Filomat 27:4 (2013), 629–636 DOI 10.2298/FIL1304629M Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On a new class of operators and Weyl type theorems

Salah Mecheri^a

^aTaibah University, College of Science, Department of Mathematics, P.O.Box 30002, Al-Madinah Al-Munawarah, Saudi Arabia

Abstract. In the present article, we introduce a new class of operators which will be called the class of k-quasi *-paranormal operators that includes *-paranormal operators. A part from other results, we show that following results hold for a k-quasi *-paranormal operator T:

(i) *T* has the SVEP.

(ii) Every non-zero isolated point in the spectrum of *T* is a simple pole of the resolvent of *T*.

(iii) All Weyl type theorems hold for *T*.

(iv) Comments and some open problems are also presented.

1. Introduction

In what follows *H* will be an infinite dimensional separable complex Hilbert space. By an operator on *H*, we mean a bounded linear transformation from *H* to *H*. Let B(H) be the Banach algebra of operators on *H*. We call an operator *T* to be hyponormal if $T^*T \ge TT^*$; quasi-hyponormal if $T^{*2}T^2 \ge (T^*T)^2$; paranormal if $||T^2x|||x|| \ge ||Tx||^k$ for all $x \in H$. According to [1], an operator *T* is called *-paranormal if $||T^*x||^2 \le ||T^2x|||x||$ and *T* is called *k**-paranormal if $||T^*x||^k \le ||T^kx||$ for all unit vector *x* in *H* where *k* is a natural number with $k \ge 2$. The class of *-paranormal operators and more generally the class of *k**-paranormal operators of class (*H*; *k*). For more results for such operators, one can refer [5], [9], [12], and [27]. The following inclusion are well known an proper [22].

{Hyponormal operator \subseteq *-paranormal operator \subseteq normaloid operator}.

The classes of paranormal operators and *-paranormal operators are independent subclasses of normaloid operators [22, Theorem 3]. In the present article we introduce a new class of *k*-quasi *-paranormal operators defined as follows:

Definition 1.1. An operator *T* is called *k*-quasi **-* paranormal if it satisfies the following inequality:

$$||T^*T^kx||^2 \le ||T^{k+2}x|||T^kx||$$

for all unit vector $x \in H$ where k is a natural number.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A30; Secondary 47B15

Keywords. Riesz Idempotent, Bishop's Property, k-quasi *-Paranormal operator

Received: 02 September 2012; Accepted: 01 October 2012

Communicated by Pietro Aiena

Email address: mecherisalah@hotmail.com (Salah Mecheri)

Since for *A*, *B* and *C* in *B*(*H*),

 $A^*A - 2\lambda B^*B + \lambda^2 C^*C \ge 0$ for all $\lambda > 0 \Leftrightarrow ||Bx||^2 \le ||Ax|| ||Cx||$ for all $x \in H$,

we find *T* to be *k*-quasi *-paranormal if and only if

$$T^{*k}(T^{*2}T^2 - 2\lambda TT^* + \lambda^2)T^k \ge 0, \text{ for all } \lambda > 0(*).$$

The following implications are obvious

Hyponormal \Rightarrow *-paranormal \Rightarrow k-quasi * -paranormal.

If $T \in B(H)$, we shall write N(T) and ran(T) for the null space and the range of *T*, respectively. Also, let $\sigma(T)$ and $\sigma_a(T)$ denote the spectrum and the approximate point spectrum of *T*, respectively.

Definition 1.2. An operator $T \in B(H)$ is said to have Bishop's property (β) if $(T - z)f_n(z) \rightarrow 0$ uniformly on every compact subset of D for analytic functions $f_n(z)$ on D, then $f_n(z) \rightarrow 0$ uniformly on every compact subset of D.

Definition 1.3. $T \in B(H)$ is said to have the single valued extension property, abbreviated, T has SVEP if f(z) is an analytic vector valued function on some open set $D \subset C$ such that (T - z)f(z) = 0 for all $z \in D$, then f(z) = 0 for all $z \in D$.

2. Basic Properties

In what follows, the symbol $Q^*(k)$ will be used for the class of k-quasi *-paranormal operators.

Proposition 2.1. For $T \in Q^*(k)$, $N(T - zI) \subseteq N(T^* - \overline{z})$ for each non-zero complex number z.

