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Abstract. In this paper, a generalized class of τ∗ called weakly Ir1-open sets in ideal topological spaces is
introduced and the notion of weakly Ir1-closed sets in ideal topological spaces is studied. The relationships
of weakly Ir1-closed sets and various properties of weakly Ir1-closed sets are investigated.

1. Introduction

In 1999, Dontchev et al. studied the notion of generalized closed sets in ideal topological spaces called
I1-closed sets [2]. In 2008, Navaneethakrishnan and Joseph have studied some characterizations of normal
spaces via I1-open sets [6]. In 2009, Navaneethakrishnan et al. have introduced Ir1-open sets to establish
some new caharacterizations of mildly normal spaces [7]. The main aim of this paper is to introduce a
generalized class of τ∗ called weakly Ir1-open sets in ideal topological spaces and to study the notion of
weakly Ir1-closed sets in ideal topological spaces. Moreover, this generalized class of τ∗ generalize I1-open
sets and Ir1-open sets and pre∗I-open sets. The relationships of weakly Ir1-closed sets and various properties
of weakly Ir1-closed sets are discussed.

2. Preliminaries

In this paper, (X, τ) represent topological space on which no separation axioms are assumed unless
explicitly stated. The closure and the interior of a subset G of a space X will be denoted by Cl(G) and Int(G),
respectively. A subset G of a topological space (X, τ) is said to be regular open [9] (resp. regular closed [9])
if G = Int(Cl(G)) (resp. G = Cl(Int(G))).

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies
(1) G ∈ I and H ⊂ G implies H ∈ I and
(2) G ∈ I and H ∈ I implies G ∪H ∈ I [5].
For a topological space (X, τ) with an ideal I on X, a set operator (.)∗ : P(X)→ P(X) where P(X) is the set

of all subsets of X, called a local function [5] of G with respect to τ and I is defined as follows: for G ⊂ X,
G∗(I, τ) = {x ∈ X : H∩G < I for every H ∈ τ(x)}where τ(x) = {H ∈ τ : x ∈ H}. A Kuratowski closure operator
Cl∗(.) for a topology τ∗(I, τ), called the ⋆-topology and finer than τ, is defined by Cl∗(G) = G ∪ G∗(I, τ) [4].
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We shall simply write G∗ for G∗(I, τ) and τ∗ for τ∗(I, τ). For an ideal I on X, (X, τ, I) is said to be an ideal
topological space or simply an ideal space. On the other hand, (G, τG, IG) where τG is the relative topology
on G and IG = {G ∩ J : J ∈ I} is an ideal topological space for an ideal topological space (X, τ, I) and G ⊂ X
[4].

A subset G of an ideal topological space (X, τ, I) is said to be I1-closed [2] if G∗ ⊂ H whenever G ⊂ H
and H is open in (X, τ, I). A subset G of an ideal topological space (X, τ, I) is said to be I1-open [2] if X\G is
I1-closed. A subset A of an ideal topological space (X, τ, I) is said to be pre∗I-open if A ⊂ Int∗(Cl(A)) [3]. A
subset A of an ideal topological space (X, τ, I) is said to be pre∗I-closed if X\A is pre∗I-open. A subset G of an
ideal topological space (X, τ, I) is called Ir1-closed [7] if G∗ ⊂ H whenever G ⊂ H and H is a regular open set
in (X, τ, I). Also, G is said to be Ir1-open [7] if X\G is an Ir1-closed set. A subset A of an ideal topological
space (X, τ, I) is said to be I-R closed [1] if A = Cl∗(Int(A)).

3. A generalized class of τ∗

Definition 3.1. Let (X, τ, I) be an ideal topological space. A subset G of (X, τ, I) is said to be a weakly
Ir1-closed set if (Int(G))∗ ⊂ H whenever G ⊂ H and H is a regular open set in X.

Definition 3.2. Let (X, τ, I) be an ideal topological space and G ⊂ X. Then G is said to be a weakly Ir1-open
set if X\G is a weakly Ir1-closed set.

Remark 3.3. Let (X, τ, I) be an ideal topological space. The following diagram holds for a subset G ⊂ X:

I1-closed ⇒ Ir1-closed ⇒ weakly Ir1-closed
⇑ ⇑

⋆-closed pre∗I-closed
⇑

I-R closed

These implications are not reversible as shown in the following example and in [1, 2, 7].

