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On a new class of operators and Weyl type theorems

Salah Mecheria

aTaibah University, College of Science, Department of Mathematics, P.O.Box 30002, Al-Madinah Al-Munawarah, Saudi Arabia

Abstract. In the present article, we introduce a new class of operators which will be called the class of
k-quasi ∗-paranormal operators that includes ∗-paranormal operators. A part from other results, we show
that following results hold for a k-quasi ∗-paranormal operator T:

(i) T has the SVEP.
(ii) Every non-zero isolated point in the spectrum of T is a simple pole of the resolvent of T.
(iii) All Weyl type theorems hold for T.
(iv) Comments and some open problems are also presented.

1. Introduction

In what follows H will be an infinite dimensional separable complex Hilbert space. By an operator on
H, we mean a bounded linear transformation from H to H. Let B(H) be the Banach algebra of operators on
H. We call an operator T to be hyponormal if T∗T ≥ TT∗; quasi-hyponormal if T∗2T2 ≥ (T∗T)2; paranormal if
||T2x|||x|| ≥ ||Tx||2 for all x ∈ H; k-paranormal if ||Tkx||||x|| ≥ ||Tx||k for all x ∈ H. According to [1], an operator T
is called ∗-paranormal if ||T∗x||2 ≤ ||T2x||||x|| and T is called k∗-paranormal if ||T∗x||k ≤ ||Tkx|| for all unit vector
x in H where k is a natural number with k ≥ 2. The class of ∗-paranormal operators and more generally
the class of k∗-paranormal operators was originally introduced in [21] and [22] with different names as
k-hyponormal or operators of class (H; k). For more results for such operators, one can refer [5], [9], [12],
and [27]. The following inclusion are well known an proper [22].

{Hyponormal operator ⊆ ∗-paranormal operator ⊆ normaloid operator}.

The classes of paranormal operators and ∗-paranormal operators are independent subclasses of normaloid
operators [22, Theorem 3]. In the present article we introduce a new class of k-quasi ∗-paranormal operators
defined as follows:

Definition 1.1. An operator T is called k-quasi ∗- paranormal if it satisfies the following inequality:

||T∗Tkx||2 ≤ ||Tk+2x|||Tkx||

for all unit vector x ∈ H where k is a natural number.
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Since for A,B and C in B(H),

A∗A − 2λB∗B + λ2C∗C ≥ 0 for allλ > 0⇔ ||Bx||2 ≤ ||Ax||||Cx|| for all x ∈ H,

we find T to be k-quasi ∗-paranormal if and only if

T∗k(T∗2T2 − 2λTT∗ + λ2)Tk ≥ 0, for all λ > 0(∗).

The following implications are obvious

Hyponormal⇒ ∗-paranormal⇒ k-quasi ∗ -paranormal.

If T ∈ B(H), we shall write N(T) and ran(T) for the null space and the range of T, respectively. Also, let
σ(T) and σa(T) denote the spectrum and the approximate point spectrum of T, respectively.

Definition 1.2. An operator T ∈ B(H) is said to have Bishop’s property (β) if (T − z) fn(z)→ 0 uniformly on every
compact subset of D for analytic functions fn(z) on D, then fn(z)→ 0 uniformly on every compact subset of D.

Definition 1.3. T ∈ B(H) is said to have the single valued extension property, abbreviated, T has SVEP if f (z) is an
analytic vector valued function on some open set D ⊂ C such that (T − z) f (z) = 0 for all z ∈ D , then f (z) = 0 for all
z ∈ D.

2. Basic Properties

In what follows, the symbol Q∗(k) will be used for the class of k-quasi ∗-paranormal operators.

Proposition 2.1. For T ∈ Q∗(k), N(T − zI) ⊆ N(T∗ − z) for each non-zero complex number z.

Proof. Suppose Tx = zx. Since

||T∗Tkx||2 ≤ ||Tk+2x||||Tkx||
for all unit vector x ∈ H.

Thus ||T∗x|| ≤ |z|. Hence

||T∗x − zx||2 = ||T∗x||2 − 2ℜ⟨T∗x, zx⟩ + |z|2||x||2 = ||T∗x||2 − 2ℜ⟨x, zTx⟩

+|z|2||x||2 = ||T∗x||2 − |z|2||x||2 ≤ |z|2 − |z|2 = 0.

Hence T∗x = zx.

Remark 2.2. The above proposition is not valid for z = 0. To see this, let T be nilpotent of index k+1. Then T ∈ Q∗(k)
and N(T) is not a subset of N(T∗) (otherwise T will be a zero operator).