Proof. Suppose Tx = zx. Since

$$||T^*T^kx||^2 \le ||T^{k+2}x||||T^kx||$$

for all unit vector $x \in H$. Thus $||T^*x|| \le |z|$. Hence

$$||T^*x - \overline{z}x||^2 = ||T^*x||^2 - 2\Re\langle T^*x, \overline{z}x\rangle + |z|^2||x||^2 = ||T^*x||^2 - 2\Re\langle x, \overline{z}Tx\rangle + |z|^2||x||^2 = ||T^*x||^2 - |z|^2||x||^2 \le |z|^2 - |z|^2 = 0.$$

. . .

Hence $T^*x = \overline{z}x$. \Box

Remark 2.2. The above proposition is not valid for z = 0. To see this, let T be nilpotent of index k+1. Then $T \in Q^*(k)$ and N(T) is not a subset of $N(T^*)$ (otherwise T will be a zero operator).

Proposition 2.3. If $T \in Q^*(k)$ and M is an invariant subspace of T. Then $T_{|M}$ (the restriction of T to M) is *k*-quasi-*-paranormal.

Proof. Let *P* be the orthogonal projection on *M*. Then

$$T^k P = (PTP)^k = PT^k P.$$

This leads to

$$P(T^{*k}TT^*T^k)P \ge PT^{*k}TPT^*T^kP = PT^{*k}PTPT^*T^kP$$
$$= (PT^*P)^k(PTP)(PT^*P)(PTP)^k.$$

Therefore the inequality

$$T^{*k}(T^{*2}T^2 - 2\lambda TT^* + \lambda^2)T^k \ge 0 \text{ for all } \lambda > 0$$

implies

$$PT^{*k}(T^{*2}T^2 - 2\lambda TT^* + \lambda^2)T^kP \ge 0 \text{ for all } \lambda > 0,$$

and hence

$$T_1^{*k}(T_1^{*2}T_1^2 - 2\lambda T_1 T_1^* + \lambda^2)T_1^k \ge 0 \text{ for all } \lambda > 0.$$

This proves the result. \Box

Proposition 2.4. *Every quasi-hyponormal operator is quasi *-paranormal.*

Proof. Let T be quasi-hyponormal. Since every quasi-hyponormal is paranormal, we have

$$||T^*Tx||^2 \le ||T^2x||^2$$

= $||T(\frac{Tx}{||Tx||})||^2 ||Tx||^2$
 $\le ||T^2(\frac{Tx}{||Tx||})||||Tx||^2$
= $||T^3x||||Tx||$

for all $x \in H$. This proves the result. \Box

Proposition 2.5. Every quasi *-paranormal is 3-paranormal (and hence normaloid).

Proof. Suppose *T* is quasi *-paranormal. Then

$$||Tx||^4 = \langle T^*Tx, x \rangle^2$$

$$\leq ||T^*Tx||^2 ||x||^2 \leq ||T^3x||||Tx||||x||^2.$$

Hence

 $||Tx||^3 \le ||T^3x||||x||$

or *T* is 3-paranormal. \Box

In order to obtain some spectral properties of class $Q^*(k)$, we shall need the following result.

Lemma 2.6. Let $T \in B(H)$ be k-quasi *-paranormal such that ran T^k is not dense and

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $H = \overline{\operatorname{ran} T^k} \oplus N(T^{*k}).$

Then T_1 is *-paranormal, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. Let

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $H = \overline{\operatorname{ran} T^k} \oplus N(T^{*k})$

and let *P* be the orthogonal projection of *T* onto $\overline{\operatorname{ran} T^k}$. Since $P^2 = P$ and $P \leq I$, we have $P(TT^*)P \geq (PTP)(PT^*P)$. Since *T* is *k*-quasi *-paranormal,

$$P(T^{*2}T^2P - 2\lambda TT^* + \lambda^2)P \ge 0 \text{ for all } \lambda > 0,$$

$$P(T^{*2}T^2)P - 2\lambda P(TT^*)P + \lambda^2 \ge 0 \text{ for all } \lambda > 0.$$