Example 3.4. Let X = {a, b, c, d}, τ = {X,∅, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {b}}. Take A = {a, c, d}. Then
A is Ir1-closed but it is not pre∗I-closed. Take B = {a}. Then B is pre∗I-closed and also weakly Ir1-closed but it
is not Ir1-closed.

Theorem 3.5. Let (X, τ, I) be an ideal topological space and G ⊂ X. The following properties are equivalent:
(1) G is a weakly Ir1-closed set,
(2) Cl∗(Int(G)) ⊂ H whenever G ⊂ H and H is a regular open set in X.

Proof. (1)⇒ (2) : Let G be a weakly Ir1-closed set in (X, τ, I). Suppose that G ⊂ H and H is a regular open set
in X. We have (Int(G))∗ ⊂ H. Since Int(G) ⊂ G ⊂ H, then

(Int(G))∗ ∪ Int(G) ⊂ H.

This implies that Cl∗(Int(G)) ⊂ H.
(2)⇒ (1) : Let Cl∗(Int(G)) ⊂ H whenever G ⊂ H and H is regular open in X. Since (Int(G))∗ ∪ Int(G) ⊂ H,

then (Int(G))∗ ⊂ H whenever G ⊂ H and H is a regular open set in X.

Theorem 3.6. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is regular open and weakly Ir1-closed, then
G is ⋆-closed.

Proof. Let G be a regular open and weakly Ir1-closed set in (X, τ, I). Since G is regular open and weakly
Ir1-closed, Cl∗(G) = Cl∗(Int(G)) ⊂ G. Thus, G is a ⋆-closed set in (X, τ, I).
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Theorem 3.7. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a weakly Ir1-closed set, then (Int(G))∗\G
contains no any nonempty regular closed set.

Proof. Let G be a weakly Ir1-closed set in (X, τ, I). Suppose that H is a regular closed set such that H ⊂
(Int(G))∗\G. Since G is a weakly Ir1-closed set, X\H is regular open and G ⊂ X\H, then (Int(G))∗ ⊂ X\H. We
have H ⊂ X\(Int(G))∗. Hence,

H ⊂ (Int(G))∗ ∩ (X\(Int(G))∗) = ∅.

Thus, (Int(G))∗\G contains no any nonempty regular closed set.

Theorem 3.8. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a weakly Ir1-closed set, then Cl∗(Int(G))\G
contains no any nonempty regular closed set.

Proof. Suppose that H is a regular closed set such that H ⊂ Cl∗(Int(G))\G. By Theorem 3.7, it follows from
the fact that Cl∗(Int(G))\G = ((Int(G))∗ ∪ Int(G))\G.

Remark 3.9. The reverse of Theorem 3.8 is not true in general as shown in the following example.

Example 3.10. Let X = {a, b, c, d}, τ = {X,∅, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {b}}. Take A = {c}. Then
Cl∗(Int(A))\A contains no any nonempty regular closed set but A is not weakly Ir1-closed.

Theorem 3.11. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:
(1) G is pre∗I-closed for each weakly Ir1-closed set G in (X, τ, I),
(2) Each singleton {x} of X is a regular closed set or {x} is pre∗I-open.

Proof. (1) ⇒ (2) : Let G be pre∗I-closed for each weakly Ir1-closed set G in (X, τ, I) and x ∈ X. We have
Cl∗(Int(G)) ⊂ G for each weakly Ir1-closed set G in (X, τ, I). Assume that {x} is not a regular closed set. It
follows that X is the only regular open set containing X\{x}. Then, X\{x} is a weakly Ir1-closed set in (X, τ, I).
Thus, Cl∗(Int(X\{x})) ⊂ X\{x} and hence {x} ⊂ Int∗(Cl({x})). Consequently, {x} is pre∗I-open.

(2)⇒ (1) : Let G be a weakly Ir1-closed set in (X, τ, I). Let x ∈ Cl∗(Int(G)).
Suppose that {x} is pre∗I-open. We have {x} ⊂ Int∗(Cl({x})). Since x ∈ Cl∗(Int(G)), then Int∗(Cl({x})) ∩ Int(G)

, ∅. It follows that Cl({x}) ∩ Int(G) , ∅. We have Cl({x} ∩ Int(G)) , ∅ and then {x} ∩ Int(G) , ∅. Hence,
x ∈ Int(G). Thus, we have x ∈ G.