Proposition 2.3. If T ∈ Q∗(k) and M is an invariant subspace of T. Then T|M (the restriction of T to M) is
k-quasi-∗-paranormal.

Proof. Let P be the orthogonal projection on M. Then

TkP = (PTP)k = PTkP.

This leads to
P(T∗kTT∗Tk)P ≥ PT∗kTPT∗TkP = PT∗kPTPT∗TkP

= (PT∗P)k(PTP)(PT∗P)(PTP)k.

Therefore the inequality
T∗k(T∗2T2 − 2λTT∗ + λ2)Tk ≥ 0 for allλ > 0
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implies
PT∗k(T∗2T2 − 2λTT∗ + λ2)TkP ≥ 0 for allλ > 0,

and hence
T∗k1 (T∗21 T2

1 − 2λT1T∗1 + λ
2)Tk

1 ≥ 0 for allλ > 0.

This proves the result.

Proposition 2.4. Every quasi-hyponormal operator is quasi ∗-paranormal.

Proof. Let T be quasi-hyponormal. Since every quasi-hyponormal is paranormal, we have

||T∗Tx||2 ≤ ||T2x||2

= ||T(
Tx
||Tx|| )||

2||Tx||2

≤ ||T2(
Tx
||Tx|| )||||Tx||2

= ||T3x||||Tx||
for all x ∈ H. This proves the result.

Proposition 2.5. Every quasi ∗-paranormal is 3-paranormal (and hence normaloid).

Proof. Suppose T is quasi ∗-paranormal. Then

||Tx||4 = ⟨T∗Tx, x⟩2

≤ ||T∗Tx||2||x||2 ≤ ||T3x||||Tx||||x||2.
Hence

||Tx||3 ≤ ||T3x||||x||
or T is 3-paranormal.

In order to obtain some spectral properties of class Q∗(k), we shall need the following result.

Lemma 2.6. Let T ∈ B(H) be k-quasi ∗-paranormal such that ran Tk is not dense and

T =
(
T1 T2
0 T3

)
on H = ran Tk ⊕N(T∗k).

Then T1 is ∗-paranormal, Tk
3 = 0 and σ(T) = σ(T1) ∪ {0}.

Proof. Let

T =
(
T1 T2
0 T3

)
on H = ran Tk ⊕N(T∗k)

and let P be the orthogonal projection of T onto ran Tk. Since P2 = P and P ≤ I , we have P(TT∗)P ≥
(PTP)(PT∗P). Since T is k-quasi ∗-paranormal,

P(T∗2T2P − 2λTT∗ + λ2)P ≥ 0 for allλ > 0,

P(T∗2T2)P − 2λP(TT∗)P + λ2 ≥ 0 for allλ > 0.
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Therefore T∗21 T2
1 − 2λT1T∗1 + λ

2 ≥ 0 for all λ > 0. This shows that T1 is ∗-paranormal on ran Tk. Further, we
have

⟨Tk
3x2, x2⟩ = ⟨Tk(I − P)x, (I − P)x⟩ = ⟨(I − P)x,T∗k(I − P)x⟩ = 0,

for any x =
(
x1
x2

)
∈ H. Thus T∗k = 0. We have σ(T1) ∪ σ(T3) = σ(T) ∪ G, where G is the union of certain holes

in σ(T) which is a subsets of σ(T1) ∩ σ(T3) [14, Corollary 7]. Since σ(T1) ∩ σ(T3) has no interior points, we
have

σ(T) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0}.

Throughout our exposition, we will exploit the representation of T ∈ Q∗(k) given in the preceding lemma.
As a consequence of Lemma 2.1, we obtain.

Corollary 2.7. Let T ∈ B(H) be a k-quasi ∗-paranormal operator. If T1 is invertible, then T is similar to a direct sum
of a ∗-paranormal and a nilpotent operator.

Proof. Since T1 is invertible, we haveσ(T1)∩σ(T3) = ∅. Then there exists an operator S such that T1S−ST3 = T2
[23]. Hence

T =
(
T1 T2
0 T3

)
=

(
I S
0 I

)−1 (
T1 0
0 T3

) (
I S
0 I

)
.

Lemma 2.8. If T ∈ B(H) is k-quasi ∗-paranormal, then asc(T − λ) ≤ 1 for all complex numbers λ.

Proof. Proposition 2.1 implies (T − λ)−1(0) ⊥ (T − λ)H. Hence, if x ∈ (T − λ)−2(0) and x < (T − λ)−1(0), then
x = 0. This implies asc(T − λ) ≤ 1.