Therefore $T_1^{*2}T_1^2 - 2\lambda T_1T_1^* + \lambda^2 \ge 0$ for all $\lambda > 0$. This shows that T_1 is *-paranormal on $\overline{\operatorname{ran} T^k}$. Further, we have

$$\langle T_3^k x_2, x_2 \rangle = \langle T^k (I - P) x, (I - P) x \rangle = \langle (I - P) x, T^{*k} (I - P) x \rangle = 0$$

for any $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in H$. Thus $T^{*k} = 0$. We have $\sigma(T_1) \cup \sigma(T_3) = \sigma(T) \cup G$, where *G* is the union of certain holes in $\sigma(T)$ which is a subsets of $\sigma(T_1) \cap \sigma(T_3)$ [14, Corollary 7]. Since $\sigma(T_1) \cap \sigma(T_3)$ has no interior points, we have

$$\sigma(T) = \sigma(T_1) \cup \sigma(T_3) = \sigma(T_1) \cup \{0\}$$

Throughout our exposition, we will exploit the representation of $T \in Q^*(k)$ given in the preceding lemma. As a consequence of Lemma 2.1, we obtain.

Corollary 2.7. Let $T \in B(H)$ be a k-quasi *-paranormal operator. If T_1 is invertible, then T is similar to a direct sum of a *-paranormal and a nilpotent operator.

Proof. Since T_1 is invertible, we have $\sigma(T_1) \cap \sigma(T_3) = \emptyset$. Then there exists an operator *S* such that $T_1S - ST_3 = T_2$ [23]. Hence

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} = \begin{pmatrix} I & S \\ 0 & I \end{pmatrix}^{-1} \begin{pmatrix} T_1 & 0 \\ 0 & T_3 \end{pmatrix} \begin{pmatrix} I & S \\ 0 & I \end{pmatrix}.$$

Lemma 2.8. If $T \in B(H)$ is k-quasi *-paranormal, then $\operatorname{asc}(T - \lambda) \leq 1$ for all complex numbers λ .

Proof. Proposition 2.1 implies $(T - \lambda)^{-1}(0) \perp (T - \lambda)H$. Hence, if $x \in (T - \lambda)^{-2}(0)$ and $x \notin (T - \lambda)^{-1}(0)$, then x = 0. This implies $\operatorname{asc}(T - \lambda) \leq 1$. \Box

Corollary 2.9. If T is a k-quasi-*-paranormal operator, then T has SVEP.

Proof. Lemma 2.8 implies that a *k*-quasi-*-paranormal operator has SVEP [1, Theorem 3.8].

Recently it is proved in [12] that every isolated point in the spectrum of a *-paranormal operator *T* is a simple pole of the resolvent of *T*. More generally, for *k*-quasi *-paranormal operators, we have.

Proposition 2.10. Let $T \in B(H)$ be k-quasi *-paranormal. If μ is a non-zero isolated point in $\sigma(T)$, then it is a simple pole of the resolvent of T. Hence T is polaroid.

Proof. In case $ran(T^k)$ is dense then *T* is *-paranormal and so the result follows [12]. So we assume that ran T^k is not dense. Then by Lemma 2.6, the operator *T* can be decomposed as:

$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
 on $H = \overline{\operatorname{ran}(T^k)} \oplus N(T^{*k})$,

where *A* is *-paranormal and $C^k = 0$. Now if μ is a non-zero isolated point of $\sigma(T)$, then $\mu \in iso\sigma(A)$ because $\sigma(T) = \sigma(A) \cup \{0\}$. Therefore μ is a simple pole of the resolvent of *A* [12, Theorem 2.9] and the *-paranormal operator *A* can be written as follows:

$$A = \begin{pmatrix} A_1 & 0\\ 0 & A_2 \end{pmatrix} \text{ on } \overline{\text{ranT}^k} = N(A - \mu) \oplus \text{ran}(A - \mu),$$

where $\sigma(A_1) = \{\mu\}$. Therefore

$$T - \mu I = \begin{pmatrix} 0 & 0 & B_1 \\ 0 & A_2 - \mu & B_2 \\ 0 & 0 & C - \mu \end{pmatrix} = \begin{pmatrix} 0 & D \\ 0 & F \end{pmatrix} \text{ on } H = N(A - \mu) \oplus \operatorname{ran}(A - \mu) \oplus N(T^{*k}),$$