Suppose that {x} is a regular closed set. By Theorem 3.8, Cl∗(Int(G))\G does not contain {x}. Since
x ∈ Cl∗(Int(G)), then we have x ∈ G.

Consequently, we have x ∈ G. Thus, Cl∗(Int(G)) ⊂ G and hence G is pre∗I-closed.

Theorem 3.12. Let (X, τ, I) be an ideal topological space and G ⊂ X. If Cl∗(Int(G))\G contains no any nonempty
⋆-closed set, then G is a weakly Ir1-closed set.

Proof. Suppose that Cl∗(Int(G))\G contains no any nonempty ⋆-closed set in (X, τ, I). Let G ⊂ H and H be
a regular open set. Assume that Cl∗(Int(G)) is not contained in H. It follows that Cl∗(Int(G)) ∩ (X\H) is a
nonempty ⋆-closed subset of Cl∗(Int(G))\G. This is a contradiction. Hence, G is a weakly Ir1-closed set.

Theorem 3.13. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a weakly Ir1-closed set, then Int(G) = H\K
where H is I-R closed and K contains no any nonempty regular closed set.

Proof. Let G be a weakly Ir1-closed set in (X, τ, I). Take K = (Int(G))∗\G. Then, by Theorem 3.7, K contains
no any nonempty regular closed set. Take H = Cl∗(Int(G)). Then H = Cl∗(Int(H)). Moreover, we have

H\K = ((Int(G))∗ ∪ Int(G))\((Int(G))∗\G)
= ((Int(G))∗ ∪ Int(G)) ∩ (X\(Int(G))∗ ∪ G)
= Int(G).
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Theorem 3.14. Let (X, τ, I) be an ideal topological space and G ⊂ X. Assume that G is a weakly Ir1-closed set. The
following properties are equivalent:

(1) G is pre∗I-closed,
(2) Cl∗(Int(G))\G is a regular closed set,
(3) (Int(G))∗\G is a regular closed set.

Proof. (1) ⇒ (2) : Let G be pre∗I-closed. We have Cl∗(Int(G)) ⊂ G. Then, Cl∗(Int(G))\G = ∅. Thus,
Cl∗(Int(G))\G is a regular closed set.

(2)⇒ (1) : Let Cl∗(Int(G))\G be a regular closed set. Since G is a weakly Ir1-closed set in (X, τ, I), then by
Theorem 3.8, Cl∗(Int(G))\G = ∅. Hence, we have Cl∗(Int(G)) ⊂ G. Thus, G is pre∗I-closed.

(2)⇔ (3) : It follows easily from that Cl∗(Int(G))\G = (Int(G))∗\G.

Theorem 3.15. Let (X, τ, I) be an ideal topological space and G ⊂ X be a weakly Ir1-closed set. Then G∪(X\(Int(G))∗)
is a weakly Ir1-closed set in (X, τ, I).

Proof. Let G be a weakly Ir1-closed set in (X, τ, I). Suppose that H is a regular open set such that G ∪
(X\(Int(G))∗) ⊂ H. We have

X\H ⊂ X\(G ∪ (X\(Int(G))∗))
= (X\G) ∩ (Int(G))∗

= (Int(G))∗\G.

Since X\H is a regular closed set and G is a weakly Ir1-closed set, it follows from Theorem 3.7 that
X\H = ∅. Hence, X = H. Thus, X is the only regular open set containing G ∪ (X\(Int(G))∗). Consequently,
G ∪ (X\(Int(G))∗) is a weakly Ir1-closed set in (X, τ, I).

Corollary 3.16. Let (X, τ, I) be an ideal topological space and G ⊂ X be a weakly Ir1-closed set. Then (Int(G))∗\G is
a weakly Ir1-open set in (X, τ, I).

Proof. Since X\((Int(G))∗\G) = G ∪ (X\(Int(G))∗), it follows from Theorem 3.15 that (Int(G))∗\G is a weakly
Ir1-open set in (X, τ, I).

Theorem 3.17. Let (X, τ, I) be an ideal topological space and G ⊂ X. The following properties are equivalent:
(1) G is a ⋆-closed and regular open set,
(2) G is I-R closed and a regular open set,
(3) G is a weakly Ir1-closed and regular open set.

Proof. (1)⇒ (2)⇒ (3) : Obvious.
(3)⇒ (1) : It follows from Theorem 3.6.

