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Invariance of green equilibrium measure on the domain
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Abstract. We prove that the Green equilibrium measure and the Green equilibrium energy of a compact
set K relative to the domains D and Ω are the same if and only if D is nearly equal to Ω, for a wide class of
compact sets K. Also, we prove that equality of Green equilibrium measures arises if and only if the one
domain is related with a level set of the Green equilibrium potential of K relative to the other domain.

1. Introduction

Consider the following inverse problem in classical potential theory: Suppose K is a compact set in
a domain D. Do the equilibrium measure and the equilibrium energy of K relative to D characterize the
domain D? More generally, if we know the energy and the measure on K, what can we conclude about the
ambient domain D? We proceed to a rigorous formulation of the problem.

Let D be a Greenian open subset of Rn and denote by GD(x, y) the Green function of D. Also let K be a
compact subset of D. The Green equilibrium energy of K relative to D is defined by

I(K,D) = inf
µ

∫∫
GD(x, y)dµ(x)dµ(y),

where the infimum is taken over all unit Borel measures µ supported on K. The Green capacity of K relative
to D is the number

CD(K) =
1

I(K,D)
.

When I(K,D) < +∞, the unique unit Borel measure µK for which the above infimum is attained is the Green
equilibrium measure and the function

UD
µK

(x) =
∫

GD(x, y)dµK(y)

is the Green equilibrium potential of K relative to D. See e.g. [6, p. 174] or [2, p. 134]. We denote by C2(E) the
logarithmic (n = 2) or Newtonian (n ≥ 3) capacity of the Borel set E. When E ⊂ D, the equalities CD(E) = 0
and C2(E) = 0 are equivalent; [6, p. 174]. If two Borel sets A,B ⊂ Rn differ only on a set of zero capacity
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(namely, C2(A \B) = C2(B \A) = 0), then we say that A,B are nearly everywhere equal and write An.e.
=B. Nearly

everywhere equal sets have the same potential theoretic behavior.

Suppose that D is a domain and E is a compact subset of D \ K. If C2(E) = 0, then the Green capacity
and the Green equilibrium measure of K relative to the open sets D and D \ E are the same. That happens
because the sets D and D \ E are nearly everywhere equal. The following question arises naturally:

Does there exist a Greenian domain Ω, not nearly everywhere equal to D, such that the Green
capacity and the Green equilibrium measure of K relative to D and Ω are the same?

In general the answer is positive. However, we shall show that for a large class of compact sets (for
example for compact sets with nonempty interior) the answer is negative. That is, given a compact set
K with nonempty interior, the Green equilibrium measure µK and the positive number CD(K) completely
characterizes D from the point of view of potential theory.

There is a second question:

Suppose that the Green equilibrium measures of K relative to D and Ω are the same. How are
the sets D and Ω related?

In that case, the boundary of the domain relative to which K has smaller Green energy is a level set of the
Green equilibrium potential of K relative to the other domain.

In our main result we give an answer to the above questions, for compact sets with nonempty interior.

Theorem 1. Let K be a compact subset ofRn with nonempty interior. Let D1,D2 be two Greenian subdomains ofRn

that contain K and let µ1 and µ2 be the Green equilibrium measures of K relative to D1 and D2, respectively. Then

(i) µ1 = µ2 and I(K,D1) = I(K,D2) if and only if D1
n.e.
=D2.

(ii) If I(K,D1) < I(K,D2) and the set

D̃2 = {x ∈ D2 : UD2
µ2

(x) > I(K,D2) − I(K,D1)}

contains K, we have
µ1 = µ2 if and only if D1

n.e.
= D̃2.

Moreover, we shall show that Theorem 1 is valid for a much wider class of compact sets (see Remark
4.1).

In the following section we introduce the concepts of Green potential theory that are needed for our
results. Theorem 1 is proved in section 3. In section 4 we examine the case of compact sets K with empty
interior, we give some counterexamples and we pose a conjecture and a question.

2. Background Material

We denote by B(x, r) and S(x, r) the open ball and the sphere with center x and radius r inRn, respectively.
For a set E ⊂ Rn, the interior, the closure and the boundary of E are denoted by E◦, E and ∂E, respectively.
The surface area of the unit sphere S(0, 1) of Rn is denoted by σn.