where

$$F = \begin{pmatrix} A_2 - \mu & B_2 \\ 0 & C - \mu \end{pmatrix}.$$

We claim that *F* is an invertible operator on $\operatorname{ran}(A - \mu) \oplus N(T^{*k})$. First we verify that $A_2 - \mu I$ is invertible. If not, then μ will be an isolated point in $\sigma(A_2)$. Since A_2 is *-paranormal and *-paranormal is isoloid, hence μ is an eigenvalue of A_2 and so $A_2x = \mu x$ for some non-zero vector x in $\operatorname{ran}(A - \mu I)$. On the other hand, $Ax = A_2x$ implying x is in $N(A - \mu I)$. Hence x must be a zero vector. This contradiction shows that $A_2 - \mu I$ is invertible. Since $C - \mu I$ is also invertible, it follows that F is invertible [13, Problem 71]. Since $T - \mu I$ is invertible, $T - \mu I$ has finite ascent and descent. It is easy to show that $p(T - \mu I) = q(T - \mu I) = 1$. Hence μ is a simple pole of the resolvent of T. \Box

Corollary 2.11. A k-quasi *-paranormal operator is isoloid.

More generally, for *k*-quasi *-paranormal operators, we have

Theorem 2.12. Let A be a k-quasi-*-paranormal operator and λ be a non-zero isolated point of $\sigma(A)$. Then, the Riesz idempotent E for λ is self-adjoint and

$$EH = N(A - \lambda) = N(A - \lambda)^*$$

Proof. If *A* is *k*-quasi-*-paranormal, then λ is an eigenvalue of *A* and $EH = N(A - \lambda)$ by Corollary 2.11. Since $N(A - \lambda) \subset N(A - \lambda)^*$ by Proposition 2.1, it suffices to show that $N(A - \lambda)^* \subset N(A - \lambda)$. Since $N(A - \lambda)$ is a reducing subspace of *A* by Proposition 2.1 and the restriction of a *k*-quasi-*-paranormal operator to its reducing subspaces is also a *k*-quasi-*-paranormal operator by Proposition 2.2, hence *A* can be written as follows:

$$A = \lambda \oplus A_1$$
 on $H = N(A - \lambda) \oplus (N(A - \lambda))^{\perp}$,

where A_1 is *k*-quasi-*-paranormal with $N(A_1 - \lambda) = \{0\}$. Since

$$\lambda \in \sigma(A) = \{\lambda\} \cup \sigma(A_1)$$

is isolated, the only two cases occur, one is $\lambda \notin \sigma(A_1)$ and the other is that λ is an isolated point of $\sigma(A_1)$ and this contradicts the fact that $N(A_1 - \lambda) = \{0\}$. Since A_1 is invertible as an operator on $(N(A - \lambda))^{\perp}$, $N(A - \lambda) = N(A - \lambda)^*$.

Next, we show that *E* is self-adjoint. Since

$$EH = N(A - \lambda) = N(A - \lambda)^*,$$

we have

$$((z-A)^*)^{-1}E = \overline{(z-\lambda)^{-1}}E.$$

Therefore

$$E^*E = -\frac{1}{2\pi i} \int_{\partial D} ((z-A)^*)^{-1} E d\overline{z} = -\frac{1}{2\pi i} \int_{\partial D} \overline{(z-A)^{-1}} E d\overline{z} =$$
$$\overline{(\frac{1}{2\pi i} \int_{\partial D} (z-A)^{-1} dz)} E = E.$$

This completes the proof. \Box

3. Weyl type theorems

An operator *T* is called Fredholm if ran(T) is closed, $\alpha(T) = \dim N(T) < \infty$ and $\beta(T) = \dim \mathcal{H}/\operatorname{ran}(T) < \infty$. Moreover if $i(T) = \alpha(T) - \beta(T) = 0$, then *T* is called Weyl. The essential spectrum $\sigma_e(T)$ and the Weyl spectrum $\sigma_W(T)$ are defined by

$$\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\}$$

and

respectively. It is known that $\sigma_e(T) \subset \sigma_W(T) \subset \sigma_e(T) \cup \text{acc } \sigma(T)$ where we write acc *K* for the set of all accumulation points of $K \subset \mathbb{C}$. If we write iso $K = K \setminus \text{acc } K$, then we let