4. Further properties

Theorem 4.1. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:
(1) Each subset of (X, τ, I) is a weakly Ir1-closed set,
(2) G is pre∗I-closed for each regular open set G in X.

Proof. (1)⇒ (2) : Suppose that each subset of (X, τ, I) is a weakly Ir1-closed set. Let G be a regular open set.
Since G is weakly Ir1-closed, then we have Cl∗(Int(G)) ⊂ G. Thus, G is pre∗I-closed.

(2) ⇒ (1) : Let G be a subset of (X, τ, I) and H be a regular open set such that G ⊂ H. By (2), we have
Cl∗(Int(G)) ⊂ Cl∗(Int(H)) ⊂ H. Thus, G is a weakly Ir1-closed set in (X, τ, I).

Theorem 4.2. Let (X, τ, I) be an ideal topological space. If G is a weakly Ir1-closed set and G ⊂ H ⊂ Cl∗(Int(G)),
then H is a weakly Ir1-closed set.
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Proof. Let H ⊂ K and K be a regular open set in X. Since G ⊂ K and G is a weakly Ir1-closed set, then
Cl∗(Int(G)) ⊂ K. Since H ⊂ Cl∗(Int(G)), then

Cl∗(Int(H)) ⊂ Cl∗(Int(G)) ⊂ K.

Thus, Cl∗(Int(H)) ⊂ K and hence, H is a weakly Ir1-closed set.

Corollary 4.3. Let (X, τ, I) be an ideal topological space. If G is a weakly Ir1-closed and open set, then Cl∗(G) is a
weakly Ir1-closed set.

Proof. Let G be a weakly Ir1-closed and open set in (X, τ, I). We have G ⊂ Cl∗(G) ⊂ Cl∗(G) = Cl∗(Int(G)).
Hence, by Theorem 4.2, Cl∗(G) is a weakly Ir1-closed set in (X, τ, I).

Theorem 4.4. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a nowhere dense set, then G is a weakly
Ir1-closed set.

Proof. Let G be a nowhere dense set in X. Since Int(G) ⊂ Int(Cl(G)), then Int(G) = ∅. Hence, Cl∗(Int(G)) = ∅.
Thus, G is a weakly Ir1-closed set in (X, τ, I).

Remark 4.5. The reverse of Theorem 4.4 is not true in general as shown in the following example.

Example 4.6. Let X = {a, b, c, d}, τ = {X,∅, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {b}}. Take A = {a, c, d}. Then A
is weakly Ir1-closed but it is not a nowhere dense set.

Remark 4.7. (1) The intersection of two weakly Ir1-closed sets in an ideal topological space need not be a
weakly Ir1-closed set.

(2) The union of two weakly Ir1-closed sets in an ideal topological space need not be a weakly Ir1-closed
set.

Example 4.8. Let X = {a, b, c, d}, τ = {X,∅, {a}, {b, c}, {a, b, c}} and I = {∅, {a}, {d}, {a, d}}. Take A = {b} and
B = {c}. Then A and B are weakly Ir1-closed but A ∪ B is not a weakly Ir1-closed set.

Example 4.9. Let X = {a, b, c, d}, τ = {X,∅, {c}, {d}, {a, c}, {c, d}, {a, c, d}} and I = {∅, {b}}. Take A = {a, b, c} and
B = {a, c, d}. Then A and B are weakly Ir1-closed but A ∩ B is not a weakly Ir1-closed set.

Lemma 4.10. ([8]) Let A be an open subset of a topological space (X, τ).
(1) If G is regular open set in X, then so is G ∩ A in the subspace (A, τA).
(2) If B (⊂ A) is regular open in (A, τA), then there exists a regular open set G in (X, τ) such that B = G ∩ A.

Theorem 4.11. Let (X, τ, I) be an ideal topological space and H ⊂ G ⊂ X. If G is an open set in X and H is a weakly
Ir1-closed in G, then H is a weakly Ir1-closed set in X.

Proof. Let K be a regular open set in X and H ⊂ K. We have H ⊂ K ∩ G. By Lemma 4.10, K ∩ G is a regular
open set in G. Since H is a weakly Ir1-closed set in G, then Cl∗G(IntG(H)) ⊂ K ∩ G. Also, we have

Cl∗(Int(H)) ⊂ Cl∗G(Int(H)) = Cl∗G(IntG(H)) ⊂ K ∩ G ⊂ K.