Corollary 2.9. If T is a k-quasi-∗-paranormal operator, then T has SVEP.

Proof. Lemma 2.8 implies that a k-quasi-∗-paranormal operator has SVEP [1, Theorem 3.8].

Recently it is proved in [12] that every isolated point in the spectrum of a ∗-paranormal operator T is a
simple pole of the resolvent of T. More generally, for k-quasi ∗-paranormal operators, we have.

Proposition 2.10. Let T ∈ B(H) be k-quasi ∗-paranormal. If µ is a non-zero isolated point in σ(T), then it is a simple
pole of the resolvent of T. Hence T is polaroid.

Proof. In case ran(Tk) is dense then T is ∗-paranormal and so the result follows [12]. So we assume that
ran Tk is not dense. Then by Lemma 2.6, the operator T can be decomposed as:

T =
(
A B
0 C

)
on H = ran(Tk) ⊕N(T∗k),

where A is ∗-paranormal and Ck = 0. Now if µ is a non-zero isolated point of σ(T), then µ ∈ isoσ(A) because
σ(T) = σ(A)∪ {0}. Therefore µ is a simple pole of the resolvent of A [12, Theorem 2.9] and the ∗-paranormal
operator A can be written as follows:

A =
(
A1 0
0 A2

)
on ranTk = N(A − µ) ⊕ ran(A − µ),

where σ(A1) = {µ}. Therefore

T − µI =

0 0 B1
0 A2 − µ B2
0 0 C − µ

 =
(
0 D
0 F

)
on H = N(A − µ) ⊕ ran(A − µ) ⊕N(T∗k),
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where

F =
(
A2 − µ B2

0 C − µ

)
.

We claim that F is an invertible operator on ran(A − µ) ⊕N(T∗k). First we verify that A2 − µI is invertible. If
not, then µ will be an isolated point in σ(A2). Since A2 is ∗-paranormal and ∗-paranormal is isoloid, hence
µ is an eigenvalue of A2 and so A2x = µx for some non-zero vector x in ran(A − µI). On the other hand,
Ax = A2x implying x is in N(A − µI). Hence x must be a zero vector. This contradiction shows that A2 − µI
is invertible. Since C − µI is also invertible, it follows that F is invertible [13, Problem 71]. Since T − µI is
invertible, T − µI has finite ascent and descent. It is easy to show that p(T − µI) = q(T − µI) = 1. Hence µ is
a simple pole of the resolvent of T.

Corollary 2.11. A k-quasi ∗-paranormal operator is isoloid.

More generally, for k-quasi ∗-paranormal operators, we have

Theorem 2.12. Let A be a k-quasi-∗-paranormal operator and λ be a non-zero isolated point of σ(A). Then, the Riesz
idempotent E for λ is self-adjoint and

EH = N(A − λ) = N(A − λ)∗.

Proof. If A is k-quasi-∗-paranormal, then λ is an eigenvalue of A and EH = N(A−λ) by Corollary 2.11. Since
N(A − λ) ⊂ N(A − λ)∗ by Proposition 2.1, it suffices to show that N(A − λ)∗ ⊂ N(A − λ). Since N(A − λ) is
a reducing subspace of A by Proposition 2.1 and the restriction of a k-quasi-∗-paranormal operator to its
reducing subspaces is also a k-quasi-∗-paranormal operator by Proposition 2.2, hence A can be written as
follows:

A = λ ⊕ A1 on H = N(A − λ) ⊕ (N(A − λ))⊥,

where A1 is k-quasi-∗-paranormal with N(A1 − λ) = {0}. Since

λ ∈ σ(A) = {λ} ∪ σ(A1)

is isolated, the only two cases occur, one is λ < σ(A1) and the other is that λ is an isolated point of σ(A1)
and this contradicts the fact that N(A1 − λ) = {0}. Since A1 is invertible as an operator on (N(A − λ))⊥,
N(A − λ) = N(A − λ)∗.

Next, we show that E is self-adjoint. Since

EH = N(A − λ) = N(A − λ)∗,

we have

((z − A)∗)−1E = (z − λ)−1E.

Therefore

E∗E = − 1
2πi

∫
∂D

((z − A)∗)−1Edz = − 1
2πi

∫
∂D

(z − A)−1Edz =

(
1

2πi

∫
∂D

(z − A)−1dz)E = E.