 $\sigma_W(A) = \{\lambda \in \mathbb{C} : A - \lambda \text{ is not Weyl}\},\$

$$\pi_{00}(T) = \{\lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty\}.$$

We say that Weyl's theorem holds for *T* if

$$\sigma(T) \setminus \sigma_W(T) = \pi_{00}(T).$$

More generally, M. Berkani investigated generalized Weyl's theorem which extends Weyl's theorem, and proved that generalized Weyl's theorem holds for hyponormal operators ([6–8]). In a recent paper [19] the author showed that generalized Weyl's theorem holds for (p, k)-quasi-hyponormal operators. Recently, X. Cao, M. Guo and B. Meng [11] proved Weyl type theorems for *p*-hyponormal operators. M. Berkani investigated B-Fredholm theory as follows (see [1, 6–8]). An operator *T* is called *B*-Fredholm if there exists $n \in \mathbb{N}$ such that ran(Tⁿ) is closed and the induced operator

$$T_{[n]}$$
: ran(T^n) $\ni x \to Tx \in ran(T^n)$

is Fredholm, i.e., $\operatorname{ran}(T_{[n]}) = \operatorname{ran}(T^{n+1})$ is closed, $\alpha(T_{[n]}) = \dim N(T_{[n]}) < \infty$ and $\beta(T_{[n]}) = \dim \operatorname{ran}(T^n)/\operatorname{ran}(T_{[n]}) < \infty$. Similarly, a *B*-Fredholm operator *T* is called *B*-Weyl if $i(T_{[n]}) = 0$. The following results is due to M. Berkani and M. Sarih [8].

Proposition 3.1. Let $T \in B(H)$.

(1) If ran(Tⁿ) is closed and $T_{[n]}$ is Fredholm, then rm(T^m) is closed and $T_{[m]}$ is Fredholm for every $m \ge n$. Moreover, ind $T_{[m]} = \text{ind } T_{[n]}(= \text{ind } T)$.

(2) An operator T is B-Fredholm (B-Weyl) if and only if there exist T-invariant subspaces \mathcal{M} and \mathcal{N} such that $T = T|\mathcal{M} \oplus T|\mathcal{N}$ where $T|\mathcal{M}$ is Fredholm (Weyl) and $T|\mathcal{N}$ is nilpotent.

The B-Weyl spectrum $\sigma_{BW}(T)$ are defined by

$$\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Weyl}\} \subset \sigma_W(T).$$

We say that generalized Weyl's theorem holds for *T* if

$$\sigma(T) \setminus \sigma_{BW}(T) = E(T)$$

where E(T) denotes the set of all isolated points of the spectrum which are eigenvalues (no restriction on multiplicity). Note that, if the generalized Weyl's theorem holds for *T*, then so does Weyl's theorem [7]. Recently in [6] M. Berkani and A. Arroud showed that if *T* is hyponormal, then generalized Weyl's theorem holds for *T*.

We define $T \in SF_+^-$ if ran(T) is closed, dim $N(T) < \infty$ and ind $T \le 0$. Let $\pi_{00}^a(T)$ denote the set of all isolated points λ of $\sigma_a(T)$ with $0 < \dim N(T - \lambda) < \infty$. Let $\sigma_{SF_+^-}(T) = \{\lambda \mid T - \lambda \notin SF_+^-\} \subset \sigma_W(T)$. We say that a-Weyl's theorem holds for T if

$$\sigma_a(T) \setminus \sigma_{SF^-_+}(T) = \pi^a_{00}(T).$$

V. Rakočević [24, Corollary 2.5] proved that if a-Weyl's theorem holds for *T*, then Weyl's theorem holds for *T*.

We define $T \in SBF_+^-$ if there exists a positive integer n such that $\operatorname{ran}(T^n)$ is closed, $T_{[n]} : \operatorname{ran}(T^n) \ni x \to Tx \in \operatorname{ran}(T^n)$ is upper semi-Fredholm (i.e., $\operatorname{ran}(T_{[n]}) = \operatorname{ran}(T^{n+1})$ is closed, $\dim N(T_{[n]}) = \dim N(T) \cap \operatorname{ran}(T^n) < \infty$) and $0 \ge \operatorname{ind} T_{[n]}(= \operatorname{ind} T)$ ([8]). We define $\sigma_{SBF_+^-}(T) = \{\lambda \mid T - \lambda \notin SBF_+^-\} \subset \sigma_{SF_+^-}(T)$. Let $E^a(T)$ denote the set of all isolated points λ of $\sigma_a(T)$ with $0 < \dim N(T - \lambda)$. We say that generalized a-Weyl's theorem holds for T if

$$\sigma_a(T) \setminus \sigma_{SBF_+}(T) = E^a(T).$$

M. Berkani and J.J. Koliha [7] proved that if generalized a-Weyl's theorem holds for *T*, then a-Weyl's theorem holds for *T*.

