively modified in
[2, 3, 5, 6, 13, 15, 16] and adapted to the classification of p-groups, where p is a given prime.

Definition 1.1. Let G1 and G2 be two groups, H1 be a subgroup of G1 and H2 be a subgroup of G2. A pair (α, β) is
said to be a relative n-isoclinism from (H1,G1) to (H2,G2) if we have the following conditions:

(i) α is an isomorphism from G1/Zn(G1) to G2/Zn(G2) such that the restriction of α to H1/(Zn(G1) ∩ H1) is an
isomorphism from H1/(Zn(G1) ∩H1) to H2/(Zn(G2) ∩H2);

(ii) β is an isomorphism from [nH1,G1] to [nH2,G2];
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(iii) the following diagram is commutative:

H1
Zn(G1)∩H1

× ... × H1
Zn(G1)∩H1

× G1
Zn(G1)

αn+1

−−−−−→ H2
Zn(G2)∩H2

× ... × H2
Zn(G2)∩H2

× G2
Zn(G2)

γ(n,H1,G1)
y γ(n,H2,G2)

y
[nH1,G1]

β−−−−−→ [nH2,G2].

where

γ(n,H1,G1)((h1(Zn(G1) ∩H1), ..., hn(Zn(G1) ∩H1), 11Zn(G1))) = [h1, ..., hn, 11]

and

γ(n,H2,G2)((k1(Zn(G2) ∩H2), ..., kn(Zn(G2) ∩H2), 12Zn(G2))) = [k1, ..., kn, 12],

for each h1, ..., hn ∈ H1, k1, ..., kn ∈ H2, 11 ∈ G1, 12 ∈ G2.

It is easy to check that the maps γ(n,H1,G1) and γ(n,H2,G2) are well-posed. If Definition 1.1 is satisfied,
we say that (H1,G1) and (H2,G2) are relative n-isoclinic, briefly (H1,G1) ñ (H2,G2). In particular, G1 and G2
are called n-isoclinic, briefly G1 ñ G2, if (G1,G1) ñ (G2,G2). In particular, G1 and G2 are isoclinic if they are
1-isoclinic. It is straightforward to check that ñ is an equivalence relation in the class of all groups (see also
[2, 3, 13]). (H1,G1) ñ (H2,G2) does not imply in general that G1 and G2 are n-isoclinic (while the converse is
obviously true). For instance, assume that SL(2, 5) is the special linear group of order 120 and PSL(2, 5) is
the projective special linear group of order 60. They are relative 1-isoclinic but not isoclinic. For instance,
(Z(SL(2, 5)),SL(2, 5)) 1̃ (1,PSL(2, 5)), but |[SL(2, 5),SL(2, 5)]| = 120 and |[PSL(2, 5),PSL(2, 5)]| = 60. In order
to illustrate the importance of considering two isoclinic groups, we note that two abelian groups fall into
the same equivalence class with respect to isoclinisms (see [2, Theorem 1.4]), while this is no longer true
with respect to the notion of isomorphism. J.C. Bioch and R.W. van der Waall [3] proved the invariance
under isoclinism of the following hierarchy of classes of groups: abelian < nilpotent < supersoluble <
strongly-monomial <monomial < soluble.

Our main results are the following.

Theorem 1.2. Let G be a group and H,N be subgroups of G such that N ▹ G and N ⊆ H. Then for all n ≥ 0,(H
N
,

G
N

)
ñ

(
H

N ∩ γn+1(G)
,

G
N ∩ γn+1(G)

)
.

In particular, if N ∩ γn+1(G) = 1, then (H,G) ñ (H/N,G/N).

Theorem 1.3. Let H be a subgroup of a group G.

(i) If G = HZn(G), then (H,H) ñ (H,G) ñ (G,G) and d(n)(H) = d(n)(H,G) = d(n)(G).

(ii) d(n)(H,G) = d(n)(φ(H),G) for every φ ∈ Aut(G).

Theorem 1.4. Let H be a subgroup of a group G such that Z(G) ⊆ H. Then d(H,G) = 3
4 if and only if (H,G) and

(⟨a⟩,D8) are relative 1-isoclinic, where ⟨a⟩ is a subgroup of order 4 of the dihedral group D8 of order 8.

