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Stability and boundedness in multi delay vector Liénard equation
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Abstract. In this paper, we consider a vector Liénard equation with the multiple deviating arguments.
Based on the Lyapunov-Krasovskii functional approach, the asymptotic stability of the zero solution and
the boundedness of all solutions are discussed. We give an example to illustrate the theoretical analysis
made in this work and to show the effectiveness of the method utilized here.

1. Introduction

In mathematics, more specifically in the study of dynamical systems and differential equations, Liénard
equation is a second order differential equation, named after the French physicist Alfred-Marie Liénard.
During the development of radio and vacuum tube technology, Liénard and modified Liénard equations
were intensely studied as they can be used to model oscillating circuits. Today, in applied sciences, prac-
tical problems concerning mechanics, the engineering technique fields, economy, control theory, physics,
chemistry, biology, medicine, atomic energy, information theory, etc. are associated with Liénard equation
or modified Liénard equation. By this time, the qualitative properties (stability, boundedness, convergence,
existence of periodic of solutions, etc.) of scalar Liénard or modified Liénard equation with and without
a deviating argument have been intensively discussed and are still being investigated in the literature
(Ahmad and Rama Mohana Rao [1], Anh et al. [2], Barnett [3], Burton ([5], [6]), Burton and Zhang [7],
Caldeira-Saraiva [8], Cantarelli [9], Èl’sgol’ts and Norkin [11], Gao and Zhao [12], Hale [13], Hara and
Yoneyama ([14], [15]), Heidel ([16], [17]), Huang and Yu [18], Jitsuro and Yusuke [19], Kato ([20], [21]),
Kolmanovskii and Myshkis [22], Krasovskii [23], LaSalle and Lefschetz [24], Li [25], Liu and Huang ([26],
[27]), C. J. Liu and Xu [28], Z.R. Liu [29], Long and Zhang [30], Luk [31], Lyapunov [32], Malyseva [33],
Muresan [34], Nápoles Valdés [35], Sugie [36], Sugie and Amano [37], Sugie et al. [38], Tunç ([39], [40], [41],
[42], [43], [44], [45], [46], [47], [48]), Yang [49], Ye et al. [50], Yu and Xiao [51], Yoshizawa [52], B. Zhang
([53], [54]), X.S. Zhang and Yan [55], X. Zhou and Jiang [56], J. Zhou and Z. R. Liu [57], J. Zhou and Xiang
[58], Wei and Huang [59], Wiandt [60]).

It should be mentioned that Tunç [48] considered the nonlinear vector Liénard equation with the constant
delay τ > 0 :

X′′(t) + F(X(t),X′(t))X′(t) +H(X(t − τ)) = 0.
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The author established certain sufficient conditions under which the zero solution of the above equation is
unstable.

However, to the best of our knowledge from the literature, the stability and boundedness of solutions of
vector Liénard equation and modified vector Liénard equation with multi delay have not been discussed
in the literature, yet.

In this paper, we consider the vector Liénard equation with the multiple constant deviating arguments,
τi > 0 :

X′′(t) + F(X(t),X′(t))X′(t) + G(X(t)) +
n∑

i=1

Hi(X(t − τi)) = P(t), (1)

in which t ∈ ℜ+, ℜ+ = [0,∞), t − τi > 0, and X ∈ ℜn; F is a continuous symmetric n × n− matrix,
G : ℜn → ℜn, Hi : ℜn → ℜn and P : ℜn → ℜn are continuous, G and Hi are also differentiable with
G(0) = Hi(0) = 0. It is assumed the existence and the uniqueness of the solutions of Eq. (1) ([10, pp. 13, 14]).

We write Eq. (1) in the differential system form:

X′ = Y, (2)

Y′ = −F(X,Y)Y − G(X) −
n∑

i=1

Hi(X) +
n∑

i=1

t∫
t−τi

JHi (X(s))Y(s)ds + P(t),

which was obtained by setting X′ = Y, where X(t) and Y(t) are, respectively, abbreviated as X and Y, and
throughout the paper.

The Jacobian matrices of G(X) and Hi(X) are given by

JG(X) =
(
∂1i

∂x j

)
, JH1 (X) =

(
∂h1i

∂x j

)
, ..., JHn (X) =

(
∂hni

∂x j

)
, (i, j = 1, 2, ..., n),

respectively, where (x1, ..., xn), (11, ..., 1n) and (h1i), ..., (hni) are the components of X, G and Hi, respectively. It
is also assumed that the Jacobian matrices JG(X) and JHi (X) exist and are continuous.

