Filomat 27:4 (2013), 529–535 DOI 10.2298/FIL1304529E Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A generalized class of τ^* in ideal spaces

Erdal Ekici^a, Sena Özen^b

^aDepartment of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey ^bDepartment of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey

Abstract. In this paper, a generalized class of τ^* called weakly I_{rg} -open sets in ideal topological spaces is introduced and the notion of weakly I_{rg} -closed sets in ideal topological spaces is studied. The relationships of weakly I_{rg} -closed sets and various properties of weakly I_{rg} -closed sets are investigated.

1. Introduction

In 1999, Dontchev et al. studied the notion of generalized closed sets in ideal topological spaces called I_g -closed sets [2]. In 2008, Navaneethakrishnan and Joseph have studied some characterizations of normal spaces via I_g -open sets [6]. In 2009, Navaneethakrishnan et al. have introduced I_{rg} -open sets to establish some new caharacterizations of mildly normal spaces [7]. The main aim of this paper is to introduce a generalized class of τ^* called weakly I_{rg} -open sets in ideal topological spaces and to study the notion of weakly I_{rg} -closed sets in ideal topological spaces. Moreover, this generalized class of τ^* generalize I_g -open sets and I_{rg} -open sets and pre^{*}_f-open sets. The relationships of weakly I_{rg} -closed sets and various properties of weakly I_{rg} -closed sets are discussed.

2. Preliminaries

In this paper, (X, τ) represent topological space on which no separation axioms are assumed unless explicitly stated. The closure and the interior of a subset *G* of a space *X* will be denoted by Cl(G) and Int(G), respectively. A subset *G* of a topological space (X, τ) is said to be regular open [9] (resp. regular closed [9]) if G = Int(Cl(G)) (resp. G = Cl(Int(G))).

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1) $G \in I$ and $H \subset G$ implies $H \in I$ and

(2) $G \in I$ and $H \in I$ implies $G \cup H \in I$ [5].

For a topological space (X, τ) with an ideal I on X, a set operator $(.)^* : P(X) \to P(X)$ where P(X) is the set of all subsets of X, called a local function [5] of G with respect to τ and I is defined as follows: for $G \subset X$, $G^*(I, \tau) = \{x \in X : H \cap G \notin I \text{ for every } H \in \tau(x)\}$ where $\tau(x) = \{H \in \tau : x \in H\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, called the \star -topology and finer than τ , is defined by $Cl^*(G) = G \cup G^*(I, \tau)$ [4].

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05; Secondary 54A10

Keywords. τ^* , generalized class, weakly I_{rg} -closed set, ideal topological space, generalized closed set, I_g -closed set, pre^{*}_I-closed set

Received: 20 June 2011; Revised 17 February 2012; Accepted: 19 February 2012

Communicated by Ljubiša D.R. Kočinac

Email address: eekici@comu.edu.tr (Erdal Ekici)

We shall simply write G^* for $G^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$. For an ideal I on X, (X, τ, I) is said to be an ideal topological space or simply an ideal space. On the other hand, (G, τ_G, I_G) where τ_G is the relative topology on G and $I_G = \{G \cap J : J \in I\}$ is an ideal topological space for an ideal topological space (X, τ, I) and $G \subset X$ [4].

A subset *G* of an ideal topological space (X, τ, I) is said to be I_g -closed [2] if $G^* \subset H$ whenever $G \subset H$ and *H* is open in (X, τ, I) . A subset *G* of an ideal topological space (X, τ, I) is said to be I_g -open [2] if $X \setminus G$ is I_g -closed. A subset *A* of an ideal topological space (X, τ, I) is said to be pre^{*}_I-open if $A \subset Int^*(Cl(A))$ [3]. A subset *A* of an ideal topological space (X, τ, I) is said to be pre^{*}_I-open. A subset *G* of an ideal topological space (X, τ, I) is called I_{rg} -closed [7] if $G^* \subset H$ whenever $G \subset H$ and *H* is a regular open set in (X, τ, I) . Also, *G* is said to be I_{rg} -open [7] if $X \setminus G$ is an I_{rg} -closed set. A subset *A* of an ideal topological space (X, τ, I) is said to be I-*R* closed [1] if $A = Cl^*(Int(A))$.