2. Proofs

Roughly speaking, two groups H and K are isoclinic if their central quotients H/Z(H), K/Z(K) are
isomorphic and if their commutator subgroups H′, K′ are isomorphic. If we look at the construction of the
finite extra-special 2-groups (see [14, pp.145–147]) and at the construction of the quaternion groups (see [14,
pp.140–141]), then we will find such groups in the situation which has been just described. For instance,
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we may think at the dihedral group D8 of order 8 and at the quaternion group Q8 of order 8. We note
that both D8/Z(D8), Q8/Z(Q8) are isomorphic and D′8, Q′8 are isomorphic. Situations as we just mentioned
have been largely studied in literature under the point of view of the relative n-th nilpotency degree in
[5, 6, 15, 16]. The following result follows from [16, Theorem 1.1] when we deal with a group having the
counting measure.

Proposition 2.1. Let G1 and G2 be two n-isoclinic groups. For every subgroup H1 of G1, there exists a subgroup H2
of G2 such that H1 and H2 are n-isoclinic.

We will use the following lemma.

Lemma 2.2. (H1,G1) ñ (H2,G2) if and only if there exist two isomorphisms α and β such that α : G1/Zn(G1) →
G2/Zn(G2), β : [nH1,G1]→ [nH2,G2], α(H1/(Zn(G1) ∩H1)) = H2/(Zn(G2) ∩H2) and for all 11 ∈ G1 and hi ∈ H1,
β([h1, ..., hn, 11]) = [k1, ..., kn, 12], where 12 ∈ α(11Zn(G1)), ki ∈ α(hi(Zn(G1) ∩H1)) and 1 ≤ i ≤ n.

Proof. It is clear by Definition 1.1.

The proofs of the following two facts can be deduced from [16, Theorem 1.2], when we have the counting
measure on a finite group.

Proposition 2.3. Let G1 and G2 be two groups, H1 be a subgroup of G1 and H2 be a subgroup of G2. If
(H1,G1) ñ (H2,G2), then d(n)(H1,G1) = d(n)(H2,G2).

Proposition 2.4. If (H1,G1) ñ (H2,G2), then (H1,G1) ñ+1 (H2,G2).

Theorem 1.2 generalizes [2, Lemma 1.3] and is proved below.

Proof. [Proof of Theorem 1.2] Put Ḡ = G/N and G̃ = G/(N ∩ [nH,G]). Since 1̄ ∈ Zn(Ḡ) if and only if
1̃ ∈ Zn(G̃), the map α from Ḡ/Zn(Ḡ) onto G̃/Zn(G̃) given by α(1̄Zn(Ḡ)) = 1̃Zn(G̃) is an isomorphism and
α(H̄/(Zn(Ḡ) ∩ H̄)) = H̃/(Zn(G̃) ∩ H̃). Also one can see that β : [nH̄, Ḡ] → [nH̃, G̃] by the rule β(x̄) = x̃ is an
isomorphism. By Lemma 2.2, (α, β) is a relative n-isoclinism from (H̄, Ḡ) to (H̃, G̃).

Theorem 1.3 is proved below.

Proof. [Proof of Theorem 1.3] (i). We claim that (H,H) ñ (H,G) ñ (G,G). First, we prove (H,H) ñ (H,G). Let
G = HZn(G). We may easily see that Zn(H) = Zn(G) ∩ H. Thus H/Zn(H) = H/(Zn(G) ∩ H) is isomorphic to
HZn(G)/Zn(G) = G/Zn(G). Therefore α : H/Zn(H) → G/Zn(G) is an isomorphism which is induced by the
inclusion i : H → G. Furthermore, we can consider α as isomorphism from H/Zn(H) to H/Zn(G) ∩ H. On
the other hand, [nH,G] = [nH,HZn(G)] = γn+1(H). By Lemma 2.2, the pair (α, 1γn+1(H)) allows us to state that
(H,H) ñ (H,G). The remaining cases (H,H) ñ (G,G) and (H,H) ñ (H,G) follow by a similar argument. Now
the result follows from this claim and Proposition 2.3.