The symbol ⟨X,Y⟩ corresponding to any pair X, Y inℜn stands for the usual scalar product
n∑

i=1
xiyi, that

is, ⟨X,Y⟩ =
n∑

i=1
xiyi; thus ⟨X,X⟩ = ∥X∥2 , and λi(Ω) are the eigenvalues of the real symmetric n× n−matrixΩ.

The matrix Ω is said to be negative-definite, when ⟨ΩX,X⟩ ≤ 0 for all nonzero X inℜn.
The motivation of this paper has been inspired by the results established in the above mentioned papers.

This paper is also a first attempt to obtain certain sufficient conditions on the stability and boundedness of
solutions of a vector Liénard equation with multiple deviating arguments, and it has a contribution to the
subject in the literature and may be useful for researchers working on the qualitative behaviors of solutions.

We need the following preliminary result.

Lemma 1.1. ([4]). Let A be a real symmetric n × n− matrix and

ā ≥ λi(A) ≥ a > 0, (i = 1, 2, ..., n),

where ā and a are constants.
Then

ā ⟨X,X⟩ ≥ ⟨AX,X⟩ ≥ a ⟨X,X⟩

and

ā2 ⟨X,X⟩ ≥ ⟨AX,AX⟩ ≥ a2 ⟨X,X⟩ .
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For a given number r ≥ 0, let Cn denotes the space of continuous functions mapping the interval [−r, 0]
into ℜn and for ϕ ∈ Cn,

∥∥∥ϕ∥∥∥ = sup−r≤ϕ≤0

∥∥∥ϕ(θ)
∥∥∥ . Cn

H will denote the set of ϕ in Cn for which
∥∥∥ϕ∥∥∥ < H. For

any continuous function x(u) defined on −r ≤ u ≤ B, B > 0, any fixed t, 0 ≤ t ≤ B, the symbol xt will denote
the function x(t + θ), −r ≤ θ ≤ 0.

If f (ϕ) is a functional defined for every ϕ in Cn
H and x′(t) is the right side derivative of x(t), we consider

the autonomous functional differential equation:

x′(t) = f (xt), t ≥ 0. (3)

We say x(ϕ) is a solution of Eq. (3) with the initial condition ϕ in Cn
H at t = 0 if there is a constant B > 0

such that x(ϕ) is a function from [−r, B) intoℜn such that xt(ϕ) is in Cn
H for 0 ≤ t < B, x0(ϕ) = ϕ and x(ϕ)(t)

satisfies Eq. (3) for 0 ≤ t < B.

Definition 1.2. ([6]) A continuous function W : ℜn → ℜ+ with W(0) = 0, W(s) > 0 if s > 0, and W strictly
increasing is a wedge. (We denote wedges by W or Wi , where i is an integer.)

Definition 1.3. ([13]). Let V be a continuous scalar functional in Cn
H. The derivative of V along the solutions of Eq.

(3) will be defined by

V̇(ϕ) = lim sup
h→0+

V(xh(ϕ)) − V(ϕ))
h

.

Lemma 1.4. ([13]). Suppose f (0) = 0. Let V be a continuous functional defined on Cn
H with V(0) = 0 and let u(s)

be a function, non-negative and continuous for 0 ≤ s < ∞, u(s) → ∞ as s → ∞ with u(0) = 0. If for all ϕ in Cn
H,

u(
∥∥∥ϕ(0)

∥∥∥) ≤ V(ϕ), V′(ϕ) ≤ 0, then the solution x = 0 of Eq. (3) is stable.

Let R ⊂ Cn
H be a set of all functions ϕ ∈ Cn

H where V′(ϕ) = 0. If {0} is the largest invariant set in R, then
the solution x = 0 of Eq. (3) is asymptotically stable.

Let us also consider the non-autonomous functional differential equation:

x′ = 1(t, xt), xt = x(t + θ),−r ≤ θ ≤ 0, t ≥ 0, (4)

where 1 :ℜ+ ×CH →ℜn is a continuous mapping, 1(t, 0) = 0, and we suppose that 1 takes closed bounded
sets into bounded sets of ℜn. Here (C, ∥. ∥) is the Banach space of continuous functions ϕ : [−r, 0] → ℜn

with supremum norm, r > 0; CH is the open H− ball in C; CH := {ϕ ∈ (C[−r, 0], ℜn) :
∥∥∥ϕ∥∥∥ < H}. Let S be

the set of φ ∈ C such that
∥∥∥φ∥∥∥ ≥ H. We shall denote by S• the set of all functions φ ∈ C such that

∣∣∣φ(0)
∣∣∣ ≥ H,

where H is large enough.