This completes the proof.
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3. Weyl type theorems

An operator T is called Fredholm if ran(T) is closed, α(T) = dim N(T) < ∞ and β(T) = dimH/ran(T) < ∞.
Moreover if i(T) = α(T)−β(T) = 0, then T is called Weyl. The essential spectrum σe(T) and the Weyl spectrum
σW(T) are defined by

σe(T) = {λ ∈ C : T − λ is not Fredholm}
and

σW(A) = {λ ∈ C : A − λ is not Weyl},
respectively. It is known that σe(T) ⊂ σW(T) ⊂ σe(T) ∪ acc σ(T) where we write acc K for the set of all
accumulation points of K ⊂ C. If we write iso K = K \ acc K, then we let

π00(T) = {λ ∈ iso σ(T) : 0 < α(T − λ) < ∞}.

We say that Weyl’s theorem holds for T if

σ(T) \ σW(T) = π00(T).

More generally, M. Berkani investigated generalized Weyl’s theorem which extends Weyl’s theorem,
and proved that generalized Weyl’s theorem holds for hyponormal operators ([6–8]). In a recent paper [19]
the author showed that generalized Weyl’s theorem holds for (p, k)-quasi-hyponormal operators. Recently,
X. Cao, M. Guo and B. Meng [11] proved Weyl type theorems for p-hyponormal operators. M. Berkani
investigated B-Fredholm theory as follows (see [1, 6–8]). An operator T is called B-Fredholm if there exists
n ∈N such that ran(Tn) is closed and the induced operator

T[n] : ran(Tn) ∋ x→ Tx ∈ ran(Tn)

is Fredholm, i.e., ran(T[n]) = ran(Tn+1) is closed,α(T[n]) = dim N(T[n]) < ∞andβ(T[n]) = dim ran(Tn)/ran(T[n]) <
∞. Similarly, a B-Fredholm operator T is called B-Weyl if i(T[n]) = 0. The following results is due to M.
Berkani and M. Sarih [8].

Proposition 3.1. Let T ∈ B(H).
(1) If ran(Tn) is closed and T[n] is Fredholm, then rm(Tm) is closed and T[m] is Fredholm for every m ≥ n.

Moreover, ind T[m] = ind T[n](= ind T).
(2) An operator T is B-Fredholm (B-Weyl) if and only if there exist T-invariant subspacesM and N such that

T = T|M ⊕ T|N where T|M is Fredholm (Weyl) and T|N is nilpotent.

The B-Weyl spectrum σBW(T) are defined by

σBW(T) = {λ ∈ C : T − λ is not B-Weyl} ⊂ σW(T).

We say that generalized Weyl’s theorem holds for T if

σ(T) \ σBW(T) = E(T)

where E(T) denotes the set of all isolated points of the spectrum which are eigenvalues (no restriction on
multiplicity). Note that, if the generalized Weyl’s theorem holds for T, then so does Weyl’s theorem [7].
Recently in [6] M. Berkani and A. Arroud showed that if T is hyponormal, then generalized Weyl’s theorem
holds for T.

We define T ∈ SF−+ if ran(T) is closed, dim N(T) < ∞ and ind T ≤ 0. Let πa
00(T) denote the set of all

isolated points λ of σa(T) with 0 < dim N(T − λ) < ∞. Let σSF−+ (T) = {λ | T − λ < SF−+} ⊂ σW(T). We say that
a-Weyl’s theorem holds for T if

σa(T) \ σSF−+ (T) = πa
00(T).

V. Rakočević [24, Corollary 2.5] proved that if a-Weyl’s theorem holds for T, then Weyl’s theorem holds for
T.
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We define T ∈ SBF−+ if there exists a positive integer n such that ran(Tn) is closed, T[n] : ran(Tn) ∋ x→ Tx ∈
ran(Tn) is upper semi-Fredholm (i.e., ran(T[n]) = ran(Tn+1) is closed, dim N(T[n]) = dim N(T)∩ ran(Tn) < ∞)
and 0 ≥ ind T[n](= ind T) ([8]). We define σSBF−+ (T) = {λ | T − λ < SBF−+} ⊂ σSF−+ (T). Let Ea(T) denote the set of
all isolated points λ of σa(T) with 0 < dim N(T−λ). We say that generalized a-Weyl’s theorem holds for T if

σa(T) \ σSBF−+ (T) = Ea(T).

M. Berkani and J.J. Koliha [7] proved that if generalized a-Weyl’s theorem holds for T, then a-Weyl’s theorem
holds for T.