3. A generalized class of τ^*

Definition 3.1. Let (X, τ, I) be an ideal topological space. A subset *G* of (X, τ, I) is said to be a weakly I_{rq} -closed set if $(Int(G))^* \subset H$ whenever $G \subset H$ and *H* is a regular open set in *X*.

Definition 3.2. Let (X, τ, I) be an ideal topological space and $G \subset X$. Then *G* is said to be a weakly I_{rg} -open set if $X \setminus G$ is a weakly I_{rg} -closed set.

Remark 3.3. Let (X, τ, I) be an ideal topological space. The following diagram holds for a subset $G \subset X$:

 $\begin{array}{rcl} I_{g}\text{-closed} & \Rightarrow & I_{rg}\text{-closed} & \Rightarrow & \text{weakly } I_{rg}\text{-closed} \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$

These implications are not reversible as shown in the following example and in [1, 2, 7].

Example 3.4. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}\}$ and $I = \{\emptyset, \{b\}\}$. Take $A = \{a, c, d\}$. Then A is I_{rg} -closed but it is not pre^{*}_I-closed. Take $B = \{a\}$. Then B is pre^{*}_I-closed and also weakly I_{rg} -closed but it is not I_{rg} -closed.

Theorem 3.5. Let (X, τ, I) be an ideal topological space and $G \subset X$. The following properties are equivalent: (1) *G* is a weakly I_{rg} -closed set, (2) $Cl^*(Int(G)) \subset H$ whenever $G \subset H$ and *H* is a regular open set in *X*.

Proof. (1) \Rightarrow (2) : Let *G* be a weakly I_{rg} -closed set in (*X*, τ , *I*). Suppose that $G \subset H$ and *H* is a regular open set in *X*. We have $(Int(G))^* \subset H$. Since $Int(G) \subset G \subset H$, then

 $(Int(G))^* \cup Int(G) \subset H.$

This implies that $Cl^*(Int(G)) \subset H$.

 $(2) \Rightarrow (1)$: Let $Cl^*(Int(G)) \subset H$ whenever $G \subset H$ and H is regular open in X. Since $(Int(G))^* \cup Int(G) \subset H$, then $(Int(G))^* \subset H$ whenever $G \subset H$ and H is a regular open set in X. \Box

Theorem 3.6. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is regular open and weakly I_{rg} -closed, then G is \star -closed.

Proof. Let *G* be a regular open and weakly I_{rg} -closed set in (X, τ, I) . Since *G* is regular open and weakly I_{rg} -closed, $Cl^*(G) = Cl^*(Int(G)) \subset G$. Thus, *G* is a \star -closed set in (X, τ, I) . \Box

531

Theorem 3.7. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a weakly I_{rg} -closed set, then $(Int(G))^* \setminus G$ contains no any nonempty regular closed set.

Proof. Let *G* be a weakly I_{rg} -closed set in (X, τ, I) . Suppose that *H* is a regular closed set such that $H \subset (Int(G))^* \setminus G$. Since *G* is a weakly I_{rg} -closed set, $X \setminus H$ is regular open and $G \subset X \setminus H$, then $(Int(G))^* \subset X \setminus H$. We have $H \subset X \setminus (Int(G))^*$. Hence,

 $H \subset (Int(G))^* \cap (X \setminus (Int(G))^*) = \emptyset.$

Thus, $(Int(G))^* \setminus G$ contains no any nonempty regular closed set. \Box

Theorem 3.8. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a weakly I_{rg} -closed set, then $Cl^*(Int(G))\setminus G$ contains no any nonempty regular closed set.

Proof. Suppose that *H* is a regular closed set such that $H \subset Cl^*(Int(G)) \setminus G$. By Theorem 3.7, it follows from the fact that $Cl^*(Int(G)) \setminus G = ((Int(G))^* \cup Int(G)) \setminus G$. \Box

Remark 3.9. The reverse of Theorem 3.8 is not true in general as shown in the following example.

Example 3.10. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{b\}\}$. Take $A = \{c\}$. Then $Cl^*(Int(A))\setminus A$ contains no any nonempty regular closed set but A is not weakly I_{rg} -closed.

Theorem 3.11. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

(1) *G* is pre_I^* -closed for each weakly I_{rg} -closed set *G* in (*X*, τ , *I*),

(2) Each singleton $\{x\}$ of X is a regular closed set or $\{x\}$ is pre_1^* -open.