(ii). Assume φ ∈ Aut(G). Then φ induces the isomorphisms α from G/Zn(G) to G/Zn(G) by the rule
α(1Zn(G)) = φ(1)Zn(G) and β from [nH,G] to [nφ(H),G] by the rule β([h1, ..., hn, x]) = φ([h1, ..., hn, x]). Note
that α(H/Zn(G) ∩ H) = φ(H)/(Zn(G) ∩ φ(H)). On the other hand, for every 1 ∈ G and hi ∈ H, 1 ≤ i ≤ n, we
have φ(1) ∈ α(1Zn(G)), φ(hi) ∈ α(hi(Zn(G) ∩ H)) and β([h1, ..., hn, 1]) = [φ(h1), ..., φ(hn), φ(1)]. By Lemma 2.2,
the pair (α, β) implies that (H,G) ñ (φ(H),G) and so d(n)(H,G) = d(n)(φ(H),G).

Theorem 1.2 has two useful consequences, as we see in the next statements.

Corollary 2.5. Let H be subgroup of a group G. Then there exists a group G1 and a normal subgroup H1 of G1 such
that (H,G) 1̃ (H1,G1) and Z(G1) ∩H1 ⊆ H1 ∩ G′1.

Proof. Let 1→ R→ F→ G→ 1 be a free presentation of G, S be a subgroup of F, H be a group isomorphic
to S/R. If F̄ = F/(R ∩ F̄′) and S̄ = S/(R ∩ F̄′), then Theorem 1.2 with n = 1 implies (H,G) 1̃ (S̄, F̄). On another
hand, (Z(F̄)∩ S̄)/(Z(F̄)∩ S̄∩ F̄′) is isomorphic to ((Z(F̄)∩ S̄)F̄′)/F̄′, which is a subgroup of F̄/F̄′. Therefore, for
a normal subgroup B̄ of F̄, Z(F̄)∩ S̄ = (Z(F̄)∩ S̄∩ F̄′)× B̄. Now B̄∩ F̄′ = 1 and we have (H,G) 1̃ (H1,G1) again
by Theorem 1.2 with n = 1, where G1 = F̄/B̄ and H1 = S̄/B̄. Now Z(G1)∩H1 ≃ Z(F̄/B̄) ∩ S̄/B̄ = (Z(F̄) ∩ S̄)/B̄,
which is a subgroup of (S̄ ∩ F̄′)B̄/B̄ = H1 ∩ G′1.
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Corollary 2.6. Assume that H is a subgroup of a finite group G. Then there exists a group G1 and a normal subgroup
H1 of G1 such that d(H,G) = d(H1,G1) and Z(G1) ∩H1 ⊆ G′1 ∩H1.

Proof. By Proposition 2.3 and Corollary 2.5, the result follows.

We know that D8 = ⟨a, b | a4 = b2 = (ab)2 = 1⟩. It is easy to check that (D8, ⟨a⟩) 1̃ (D8, ⟨a2, b⟩) 1̃ (D8, ⟨a2, ab⟩).
and that d(D8, ⟨a⟩) = d(D8, ⟨a2, b⟩) = d(D8, ⟨a2, ab⟩) = 3

4 .We will see that all pairs of groups with the relative
commutativity degree 3

4 belong to the class of relative 1-isoclinism of (⟨a⟩,D8).
The following lemma gives an upper bound for d(H,G) which will be used in the proof of Theorem 1.4.

Lemma 2.7. For every subgroup H of a group G,

d(H,G) ≤ 1
2

(
1 +
|Z(G) ∪ Z(H)|

|G|

)
.

Proof. We have

d(H,G) =
1
|G||H| |{(h, 1) ∈ H×G : [h, 1] = 1}| = 1

|G|
∑
1∈G

|CH(1)|
|H| =

1
|G|

 ∑
1∈Z(G)∪Z(H)

|CH(1)|
|H| +

∑
1<Z(G)∪Z(H)

|CH(1)|
|H|


≤ 1
|G|

(
|Z(G) ∪ Z(H)| + 1

2
(|G| − |Z(G) ∪ Z(H)|)

)
=

1
2

(
1 +
|Z(G) ∪ Z(H)|

|G|

)
.