If a Banach space operator *T* has SVEP (everywhere), the single-valued extension property, then *T* and *T*^{*} satisfy Browder's (equivalently, generalized Browder's) theorem and a-Browder's (equivalently, generalized a- Browder's) theorem. A sufficient condition for an operator *T* satisfying Browder's (generalized Browder's) theorem to satisfy Weyl's (resp., generalized Weyl's) theorem is that *T* is polaroid. Observe that if $T \in B(H)$ has SVEP, then $\sigma(T) = \sigma_a(T^*)$. Hence, if *T* has SVEP and is polaroid, then T^* satisfies generalized a-Weyl's (so also, a-Weyl's) theorem [2].

Theorem 3.2. Let $T \in B(H)$.

i) If T^{*} is a k-quasi-*-paranormal operator, then also T satisfies generalized a-Weyl's theorem.

ii) If T is a k-quasi--paranormal operator, then generalized a-Weyl's theorem holds for T*.*

Proof. (i) it is well known that *T* is polaroid if and only if T^* is polaroid [2, Theorem 2.11]. Now since a *k*-quasi-*-paranormal operator is polaroid by Proposition 2.10 and has SVEP by Corollary 2.9, [2, Theorem 3.10] gives us the result of the theorem. For (ii) we can also apply [2, Theorem 3.10].

Since the polaroid condition entails $E(T) = \pi(T)$ and the SVEP for *T* entails that generalized Browders theorem holds for *T* [3, Theorem 3.2], i.e. $\sigma_{BW}(T) = \sigma_D(T)$, where $\sigma_D(T)$ denotes the Drazin spectrum of *T*. Therefore,

$$E(T) = \pi(T) = \sigma(T) \setminus \sigma_D(T) = \sigma(T) \setminus \sigma_{BW}(T).$$

Thus we have the following corollary.

Corollary 3.3. If T is k-quasi-*-paranormal, then also T satisfies generalized Weyl's theorem.

Remark 3.4. 1. Recall [2] that if T is polaroid, then T satisfies generalized Weyl's theorem (resp. generalized a-Weyl's) theorem if and only if T satisfies Weyl's theorem (resp. a-Weyl's theorem). Hence if T is a k-quasi-*-paranormal operator, the above equivalences hold.

2. Let f(z) be an analytic function on $\sigma(T)$. If T is polaroid, then f(T) is polaroid too [2].

i) If T^* is k-quasi-*-paranormal, then f(T) satisfies generalized a-Weyl's theorem. Indeed, since T^* is polaroid, the result holds by [2, Theorem 3.12]

ii) If T is k-quasi-*-paranormal, then $f(T^*)$ satisfies generalized a-Weyl's theorem. Indeed, since T is polaroid, the result holds by [2, Theorem 3.12].

4. Comments and Some open problems

In [12, Proposition 2.4], the authors showed that a *-paranormal operator has Bishop's property β . In the proof of this proposition, the authors have used [26, Theorem 3.5] which is not correct. Because the proof of this theorem is false. Indeed, let $f_n(z) = z^n$ for $z \in B(2; 1) = \{w \in \mathbb{C} : |w - 2| < 1\}$. Then $||f_n||_{\overline{B(z_0;r)}} = (r + |z_0|)^n$ and $sup_n ||f_n||_{\overline{B(z_0;r)}} = 1$, for all $z_0 \in B(2; 1)$ and $0 < r < 1 - |2 - z_0|$. Let $R_1 = \frac{1 - |z_0 - 2|}{2}$ and $g_n = \frac{f_n}{1 + ||f_n||_{\overline{B(z_0;R_1)}}}$. Then $||g_n||_{\overline{B(z_0;\frac{R_1}{2})}} \rightarrow 0$, but this says nothing about $||f_n||_{\overline{B(z_0;\frac{R_1}{2})}}$. Thus [12, Proposition 2.4] and [12, Corollary 2.8] are not correct and still open problems.

Note that if a *-paranormal operators has property (β), then a *k*-quasi-*-paranormal operator also has Bishop's property (β) by [20, Theorem 2.5].