Proof. (1) ⇒ (2) : Let *G* be pre^{*}_{*I*}-closed for each weakly I_{rg} -closed set *G* in (*X*, τ , *I*) and $x \in X$. We have $Cl^*(Int(G)) \subset G$ for each weakly I_{rg} -closed set *G* in (*X*, τ , *I*). Assume that {*x*} is not a regular closed set. It follows that *X* is the only regular open set containing *X*\{*x*}. Then, *X*\{*x*} is a weakly I_{rg} -closed set in (*X*, τ , *I*). Thus, $Cl^*(Int(X \setminus \{x\})) \subset X \setminus \{x\}$ and hence {*x*} ⊂ $Int^*(Cl(\{x\}))$. Consequently, {*x*} is pre^{*}_{*I*}-open.

(2) \Rightarrow (1) : Let *G* be a weakly I_{rq} -closed set in (X, τ, I) . Let $x \in Cl^*(Int(G))$.

Suppose that $\{x\}$ is pre^{*}_{*I*}-open. We have $\{x\} \subset Int^*(Cl(\{x\}))$. Since $x \in Cl^*(Int(G))$, then $Int^*(Cl(\{x\})) \cap Int(G) \neq \emptyset$. It follows that $Cl(\{x\}) \cap Int(G) \neq \emptyset$. We have $Cl(\{x\} \cap Int(G)) \neq \emptyset$ and then $\{x\} \cap Int(G) \neq \emptyset$. Hence, $x \in Int(G)$. Thus, we have $x \in G$.

Suppose that {*x*} is a regular closed set. By Theorem 3.8, $Cl^*(Int(G))\setminus G$ does not contain {*x*}. Since $x \in Cl^*(Int(G))$, then we have $x \in G$.

Consequently, we have $x \in G$. Thus, $Cl^*(Int(G)) \subset G$ and hence G is pre_t^* -closed. \Box

Theorem 3.12. Let (X, τ, I) be an ideal topological space and $G \subset X$. If $Cl^*(Int(G)) \setminus G$ contains no any nonempty \star -closed set, then G is a weakly I_{rg} -closed set.

Proof. Suppose that $Cl^*(Int(G))\setminus G$ contains no any nonempty \star -closed set in (X, τ, I) . Let $G \subset H$ and H be a regular open set. Assume that $Cl^*(Int(G))$ is not contained in H. It follows that $Cl^*(Int(G)) \cap (X \setminus H)$ is a nonempty \star -closed subset of $Cl^*(Int(G))\setminus G$. This is a contradiction. Hence, G is a weakly I_{ra} -closed set. \Box

Theorem 3.13. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a weakly I_{rg} -closed set, then $Int(G) = H \setminus K$ where H is I-R closed and K contains no any nonempty regular closed set.

Proof. Let *G* be a weakly I_{rg} -closed set in (X, τ, I) . Take $K = (Int(G))^* \setminus G$. Then, by Theorem 3.7, *K* contains no any nonempty regular closed set. Take $H = Cl^*(Int(G))$. Then $H = Cl^*(Int(H))$. Moreover, we have

$$\begin{aligned} H \setminus K &= ((Int(G))^* \cup Int(G)) \setminus ((Int(G))^* \setminus G) \\ &= ((Int(G))^* \cup Int(G)) \cap (X \setminus (Int(G))^* \cup G) \\ &= Int(G). \end{aligned}$$

Theorem 3.14. Let (X, τ, I) be an ideal topological space and $G \subset X$. Assume that G is a weakly I_{rg} -closed set. The following properties are equivalent:

(1) G is pre_1^* -closed,

(2) $Cl^*(Int(G)) \setminus G$ is a regular closed set,

(3) $(Int(G))^* \setminus G$ is a regular closed set.

Proof. (1) \Rightarrow (2) : Let *G* be pre^{*}_{*I*}-closed. We have $Cl^*(Int(G)) \subset G$. Then, $Cl^*(Int(G)) \setminus G = \emptyset$. Thus, $Cl^*(Int(G)) \setminus G$ is a regular closed set.

 $(2) \Rightarrow (1)$: Let $Cl^*(Int(G)) \setminus G$ be a regular closed set. Since *G* is a weakly I_{rg} -closed set in (X, τ, I) , then by Theorem 3.8, $Cl^*(Int(G)) \setminus G = \emptyset$. Hence, we have $Cl^*(Int(G)) \subset G$. Thus, *G* is pre_I^* -closed.