Definition 1.5. ([6]). Let D be an open set inℜn with 0 ∈ D. A function V : [0,∞) ×D→ [0,∞) is called positive
definite if V(t, 0) = 0 and if there is a wedge W1 with V(t, x) ≥ W1(|x|), and is called a decrescent function if there is
a wedge W2 with V(t, x) ≤W2(|x|).

Theorem 1.6. ([6]). If there is a Lyapunov functional for (4) and wedges satisfying
(i) W1(

∣∣∣φ(0)
∣∣∣) ≤ V(t, φ) ≤W2(

∥∥∥φ∥∥∥), (where W1(r) and W2(r) are wedges),
(ii) V̇(t, φ) ≤ 0,

then the zero solution of Eq. (4) is uniformly stable.

Theorem 1.7. ([52]). Suppose that there exists a continuous Lyapunov functional V(t, φ) defined for all t ∈ ℜ+ and
φ ∈ S•, which satisfies the following conditions;

(i) a(
∣∣∣φ(0)

∣∣∣) ≤ V(t, φ) ≤ b1(
∣∣∣φ(0)

∣∣∣) + b2(
∥∥∥φ∥∥∥),

where a(r), b1(r), b2(r) ∈ CI, (CI denotes the families of continuous increasing functions), and are positive for r > H
and a(r) − b2(r)→∞ as r→∞,

(ii) V̇(t, φ) ≤ 0.
Then, the solutions of Eq. (4) are uniform-bounded.
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2. Main results

Let P(.) ≡ 0 in Eq. (1).

Our first result is the following theorem.

Theorem 2.1. We assume that there exist positive constants a1, a2, αi and βi such that the following conditions hold
in Eq. (1):

(i) The matrix F is symmetric, λi(F(.))) ≥ a1 for all X, Y ∈ ℜn,G(0) = 0,G(X) , 0, (X , 0), JG(X) is symmetric,
and λi(JG(X)) ≥ a2 for all X ∈ ℜn,

(ii) Hi(0) = 0, Hi(X) , 0, (X , 0), JHi (X) are symmetric and αi ≤ λi(JHi (X)) ≤ βi for all X ∈ ℜn.
If

τ <
a1

√
n

n∑
i=1
βi

,

then the zero solution of Eq. (1) is asymptotically stable.

Proof. We define a Lyapunov-Krasovskii functional V(.) = V(Xt,Yt) by

V(.) =

n∑
i=1

1∫
0

⟨Hi(σX),X⟩dσ +
1∫

0

⟨G(σX),X⟩dσ + 1
2
⟨Y,Y⟩

+

n∑
i=1

µi

0∫
−τi

t∫
t+s

∥Y(θ)∥2 dθds,

where s is a real variable such that the integrals
0∫
−τi

t∫
t+s
∥Y(θ)∥2 dθds are non-negative, and µi are certain

positive constants to be determined later in the proof.
It is clear that V(0, 0) = 0.Using the estimates Hi(0) = G(0) = 0, ∂∂σHi(σX) = JHi (σX)X, ∂∂σG(σX) = JG(σX)X,

λi(JHi (X)) ≥ αi and λi(JG(X)) ≥ a2, (i = 1, 2, ..., n), we obtain

Hi(X) =

1∫
0

JHi (σX)Xdσ

and

G(X) =

1∫
0

JG(σX)Xdσ

so that
1∫

0

⟨H1(σX),X⟩dσ =

1∫
0

1∫
0

⟨σ1 JH1 (σ1σ2X)X,X⟩dσ2dσ1

≥
1∫

0

1∫
0

⟨σ1α1X,X⟩dσ2dσ1 ≥
α1

2
∥X∥2 ,
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1∫
0

⟨H2(σX),X⟩dσ =

1∫
0

1∫
0

⟨σ1 JH2 (σ1σ2X)X,X⟩dσ2dσ1

≥
1∫

0

1∫
0

⟨σ1α2X,X⟩dσ2dσ1 ≥
α2

2
∥X∥2 ,

.

.

.
1∫

0

⟨Hn(σX),X⟩dσ =

1∫
0

1∫
0

⟨σ1JHn (σ1σ2X)X,X⟩dσ2dσ1

≥
1∫

0

1∫
0

⟨σ1αnX,X⟩dσ2dσ1 ≥
αn

2
∥X∥2 ,

1∫
0

⟨G(σX),X⟩dσ =

1∫
0

1∫
0

⟨σ1JG(σ1σ2X)X,X⟩dσ2dσ1

≥
1∫

0

1∫
0

⟨σ1a2X,X⟩dσ2dσ1 ≥
a2

2
∥X∥2 .