If a Banach space operator T has SVEP (everywhere), the single-valued extension property, then T and
T∗ satisfy Browder’s (equivalently, generalized Browder’s) theorem and a-Browder’s (equivalently, gener-
alized a- Browder’s) theorem. A sufficient condition for an operator T satisfying Browder’s (generalized
Browder’s) theorem to satisfy Weyl’s (resp., generalized Weyl’s) theorem is that T is polaroid. Observe that
if T ∈ B(H) has SVEP, then σ(T) = σa(T∗). Hence, if T has SVEP and is polaroid, then T∗ satisfies generalized
a-Weyl’s (so also, a-Weyl’s) theorem [2].

Theorem 3.2. Let T ∈ B(H).
i) If T∗ is a k-quasi-∗-paranormal operator, then also T satisfies generalized a-Weyl’s theorem.
ii) If T is a k-quasi-∗-paranormal operator, then generalized a-Weyl’s theorem holds for T∗.

Proof. (i) it is well known that T is polaroid if and only if T∗ is polaroid [2, Theorem 2.11]. Now since a
k-quasi-∗-paranormal operator is polaroid by Proposition 2.10 and has SVEP by Corollary 2.9, [2, Theorem
3.10] gives us the result of the theorem. For (ii) we can also apply [2, Theorem 3.10].

Since the polaroid condition entails E(T) = π(T) and the SVEP for T entails that generalized Browders
theorem holds for T [3, Theorem 3.2], i.e. σBW(T) = σD(T), where σD(T) denotes the Drazin spectrum of T.
Therefore,

E(T) = π(T) = σ(T) \ σD(T) = σ(T) \ σBW(T).

Thus we have the following corollary.

Corollary 3.3. If T is k-quasi-∗-paranormal, then also T satisfies generalized Weyl’s theorem.

Remark 3.4. 1. Recall [2] that if T is polaroid, then T satisfies generalized Weyl’s theorem (resp. generalized a-
Weyl’s) theorem if and only if T satisfies Weyl’s theorem (resp. a-Weyl’s theorem). Hence if T is a k-quasi-∗-paranormal
operator, the above equivalences hold.

2. Let f (z) be an analytic function on σ(T). If T is polaroid, then f (T) is polaroid too [2].
i) If T∗ is k-quasi-∗-paranormal, then f (T) satisfies generalized a-Weyl’s theorem. Indeed, since T∗ is polaroid, the

result holds by [2, Theorem 3.12]
ii) If T is k-quasi-∗-paranormal, then f (T∗) satisfies generalized a-Weyl’s theorem. Indeed, since T is polaroid, the

result holds by [2, Theorem 3.12].

4. Comments and Some open problems

In [12, Proposition 2.4], the authors showed that a ∗-paranormal operator has Bishop’s property β. In the
proof of this proposition, the authors have used [26, Theorem 3.5] which is not correct. Because the proof
of this theorem is false. Indeed, let fn(z) = zn for z ∈ B(2; 1) = {w ∈ C : |w− 2| < 1}. Then || fn||B(z0;r) = (r+ |z0|)n

and supn|| fn||B(z0;r) = 1, for all z0 ∈ B(2; 1) and 0 < r < 1 − |2 − z0|. Let R1 =
1−|z0−2|

2 and 1n =
fn

1+|| fn ||B(z0;R1)
. Then

||1n||
B(z0; R1

2 )
→ 0, but this says nothing about || fn||

B(z0; R1
2 )

. Thus [12, Proposition 2.4] and [12, Corollary 2.8] are

not correct and still open problems.
Note that if a ∗-paranormal operators has property (β), then a k-quasi-∗-paranormal operator also has

Bishop’s property (β) by [20, Theorem 2.5].
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The proof of Lemma 2.2 in [18] depends on the polaroid operator A (similarly, B) with a finite set F
of isolated points having invariant subspaces M1 and M2 such that A1 = A|M1 is algebraic, σ(A1) = F and
A2 = A|M2 invertible on F. This is not always true, for the raison that Riesz decomposition theorem does
guarantee subspaces M1 and M2, and operators A1 and A2, as above but more is required for A1 to be
algebraic. Thus the proof is not correct and Lemma 2.2 in [18] still an open problem. Spectral properties
of paranormal operators have been investigated by a number of authors. Notably, a published proof that
paranormal operators have Bishop’s property (β), [26], has been retracted this year. This error has in fact
propagated through recent work in operator theory, and so a correct proof of this result would be useful and
interesting. Also the proof of Lemma 2.4 in [18] is not true. Indeed the author use the fact that paranormal
operator has property (β) [26, Corollary 3.6] but this is not true as mentioned above. Thus [26, Corollary
3.6] still an open problem and the rest of the results in [18] are not correct and are still open problems.
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