(2) \Leftrightarrow (3) : It follows easily from that $Cl^*(Int(G))\setminus G = (Int(G))^*\setminus G$. \Box

Theorem 3.15. Let (X, τ, I) be an ideal topological space and $G \subset X$ be a weakly I_{rg} -closed set. Then $G \cup (X \setminus (Int(G))^*)$ is a weakly I_{rg} -closed set in (X, τ, I) .

Proof. Let *G* be a weakly I_{rg} -closed set in (X, τ, I) . Suppose that *H* is a regular open set such that $G \cup (X \setminus (Int(G))^*) \subset H$. We have

 $\begin{aligned} X \setminus H &\subset X \setminus (G \cup (X \setminus (Int(G))^*)) \\ &= (X \setminus G) \cap (Int(G))^* \\ &= (Int(G))^* \setminus G. \end{aligned}$

Since $X \setminus H$ is a regular closed set and *G* is a weakly I_{rg} -closed set, it follows from Theorem 3.7 that $X \setminus H = \emptyset$. Hence, X = H. Thus, *X* is the only regular open set containing $G \cup (X \setminus (Int(G))^*)$. Consequently, $G \cup (X \setminus (Int(G))^*)$ is a weakly I_{rg} -closed set in (X, τ, I) . \Box

Corollary 3.16. Let (X, τ, I) be an ideal topological space and $G \subset X$ be a weakly I_{rg} -closed set. Then $(Int(G))^* \setminus G$ is a weakly I_{rg} -open set in (X, τ, I) .

Proof. Since $X \setminus ((Int(G))^* \setminus G) = G \cup (X \setminus (Int(G))^*)$, it follows from Theorem 3.15 that $(Int(G))^* \setminus G$ is a weakly I_{rg} -open set in (X, τ, I) . \Box

Theorem 3.17. Let (X, τ, I) be an ideal topological space and $G \subset X$. The following properties are equivalent:

- (1) *G* is a \star -closed and regular open set,
- (2) *G* is I-R closed and a regular open set,
- (3) *G* is a weakly I_{rg} -closed and regular open set.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$: Obvious.

 $(3) \Rightarrow (1)$: It follows from Theorem 3.6. \Box

4. Further properties

Theorem 4.1. Let (X, τ, I) be an ideal topological space. The following properties are equivalent:

- (1) Each subset of (X, τ, I) is a weakly I_{ra} -closed set,
- (2) *G* is pre_{t}^{*} -closed for each regular open set *G* in *X*.

Proof. (1) \Rightarrow (2) : Suppose that each subset of (*X*, τ , *I*) is a weakly I_{rg} -closed set. Let *G* be a regular open set. Since *G* is weakly I_{rg} -closed, then we have $Cl^*(Int(G)) \subset G$. Thus, *G* is pre^{*}_I-closed.

 $(2) \Rightarrow (1)$: Let *G* be a subset of (X, τ, I) and *H* be a regular open set such that $G \subset H$. By (2), we have $Cl^*(Int(G)) \subset Cl^*(Int(H)) \subset H$. Thus, *G* is a weakly I_{rg} -closed set in (X, τ, I) . \Box

Theorem 4.2. Let (X, τ, I) be an ideal topological space. If G is a weakly I_{rg} -closed set and $G \subset H \subset Cl^*(Int(G))$, then H is a weakly I_{rg} -closed set.

Proof. Let $H \subset K$ and K be a regular open set in X. Since $G \subset K$ and G is a weakly I_{rg} -closed set, then $Cl^*(Int(G)) \subset K$. Since $H \subset Cl^*(Int(G))$, then

 $Cl^*(Int(H)) \subset Cl^*(Int(G)) \subset K.$

Thus, $Cl^*(Int(H)) \subset K$ and hence, *H* is a weakly I_{rq} -closed set. \Box

Corollary 4.3. Let (X, τ, I) be an ideal topological space. If G is a weakly I_{rg} -closed and open set, then $Cl^*(G)$ is a weakly I_{rg} -closed set.