The proof of Lemma 2.2 in [18] depends on the polaroid operator *A* (similarly, *B*) with a finite set *F* of isolated points having invariant subspaces M_1 and M_2 such that $A_1 = A|_{M_1}$ is algebraic, $\sigma(A_1) = F$ and $A_2 = A|_{M_2}$ invertible on *F*. This is not always true, for the raison that Riesz decomposition theorem does guarantee subspaces M_1 and M_2 , and operators A_1 and A_2 , as above but more is required for A_1 to be algebraic. Thus the proof is not correct and Lemma 2.2 in [18] still an open problem. Spectral properties of paranormal operators have been investigated by a number of authors. Notably, a published proof that paranormal operators have Bishop's property (β), [26], has been retracted this year. This error has in fact propagated through recent work in operator theory, and so a correct proof of this result would be useful and interesting. Also the proof of Lemma 2.4 in [18] is not true. Indeed the author use the fact that paranormal operator has property (β) [26, Corollary 3.6] but this is not true as mentioned above. Thus [26, Corollary 3.6] still an open problem and the rest of the results in [18] are not correct and are still open problems.

References

- [1] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Academic Publishers (2004), Dordrecht, Boston, London.
- [2] P. Aiena, E. Aponte and E.Balzan, Weyl Type Theorems for left and right Polaroid operators, Integr. Equat. Operat. Theor 66(2010) 1-20.
- [3] P. Aiena, P. O. Garcia, Generalized Browders theorem and SVEP, Mediterr.J. Math 4 (2007) 215-228.
- [4] P. Aiena and F. Villafane, Weyl's theorem for some classes of operators, Integral equations and Operator Theory 53(2005) 453-466.
- [5] S. C. Arora and J. K. Thukral, On the class of operators, Glasnik Math 21 (1986) 381386.
- [6] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Austra. Math. Soc 76(2004) 291-302.
- [7] M. Berkani and J.J. Koliha, Weyl's type theorems for bounded linear operators, Acta. Sci. Math(Szeged) 69(2003) 379-391.
- [8] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J 43(2001) 457-465.
- [9] N. Chennappan, S. Karthikeyan, * Paranormal composition operators, Indian J. Pure Appl. Math 31(2000) 591-601.
- [10] B.P.Duggal, I.H. Jeon and I.H. Kim, On *-paranormal contractions and properties for *-class *A* operators, Linear alg. Appl 436(2012)954-962.
- [11] X. Cao, M. Guo and B. Meng, Weyl type theorems for p-hyponormal and M-hyponormal operators, Studia Math, 163(2004), 177-188.
- B.P.Duggal, I.H.Jeon, I.H.Kim, On *-paranormal contractions and properties for *-class A operators, Linear alg. Appl 436(2012)954-962.
- [13] P.R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton 1967.
- [14] J. K. Han, H. Y. Lee and Ŵ. Y. Lee, Invertible completions of 2 × 2 upper triangle matrix, Proc. Amer. Math. Soc 128(1999) 119-123.
- [15] Y.M.Han, W.H.Na, A note on Quasi-paranormal operators, Mediterr. J. Math, DOI: 10.1007/s00009-012-0176-6. (2012)
- [16] I.H.Jeon, J.W. Lee, Weyl's theorem for operator matrices and the single valued extension property, Glasgow Math. J 48 (2006) 567-573.
- [17] K. B. Laursen, Operators with finite ascent, Pacific J. Math., 152 (1992), 323336.
- [18] F.Lombarkia, Generalized Weyl's theorem for an elementary operator, Bull. Math. Anal. Appl 3(2011) 123-133.
- [19] S.Mecheri and S. Makhlouf, Weyl Type theorems for posinormal operators, Math. Proc. Royal Irish. Acad 108(A)(2008 68-79.
- [20] S.Mecheri, Bishop's property (β), SVEP and Dunford Property (C), Electronic Jour. Lin. Alg 23(2012)523-529.
- [21] S. M. Patel, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi Univ 1974.
- [22] S.M. Patel, A class of non-hyponormal operators on Hilbert space, Riv. Mat. univ. Parma 4(1978), 23-27.
- [23] M. A. Rosenblum, On the operator equation BX XA = Q, Duke Math. J 23(1956), 263-269.
- [24] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl 10 (1989), 915-919.
- [25] J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc 117(1965), 469-476.
- [26] A. Uchiyama and K. Tanahashi, Bishops property (β) for paranormal operators, Operator and Matrices, 3 (2009) 517-524.
- [27] Y. YANG, On algebraically total *-paranormal, Nihonkai Math. J 10(1999)187-194.