If a property holds for all the points of a set A apart from a set of zero capacity we will say that the
property holds for nearly every (n.e.) point of A.

The logarithmic (n = 2) or Newtonian (n ≥ 3) kernel is denoted by

K (x, y) :=
 log 1

|x−y| , n = 2,
1

|x−y|n−2 , n ≥ 3,
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for (x, y) ∈ Rn ×Rn. If D ⊂ Rn is a Greenian open set then

GD(x, y) = K (x, y) +H(x, y)

where, for fixed y, H(·, y) is the greatest harmonic minorant ofK (·, y) on D. If µ is a measure with compact
support on D, the Green potential of µ is the function

UD
µ (x) =

∫
GD(x, y)dµ(y), x ∈ D.

Then (see [2, pp. 96-104]) UD
µ is superharmonic on D, harmonic on D \ supp(µ) and the Riesz measure of

UD
µ is proportional to µ; more precisely, ∆UD

µ = −κnµ, where ∆ is the distributional Laplacian on D and

κn =

{
σ2, n = 2,

(n − 2)σn, n ≥ 3.

We shall need the following result for the boundary behavior of a Green potential.

Theorem 2.1. [2, p. 148] LetΩ be a Greenian open subset of Rn and let µ be a Borel measure with compact support
in Ω. Then

lim
Ω∋x→ξ

UΩµ (x) = 0,

for nearly every point ξ ∈ ∂Ω.

Also, if UD
µK

is the Green equilibrium potential of a compact set K relative to D, then the equality

UD
µK

(x) = I(K,D) (1)

holds for all x ∈ K◦ and for nearly every point x ∈ K; ([5, p. 138]).
The following theorem gives a geometric interpretation of the fact that sets of zero capacity are negligible.

Theorem 2.2. ([2, p. 125]). LetΩ ⊂ Rn be a domain and E a relatively closed subset ofΩ with C2(E) = 0. Then the
set Ω \ E is connected.

Remark 2.1. When the open set D \ K is connected, it is called a condenser and the sets Rn \ D and K are
called the plates of the condenser; see [1, 3]. It is well known that Green potential theory and condenser
theory are equivalent; see e.g. [4, p. 700-701] or [7, p. 393]. Therefore, Theorem 1 can be restated as a
theorem about condensers.

3. Dependence of Green equilibrium measure on the domain

Let D be a Greenian open subset ofRn and K a compact subset of D. First we shall examine the open sets
bounded by the level surfaces of the Green equilibrium potential of K relative to D. The Green equilibrium
measure is the same for each of these open sets.

Lemma 3.1. Let D be a Greenian open subset ofRn and let K be a compact subset of D that has finite Green equilibrium
energy relative to D. Also let µK be the Green equilibrium measure of K relative to D and for 0 < α < I(K,D), let

Dα = {x ∈ D : UD
µK

(x) > α}.

If K ⊂ Dα and µα is the Green equilibrium measure of K relative to Dα, then µα = µK and

I(K,Dα) = I(K,D) − α.
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Proof. The Green equilibrium potential UD
µK

is a superharmonic function on D so, in particular, it is lower
semicontinuous on D. Therefore the sets

Dα = {x ∈ D : UD
µK

(x) > α}

are open for all α ∈ (0, I(K,D)).
Choose α ∈ (0, I(K,D)) such that K ⊂ Dα. Consider the function U : Dα 7→ R with

U(x) = UD
µK

(x) − α.

Then U is harmonic on Dα \ K. Also, by property (1) of the Green equilibrium potentials, U has boundary
values (I(K,D) − α) n.e. on ∂K and 0 on ∂Dα. Therefore, by the extended maximum principle and the
boundary behavior of the Green equilibrium potential UDα

µα on Dα \ K,

UDα
µα (x) =

I(K,Dα)
I(K,D) − αU(x).

Applying the distributional Laplacian on Dα we get

∆(UDα
µα ) = ∆

( I(K,Dα)
I(K,D) − α (UD

µK
− α)
)
,

so
−κnµα = −κn

I(K,Dα)
I(K,D) − αµK

and
µα =

I(K,Dα)
I(K,D) − αµK.