Proof. Let *G* be a weakly I_{rg} -closed and open set in (X, τ, I) . We have $G \subset Cl^*(G) \subset Cl^*(G) = Cl^*(Int(G))$. Hence, by Theorem 4.2, $Cl^*(G)$ is a weakly I_{rg} -closed set in (X, τ, I) . \Box

Theorem 4.4. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a nowhere dense set, then G is a weakly I_{rq} -closed set.

Proof. Let *G* be a nowhere dense set in *X*. Since $Int(G) \subset Int(Cl(G))$, then $Int(G) = \emptyset$. Hence, $Cl^*(Int(G)) = \emptyset$. Thus, *G* is a weakly I_{rq} -closed set in (X, τ, I) . \Box

Remark 4.5. The reverse of Theorem 4.4 is not true in general as shown in the following example.

Example 4.6. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{b\}\}$. Take $A = \{a, c, d\}$. Then A is weakly I_{rg} -closed but it is not a nowhere dense set.

Remark 4.7. (1) The intersection of two weakly I_{rg} -closed sets in an ideal topological space need not be a weakly I_{rg} -closed set.

(2) The union of two weakly I_{rg} -closed sets in an ideal topological space need not be a weakly I_{rg} -closed set.

Example 4.8. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Take $A = \{b\}$ and $B = \{c\}$. Then A and B are weakly I_{rq} -closed but $A \cup B$ is not a weakly I_{rq} -closed set.

Example 4.9. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}\}$ and $I = \{\emptyset, \{b\}\}$. Take $A = \{a, b, c\}$ and $B = \{a, c, d\}$. Then A and B are weakly I_{rq} -closed but $A \cap B$ is not a weakly I_{rq} -closed set.

Lemma 4.10. ([8]) Let A be an open subset of a topological space (X, τ) .

(1) If G is regular open set in X, then so is $G \cap A$ in the subspace (A, τ_A) .

(2) If $B (\subset A)$ is regular open in (A, τ_A) , then there exists a regular open set G in (X, τ) such that $B = G \cap A$.

Theorem 4.11. Let (X, τ, I) be an ideal topological space and $H \subset G \subset X$. If G is an open set in X and H is a weakly I_{rq} -closed in G, then H is a weakly I_{rq} -closed set in X.

Proof. Let *K* be a regular open set in *X* and $H \subset K$. We have $H \subset K \cap G$. By Lemma 4.10, $K \cap G$ is a regular open set in *G*. Since *H* is a weakly I_{rg} -closed set in *G*, then $Cl_G^*(Int_G(H)) \subset K \cap G$. Also, we have

 $Cl^{*}(Int(H)) \subset Cl^{*}_{G}(Int(H)) = Cl^{*}_{G}(Int_{G}(H)) \subset K \cap G \subset K.$

Hence, $Cl^*(Int(H)) \subset K$. Thus, *H* is a weakly I_{rq} -closed in (X, τ, I) . \Box

Theorem 4.12. Let (X, τ, I) be an ideal topological space and $H \subset G \subset X$. If G is a regular open set in X and H is a weakly I_{rg} -closed set in X, then H is a weakly I_{rg} -closed set in G.

Proof. Let $H \subset K$ and K be a regular open set in G. By Lemma 4.10, there exists a regular open set L in X such that $K = L \cap G$. Since H is a weakly I_{rq} -closed set in X, then $Cl^*(Int(H)) \subset K$. Also, we have

$$Cl_{G}^{*}(Int_{G}(H)) = Cl_{G}^{*}(Int(H)) = Cl^{*}(Int(H)) \cap G \subset K \cap G = K.$$

Thus, $Cl_G^*(Int_G(H)) \subset K$. Hence, *H* is a weakly I_{rg} -closed set in *G*. \Box

Theorem 4.13. Let (X, τ, I) be an ideal topological space and $G \subset X$. Then G is a weakly I_{rg} -open set if and only if $H \subset Int^*(Cl(G))$ whenever $H \subset G$ and H is a regular closed set.

Proof. Let *H* be a regular closed set in *X* and $H \subset G$. It follows that $X \setminus H$ is a regular open set and $X \setminus G \subset X \setminus H$. Since $X \setminus G$ is a weakly I_{rg} -closed set, then $Cl^*(Int(X \setminus G)) \subset X \setminus H$. We have $X \setminus Int^*(Cl(G)) \subset X \setminus H$. Thus, $H \subset Int^*(Cl(G))$.