Proof. [Proof of Theorem 1.4] Assume d(H,G) = 3
4 . Then H is abelian by [5, Theorems 2.2 and 3.3] and

|G : H| ≤ 2 by Lemma 2.7. Moreover, |H/Z(G)| = 2 by [5, Theorem 3.10] and so |G : Z(G)| = 4. Therefore
G/Z(G) is a 2-elementary abelian group of rank 2 so we may define the isomorphism α from G/Z(G) to
D8/Z(D8) by α(x̄) = ā and α(ȳ) = b̄. Since Z(G) ⊆ H, H/Z(G) is either ⟨x̄⟩ or ⟨ȳ⟩ or ⟨x̄ȳ⟩.

Assume that H/Z(G) = ⟨x̄⟩. Then α(H/Z(G)) = ⟨a⟩/⟨a2⟩ and [H,G] = ⟨x, y⟩. Therefore β : [H,G] → ⟨a2⟩
by β([x, y]) = [a, b] is an isomorphism. Hence (α, β) is a relative isoclinism from (H,G) to (⟨a⟩,D8) by
Lemma 2.2. Now we have the remaining cases H/Z(G) = ⟨ȳ⟩ and H/Z(G) = ⟨x̄ȳ⟩. If H/Z(G) = ⟨ȳ⟩, then
a similar argument shows that (H,G) 1̃ (⟨a2, b,D8⟩). If H/Z(G) = ⟨x̄ȳ⟩, then a similar argument shows that
(H,G) 1̃ (⟨a2, ab⟩,D8). There are no other cases so we deduce that (H,G) 1̃ (⟨a⟩,D8), as claimed.

Conversely, if (H,G) 1̃ (⟨a⟩,D8), then d(H,G) = d(⟨a⟩,D8) = 3
4 and the result follows from [5, Theorem

3.10].

A final question originates from computations and evidences of GAP [18]. We have written in fact a
program in GAP which allows us to do some qualitative considerations on the values which we found for
the case of groups of order≤ 30. We list what we have found. If |G| = 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31,
then d(Z,G) = 1 for all cyclic maximal subgroups Z of G. Now assume that |G| ≥ 6, G is nonabelian and
d(C,G) , 1. If |G| = 2 · 3 = 6, then there exist a cyclic maximal subgroup C of G such that d(C,G) = 2

3 . If
|G| = 23 = 8, the same is true and d(C,G) = 3

4 . If |G| = 2 · 5 = 10, then d(C,G) = 3
5 . If |G| = 22 · 3 = 12, then

d(C,G) ∈ { 23 , 1
2 }. If |G| = 2 · 7 = 14, then d(C,G) = 4

7 . If |G| = 16 = 24 , then d(C,G) ∈ { 34 , 5
8 }. If |G| = 2 · 32 = 18,

then d(C,G) ∈ { 23 , 5
9 }. If |G| = 22 · 5 = 20, then d(C,G) ∈ { 35 , 2

5 }. If |G| = 3 · 7 = 21, then d(C,G) = 3
7 . If

|G| = 2 · 11 = 22, then d(C,G) = 6
11 . If |G| = 23 · 3 = 24, then d(C,G) ∈ { 23 , 1

2 ,
3
4 ,

7
12 }. If |G| = 2 · 13 = 26, then

d(C,G) = 7
13 . If |G| = 33 = 27, then d(C,G) = 5

9 . If |G| = 22 · 7 = 28, then d(C,G) = 4
7 . If G = 2 · 3 · 5 = 30, then

d(C,G) ∈ { 23 , 3
5 ,

8
15 }.

We note that for a nonabelian group G of |G| = 6, 8, 10, 14, 21, 22, 26, 27, 28 we have just one nontrivial
value of d(C,G) in correspondence of a cyclic maximal subgroup C of G. We note that for a nonabelian
group G of |G| = 12, 16, 18, 20 we have just two nontrivial values of d(C,G) in correspondence of a cyclic
maximal subgroup C of G. The remaining cases show nontrivial values of d(C,G), which are either 3 or 4.
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At this point, it is useful to introduce the set

D = {d(C,G) , 1 | C is a cyclic maximal subgroup of G},

where G is supposed to be nonabelian. We summarize some interesting evidences. For a nonabelian group
G of order |G| = pq for two distinct primes p and q, the previous computations show that |D| = 1. The
following question comes naturally.

Conjecture 2.8. What is the structure of G if |D| = 1 ? And if |D| is small (i.e.: 2 or 3) ? Can we find restrictions
on G ?
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