Since µα and µK are unit measures, we conclude that µα = µK and I(K,Dα) = I(K,D) − α.

In order to proof Theorem 1 we shall need some more lemmas. In the following lemma we show that
the difference of two Green potentials of the same measure is a harmonic function.

Lemma 3.2. Let D1 and D2 be two Greenian open subsets of Rn such that D1 ∩ D2 , ∅. Also, let µ be a Borel
measure with compact support in D1 ∩D2 such that the Green potentials UD1

µ and UD2
µ are finite on D1 ∩D2. Then

the difference
UD1
µ −UD2

µ

is a harmonic function on D1 ∩D2.

Proof. Let
Gi(x, y) = K (x, y) +Hi(x, y)

be the Green function of Di, i = 1, 2, respectively. Then

UD1
µ (x) −UD2

µ (x) =

∫
K
K (x, y)dµ(y) +

∫
K

H1(x, y)dµ(y)

−
∫

K
K (x, y)dµ(y) −

∫
K

H2(x, y)dµ(y)

=

∫
K

[H1(x, y) −H2(x, y)]dµ(y).

The difference H1(x, y) − H2(x, y) is a harmonic function on D1 ∩ D2 on both variables x and y, separately.
Therefore,

x 7→ UD1
µ (x) −UD2

µ (x) =
∫

K
[H1(x, y) −H2(x, y)]dµ(y)

is a harmonic function on D1 ∩D2; see ([5, Lemma 6.7, p. 103]).
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We shall need the fact that particular parts of the boundary of an open set belong to the reduced kernel
[6, p. 164] of the boundary.

Lemma 3.3. LetΩ be an open subset ofRn. Suppose thatRn \Ω , ∅ and let O be a connected component ofRn \Ω.
Then for all ξ ∈ ∂O and for all r > 0,

C2(B(ξ, r) ∩ ∂O) > 0.

Proof. Let ξ ∈ ∂O and r > 0. Then B(ξ, r) \ ∂O intersects Ω and O, so it is not connected. Then, since
B(ξ, r) ∩ ∂O is a relatively closed subset of B(ξ, r), it follows from Theorem 2.2 that

C2(B(ξ, r) ∩ ∂O) > 0.

The next lemma gives a characterization of nearly everywhere equal sets: the Green potential of any
measure with compact support is the same.

Lemma 3.4. Let D1 and D2 be two Greenian domains ofRn. Then D1
n.e.
=D2 if and only if there exists a Borel measure

µ with compact support in D1 ∩D2 such that UD1
µ ,U

D2
µ are non constant functions on each connected component of

D1 ∩D2 and UD1
µ = UD2

µ on an open ball B ⊂ D1 ∩D2.

Proof. Suppose that D1
n.e.
=D2. Then GD1 (x, y) = GD2 (x, y) for all x, y ∈ D1 ∩ D2 ([2, Corollary 5.2.5, p. 128]).

Therefore

UD1
µ (x) =

∫
GD1 (x, y)dµ(y) =

∫
GD2 (x, y)dµ(y) = UD2

µ (x),

for all x ∈ D1 ∩D2 and for all Borel measures µwith compact support in D1 ∩D2.

Conversely, suppose that µ is a Borel measure with compact support in D1 ∩D2 such that UD1
µ ,U

D2
µ are

non constant functions on each connected component of D1 ∩D2 and UD1
µ = UD2

µ on a ball B ⊂ D1 ∩D2. By
Lemma 3.2, the function

u = UD1
µ −UD2

µ

is harmonic on D1 ∩D2 and vanishes on the ball B. Therefore, by the identity principle ([2, Lemma 1.8.3, p.
27]), u vanishes on the connected component A of D1 ∩D2 that contains B. That is, UD1

µ = UD2
µ on A.

Suppose that C2(D1 \ A) > 0. We shall show that C2(D1 ∩ ∂A) > 0. Consider the decomposition

D1 \ A = (D1 ∩ ∂A) ∪ (D1 ∩ (Rn \ A)).