Conversely, let *K* be a regular open set in *X* and $X \setminus G \subset K$. Since $X \setminus K$ is a regular closed set such that $X \setminus K \subset G$, then $X \setminus K \subset Int^*(Cl(G))$. We have

 $X \setminus Int^*(Cl(G)) = Cl^*(Int(X \setminus G)) \subset K.$

Thus, *X**G* is a weakly I_{rq} -closed set. Hence, *G* is a weakly I_{rq} -open set in (*X*, τ , *I*).

Theorem 4.14. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a weakly I_{rg} -closed set, then $Cl^*(Int(G))\setminus G$ is a weakly I_{rg} -open set in (X, τ, I) .

Proof. Let *G* be a weakly I_{rg} -closed set in (X, τ, I) . Suppose that *H* is a regular closed set such that $H \subset Cl^*(Int(G))\setminus G$. Since *G* is a weakly I_{rg} -closed set, it follows from Theorem 3.8 that $H = \emptyset$. Thus, we have $H \subset Int^*(Cl(Cl^*(Int(G))\setminus G))$. It follows from Theorem 4.13 that $Cl^*(Int(G))\setminus G$ is a weakly I_{rg} -open set in (X, τ, I) . \Box

Theorem 4.15. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a weakly I_{rg} -open set, then H = X whenever H is a regular open set and $Int^*(Cl(G)) \cup (X \setminus G) \subset H$.

Proof. Let *H* be a regular open set in *X* and $Int^*(Cl(G)) \cup (X \setminus G) \subset H$. We have

 $X \setminus H \subset (X \setminus Int^*(Cl(G))) \cap G$ = $Cl^*(Int(X \setminus G)) \setminus (X \setminus G).$

Since $X \setminus H$ is a regular closed set and $X \setminus G$ is a weakly I_{rg} -closed set, it follows from Theorem 3.8 that $X \setminus H = \emptyset$. Thus, we have H = X. \Box

Theorem 4.16. Let (X, τ, I) be an ideal topological space. If G is a weakly I_{rg} -open set and $Int^*(Cl(G)) \subset H \subset G$, then H is a weakly I_{rg} -open set.

Proof. Let *G* be a weakly I_{rg} -open set and $Int^*(Cl(G)) \subset H \subset G$. Since $Int^*(Cl(G)) \subset H \subset G$, then $Int^*(Cl(G)) = Int^*(Cl(H))$. Let *K* be a regular closed set and $K \subset H$. We have $K \subset G$. Since *G* is a weakly I_{rg} -open set, it follows from Theorem 4.13 that

 $K \subset Int^*(Cl(G)) = Int^*(Cl(H)).$

Hence, by Theorem 4.13, *H* is a weakly I_{rq} -open set in (*X*, τ , *I*).

Corollary 4.17. Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is a weakly I_{rg} -open and closed set, then $Int^*(G)$ is a weakly I_{rg} -open set.

Proof. Let *G* be a weakly I_{rg} -open and closed set in (X, τ, I) . Then $Int^*(Cl(G)) = Int^*(G) \subset Int^*(G) \subset G$. Thus, by Theorem 4.16, $Int^*(G)$ is a weakly I_{rg} -open set in (X, τ, I) . \Box

Acknowledgements.

We would like to express our sincere gratitude to the referees.

References

- A. Acikgoz, S. Yuksel, Some new sets and decompositions of A_{I-R}-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar. 114 (2007) 79–89.
- J. Dontchev, M. Ganster, T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica 49 (1999) 395–401.
- [3] E. Ekici, On \mathcal{AC}_{I} -sets, \mathcal{BC}_{I} -sets, β_{I}^{*} -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform. 20 (2011) 47–54.
- [4] D. Janković, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990) 295-310.
- [5] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [6] M. Navaneethakrishnan, J.P. Joseph, *g*-closed sets in ideal topological spaces, Acta Math. Hungar. 119 (2008) 365–371.
- [7] M. Navaneethakrishnan, J.P. Joseph, D. Sivaraj, I_g -normal and I_g -regular spaces, Acta Math. Hungar. 125 (2009) 327–340.
- [8] P.E. Long, L.L. Herrington, Basic properties of regular-closed functions, Rend. Circ. Mat. Palermo 27 (1978) 20–28.
- [9] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937) 375–381.