On gathering all these estimates into V(.) = V(Xt,Yt), we deduce that

V(.) ≥ 1
2

(
n∑

i=1

αi) ∥X∥2 + a2 ∥X∥2 +
1
2
∥Y∥2 +

n∑
i=1

µi

0∫
−τi

t∫
t+s

∥Y(θ)∥2 dθds

≥ D1(∥X∥2 + ∥Y∥2) +
n∑

i=1

λi

0∫
−τi

t∫
t+s

∥Y(θ)∥2 dθds,

where D1 = min{ 12 (
n∑

i=1
αi) + a2, 1

2 }.
Hence, we can find a continuous function u(s) such that

u(
∥∥∥ϕ(0)

∥∥∥) ≤ V(ϕ),u(
∥∥∥ϕ(0)

∥∥∥) ≥ 0.

Using a basic calculation, the time derivative of the functional V(.) along the solutions of (2) yields

V̇(.) = − ⟨F(X,Y)Y,Y⟩+ <
n∑

i=1

t∫
t−τi

JHi (X(s))Y(s)ds,Y >

+ <
n∑

i=1

(µiτi)Y,Y > −
n∑

i=1

µi

t∫
t−τi

∥Y(θ)∥2 dθ.

Using the assumptions λi(F(X,Y)) ≥ a1, λi(JHi (X)) ≤ βi and the estimate 2 |a| |b| ≤ a2 + b2 (with a and b
are real numbers) combined with the classical Cauchy-Schwartz inequality, it follows that
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− ⟨F(X,Y)Y,Y⟩ ≤ −a1 ∥Y∥2 ,

<

t∫
t−τi

JHi (X(s))Y(s)ds,Y >≤ ∥Y∥
∥∥∥∥∥

t∫
t−τi

JHi (X(s))Y(s)ds
∥∥∥∥∥

≤
√

nβi ∥Y∥
∥∥∥∥∥

t∫
t−τi

Y(s)
∥∥∥∥∥ds

≤
√

nβi ∥Y∥
t∫

t−τi

∥Y(s)∥ ds

≤ 1
2
√

nβi

t∫
t−τi

(∥Y(t)∥2 + ∥Y(s)∥2)ds

≤ 1
2
√

nβiτi ∥Y∥2 +
1
2
√

nβi

t∫
t−τi

∥Y(s)∥2 ds

so that

V̇(.) ≤ −a1 ∥Y∥2 + (
n∑

i=1

µiτi) ∥Y∥2 +
1
2

(
√

n
n∑

i=1

βiτi) ∥Y∥2

−
n∑

i=1

(µi −
1
2
√

nβi)

t∫
t−τi

∥Y(s)∥2 ds.

Let

µi =
1
2
√

nβi.

Then

V̇(.) ≤ {−a1 +
√

n
n∑

i=1

(βiτi)} ∥Y∥2 .

Let τ = max τi. Hence, we get

V̇(.) ≤ {−a1 +
√

n
n∑

i=1

βiτ} ∥Y∥2 .

If τ < a1
√

n
n∑

i=1
βi

, then we have for some positive constant k that

V̇(.) ≤ − k ∥Y∥2 ≤ 0.

We also observe from the previous estimate of V̇(.) that V̇(.) = 0⇒ Y = 0 and X = ξ (a constant vector)
for all t ≥ 0. That is, we get

X = ξ,Y = 0, (t ≥ 0).
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Substituting foregoing estimates in system (2), we have Hi(ξ) = 0,which necessarily implies that ξ = 0 since
Hi(0) = 0 and Hi(ξ) , 0, when ξ , 0. Thus, we obtain

X = Y = 0 for all t ≥ 0.

The last estimate shows that the largest invariant setin Z is Q = {0}, where Z = {ϕ ∈ CH : V̇(ϕ) = 0}. Further,
it can be seen that the only solution of Eq. (1) for which V̇(.) ≡ 0 is the solution X ≡ 0. Thus, subject to the
above discussion, if τ < a1

√
n

n∑
i=1
βi

, then we can conclude that the zero solution of Eq. (1) is asymptotically

stable.
The proof of Theorem 2.1 is completed.

Corollary 2.2. Let us assume that the assumptions of Theorem 2.1 hold. Then, the zero solution of Eq. (1) is
uniformly stable.

Let P(.) , 0 in Eq. (1).

Our second result is the following theorem

Theorem 2.3. Let all the assumptions of Theorem 2.1 and the assumption

∥P(t)∥ ≤ Q(t)

hold, where Q ∈ L1(0,∞), L1(0,∞) is space of integrable Lebesgue functions.
If

τ <
a1

√
n

n∑
i=1
βi

,

then there exists a positive constant K such that the solution X of Eq. (1) defined by the initial function

X(t) = ψ(t),X′(t) = ψ′(t), t0 − τ ≤ t ≤ t0,

satisfies the estimates

∥X(t)∥ ≤ K, ∥X′(t)∥ ≤ K

for all t ≥ t0, where ψ ∈ C1([t0 − τ, t0],ℜ).