If D1 ∩ (Rn \ A) = ∅, then
C2(D1 ∩ ∂A) = C2(D1 \ A) > 0.

Suppose that D1 ∩ (Rn \ A) , ∅. Let O be a connected component of Rn \ A that intersects D1. Since D1
intersects O and Rn \O, D1 ∩ ∂O , ∅. Let ξ ∈ D1 ∩ ∂O and r > 0 such that B(ξ, r) ⊂ D1. By Lemma 3.3,

C2(D1 ∩ ∂A) ≥ C2(B(ξ, r) ∩ ∂O) > 0.

Therefore, in any case C2(D1 ∩ ∂A) > 0. Then, since ∂A ⊂ (∂D1 ∪ ∂D2) and D1 ∩ ∂A ⊂ D1, we have that
D1 ∩ ∂A is a subset of ∂D2 with positive capacity. From Theorem 2.1 we have that there exist ξ0 ∈ D1 ∩ ∂A
such that

lim
A∋x→ξ0

UD2
µ (x) = lim

D2∋x→ξ0

UD2
µ (x) = 0.

Since supp(µ) is a compact subset of D1∩D2, ξ0 ∈ D1 andξ0 ∈ ∂D2, UD1
µ is harmonic on an open neighborhood

of ξ0. So
lim

A∋x→ξ0

UD1
µ (x) = lim

D1∋x→ξ0

UD1
µ (x) = UD1

µ (ξ0) > 0.
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Then, since UD1
µ = UD2

µ on A, we obtain

0 = lim
A∋x→ξ0

UD2
µ (x) = lim

A∋x→ξ0

UD1
µ (x) > 0,

which is a contradiction.
Therefore C2(D1 \ A) = 0. Since A ⊂ D1, we get D1

n.e.
=A. In a similar way we can show that D2

n.e.
=A.

Therefore, in particular, D1
n.e.
=D2.

We proceed to prove Theorem 1.

Proof of Theorem 1. (i) Suppose that D1
n.e.
=D2. Then the relations µ1 = µ2 and I(K,D1) = I(K,D2) follow

from the equality
GD1 (x, y) = GD2 (x, y)

for all x, y ∈ K ([2, Corollary 5.2.5, p. 128]).

Conversely, suppose that µ1 = µ2 and I(K,D1) = I(K,D2). By property (1) of the Green equilibrium
potentials,

UD1
µ1

(x) −UD2
µ2

(x) = I(K,D1) − I(K,D2) = 0,

for all x ∈ K◦. Then, by Lemma 3.4, D1
n.e.
=D2.

(ii) Let µ̃2 be the Green equilibrium measure of K relative to D̃2. By Lemma 3.1, µ̃2 = µ2 and I(K, D̃2) =
I(K,D1). Suppose that D1

n.e.
= D̃2. Since D1 is a domain, by Theorem 2.2, D̃2 is also a domain. Then by (i),

µ1 = µ̃2 = µ2.

Conversely, suppose that µ1 = µ2. Let O be a connected component of D̃2 that intersects the interior of
K. From property (1) of the Green equilibrium potentials,

UD1
µ1

(x) −UD̃2
µ̃2

(x) = I(K,D1) − I(K, D̃2) = 0,

for all x ∈ K◦ ∩O. Also, UD̃2
µ̃2
= UO

µ̃2 |O on O and µ1 = µ2 = µ̃2. By Lemma 3.4, D1
n.e.
=O. Therefore

D1 ∩ (D̃2 \O) = ∅

and K ⊂ O, since K ⊂ D̃2. Suppose that D̃2 , O and let A be a second connected component of D̃2. Then
K ∩ A = ∅, UD2

µ2
is harmonic on A and

UD2
µ2
= I(K,D2) − I(K,D1)

on ∂A. By the maximum principle, UD2
µ2
= I(K,D2) − I(K,D1) on A and by the identity principle UD2

µ2
=

I(K,D2) − I(K,D1) on the connected component B of D2 \ K that contains A. Also ∂B ⊂ (∂D2 ∪ ∂K). But

lim
D2∋x→ζ

UD2
µ2

(x) = 0 , I(K,D2) − I(K,D1), for n.e. ζ ∈ ∂D2

and
UD2
µ2
= I(K,D2) , I(K,D2) − I(K,D1), n.e. on ∂K,

which is a contradiction. Therefore D̃2 = O and D1
n.e.
= D̃2.