Hence, Cl∗(Int(H)) ⊂ K. Thus, H is a weakly Ir1-closed in (X, τ, I).

Theorem 4.12. Let (X, τ, I) be an ideal topological space and H ⊂ G ⊂ X. If G is a regular open set in X and H is a
weakly Ir1-closed set in X, then H is a weakly Ir1-closed set in G.

Proof. Let H ⊂ K and K be a regular open set in G. By Lemma 4.10, there exists a regular open set L in X
such that K = L ∩ G. Since H is a weakly Ir1-closed set in X, then Cl∗(Int(H)) ⊂ K. Also, we have

Cl∗G(IntG(H)) = Cl∗G(Int(H)) = Cl∗(Int(H)) ∩ G ⊂ K ∩ G = K.

Thus, Cl∗G(IntG(H)) ⊂ K. Hence, H is a weakly Ir1-closed set in G.
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Theorem 4.13. Let (X, τ, I) be an ideal topological space and G ⊂ X. Then G is a weakly Ir1-open set if and only if
H ⊂ Int∗(Cl(G)) whenever H ⊂ G and H is a regular closed set.

Proof. Let H be a regular closed set in X and H ⊂ G. It follows that X\H is a regular open set and
X\G ⊂ X\H. Since X\G is a weakly Ir1-closed set, then Cl∗(Int(X\G)) ⊂ X\H. We have X\Int∗(Cl(G)) ⊂ X\H.
Thus, H ⊂ Int∗(Cl(G)).

Conversely, let K be a regular open set in X and X\G ⊂ K. Since X\K is a regular closed set such that
X\K ⊂ G, then X\K ⊂ Int∗(Cl(G)). We have

X\Int∗(Cl(G)) = Cl∗(Int(X\G)) ⊂ K.

Thus, X\G is a weakly Ir1-closed set. Hence, G is a weakly Ir1-open set in (X, τ, I).

Theorem 4.14. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a weakly Ir1-closed set, then Cl∗(Int(G))\G
is a weakly Ir1-open set in (X, τ, I).

Proof. Let G be a weakly Ir1-closed set in (X, τ, I). Suppose that H is a regular closed set such that H ⊂
Cl∗(Int(G))\G. Since G is a weakly Ir1-closed set, it follows from Theorem 3.8 that H = ∅. Thus, we have
H ⊂ Int∗(Cl(Cl∗(Int(G))\G)). It follows from Theorem 4.13 that Cl∗(Int(G))\G is a weakly Ir1-open set in
(X, τ, I).

Theorem 4.15. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a weakly Ir1-open set, then H = X
whenever H is a regular open set and Int∗(Cl(G)) ∪ (X\G) ⊂ H.

Proof. Let H be a regular open set in X and Int∗(Cl(G)) ∪ (X\G) ⊂ H. We have

X\H ⊂ (X\Int∗(Cl(G))) ∩ G
= Cl∗(Int(X\G))\(X\G).

Since X\H is a regular closed set and X\G is a weakly Ir1-closed set, it follows from Theorem 3.8 that
X\H = ∅. Thus, we have H = X.

Theorem 4.16. Let (X, τ, I) be an ideal topological space. If G is a weakly Ir1-open set and Int∗(Cl(G)) ⊂ H ⊂ G, then
H is a weakly Ir1-open set.

Proof. Let G be a weakly Ir1-open set and Int∗(Cl(G)) ⊂ H ⊂ G. Since Int∗(Cl(G)) ⊂ H ⊂ G, then Int∗(Cl(G)) =
Int∗(Cl(H)). Let K be a regular closed set and K ⊂ H. We have K ⊂ G. Since G is a weakly Ir1-open set, it
follows from Theorem 4.13 that

K ⊂ Int∗(Cl(G)) = Int∗(Cl(H)).

Hence, by Theorem 4.13, H is a weakly Ir1-open set in (X, τ, I).

Corollary 4.17. Let (X, τ, I) be an ideal topological space and G ⊂ X. If G is a weakly Ir1-open and closed set, then
Int∗(G) is a weakly Ir1-open set.

Proof. Let G be a weakly Ir1-open and closed set in (X, τ, I). Then Int∗(Cl(G)) = Int∗(G) ⊂ Int∗(G) ⊂ G. Thus,
by Theorem 4.16, Int∗(G) is a weakly Ir1-open set in (X, τ, I).
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