Proof. We reconsider Lyapunov-Krasovskii functional, which is defined above. Then, using the assumptions
of Theorem 2.3, it can be easily seen that

V(.) ≥ D1(∥X∥2 + ∥Y∥2) ≥ D1 ∥Y∥2 .

Since P(.) , 0 , the time derivative of V(.) can be revised as the following:

V̇(.) ≤ − α ∥Y∥2 + ⟨Y,P(t)⟩
≤ ∥Y∥ ∥P(t)∥
≤ ∥Y∥ Q(t).

Using the estimate

∥Y∥ ≤ 1 + ∥Y∥2 ,
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it follows that

V(.) ≤ Q(t) +Q(t) ∥Y∥2

≤ Q(t) +D2Q(t)V(.),

where D2 = D−1
1 .

Integrating the last estimate from 0 to t, (t ≥ 0), we obtain

V(Xt,Yt) − V(X0,Y0) ≤
t∫

0

Q(s)ds +D2

t∫
0

V(Xs,Ys)Q(s)ds.

Let D3 = V(X0,Y0) +
t∫

0
Q(s)ds. Using Gronwall-Bellman inequality, we get

V(Xt,Yt) ≤ D3 exp(D2

t∫
0

Q(s)ds).

In view of the above discussion, it follows that

D1(∥X∥2 + ∥Y∥2) ≤ V(Xt,Yt) ≤ D3 exp(D2

t∫
0

Q(s)ds).

Let exp(D2

∞∫
0

Q(s)ds) = K1(> 0), since Q ∈ L1(0,∞).

Hence

∥X∥2 + ∥Y∥2 ≤ K2,

where K2 = D−1
1 D3 exp(D2K).

The proof of Theorem 2.3 is completed.

Corollary 2.4. Let us assume that the assumptions of Theorem 2.3 hold. Then all solutions of Eq. (1) are uniform-
bounded.

Example 2.5. As a special case of Eq. (1) for n = 2, we choose

F(X,X′) =

 4 +
x2

1+x′1
2

1+exp(x2
1+x′1

2) 0

0 4 +
x2

1+x′1
2

1+exp(x2
1+x′1

2)

 ,

G(X) =
[

x1 + arct1x1
x2 + arct1x2

]
,

H1(X(t − τ1)) =
[

x1(t − τ1) + arct1x1(t − τ1)
x2(t − τ1) + arct1x2(t − τ1)

]
,

H2(X(t − τ2)) =
[

x1(t − τ2) + arct1x1(t − τ2)
x2(t − τ1) + arct1x2(t − τ2)

]
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and

P(t) =


sin t
1+t2

cos t
1+t2

 .
It follows that

λ1(F(.)) = 4 +
x2

1 + x′21

1 + exp(x2
1 + x′1

2)
,

λ2(F(.)) = 4 +
x2

1 + x′21

1 + exp(x2
1 + x′21 )

,

λi(F(.)) ≥ 4 = a1 > 0,

JG(X) =
[

1 + (1 + x2
1)−1 0

0 1 + (1 + x2
2)−1

]
,

λi(JG(.)) ≥ 1 = a2 > 0,

JH1 (X) =

 1 + (1 + x2
1(t − τ1))−1 0

0 1 + (1 + x2
2(t − τ1))−1

 ,

JH2 (X) =

 1 + (1 + x2
1(t − τ2))−1 0

0 1 + (1 + x2
2(t − τ2))−1

 ,
1 ≤ λi(JHi (.)) ≤ 2,

∥P(t)∥ =

∥∥∥∥∥∥∥∥
sin t
1+t2

cos t
1+t2

∥∥∥∥∥∥∥∥ ≤ 2
1 + t2 = Q(t)

and

∞∫
0

Q(s)ds = 2

∞∫
0

1
1 + s2 ds = π,

that is, Q ∈ L1(0,∞).
Thus, it is necessary as remark that all the conditions of Theorem 2.1 and Theorem 2.3 hold, whenever τ < 1√

2
.

3. Conclusion

A vector Liénard equation with multiple constant deviating arguments is considered. The stability and
boundedness of solutions of this equation is discussed. In proving our results, we employ the Lyapunov-
Krasovskii functional approach by defining a new Lyapunov- Krasovskii functional. An example is also
constructed to illustrate our theoretical findings.
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