Remark 3.1. Let B be a ball that contains K. If the open set B \ K is regular for the Dirichlet problem, the
property K ⊂ D̃2 is always true.
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4. Compact sets with empty interior and counterexamples

Let K be a compact subset of Rn and let D1,D2 be two Greenian subdomains of Rn that contain K. We
shall examine the case where the domains D1,D2 are not nearly everywhere equal and the Green equilibrium
measures of K relative to D1,D2 are the same. It turns out that, in most cases, K must be sufficiently smooth.

Theorem 4.1. Let K be a compact subset of Rn with positive capacity and let D1,D2 be two Greenian subdomains of
Rn that are not nearly everywhere equal and contain K. Also let µ1 and µ2 be the Green equilibrium measures of K
relative to D1 and D2, respectively. If µ1 = µ2 and I(K,D1) = I(K,D2), then there exists a level set L of a non constant
harmonic function such that C2(K \ L) = 0.

Proof. By Lemma 3.2, the function
h(x) = UD1

µ1
(x) −UD2

µ2
(x)

is harmonic on D1 ∩D2. Since D1,D2 are not nearly everywhere equal, Lemma 3.4 shows that h cannot be
0 on a non-empty open subset of D1 ∩D2. From property (1) of the Green equilibrium potentials,

h(x) = UD1
µ1

(x) −UD2
µ2

(x) = I(K,D1) − I(K,D2) = 0,

for nearly every point x ∈ K. So, h is a non constant harmonic function on every connected component A
of D1 ∩D2 such that C2(A ∩ K) > 0. Let G be the union of all the connected components A of D1 ∩D2 such
that C2(A ∩ K) > 0 and let

L = {x ∈ G : h(x) = 0}.
Then h is a non constant harmonic function on G, L is a level set of h and C2(K \ L) = 0.

Remark 4.1. It follows from Theorem 4.1 that Theorem 1 is valid for all compact subsets K that cannot be
contained, except on a set of zero capacity, on a level set of a non constant harmonic function. An example
of a compact set in the above class is every (n − 1)-dimensional compact submanifold of Rn that is not real
analytic on a relatively open subset. Another example is every compact set K ⊂ R2 which has at least one
connected component that is neither a singleton nor a piecewise analytic arc.

We proceed to give examples of compact sets K and pairs of domains that are answers to the first question
we posed in the introduction. Keeping in mind Remark 4.1, the compact sets will lie on sufficiently smooth
subsets of Rn, mainly spheres and hyperplanes.

Let K be a compact subset of a sphere S(x0, r) with C2(K) > 0. Let D be a Greenian open subset ofRn that
contains K. We denote by D∗ the inverse of D with respect to S(x0, r); see e.g. [2, p. 19]. Then D∗ is Greenian
and (see e.g. [2, p. 95])

GD∗ (x, y) =
( r2

|x − x0| |y − x0|
)n−2

GD(x∗, y∗), x, y ∈ D∗.

Moreover, GD(x, y) = GD∗(x, y) for every x, y ∈ K. So I(K,D) = I(K,D∗) and the Green equilibrium measures
of K relative to D and D∗ are the same. Of course, the sets D and D∗ are not nearly everywhere equal in
general. A similar result holds also in the case when K is a subset of a hyperplane H and D∗ is the reflection
of D with respect to H.

Finally we state a conjecture and a question:

Conjecture: Let K be a subset of a sphere S(x0, r) with C2(K) > 0 and let D,Ω be two Greenian domains
that contain K. If I(K,D) = I(K,Ω) and the Green equilibrium measures of K relative to D and Ω are the
same, then Ωn.e.

=D or Ωn.e.
=D∗ where D∗ is the inverse of D with respect to S(x0, r).

Question: Let n ≥ 3. Let K be a compact subset of Rn and suppose that there does not exist a sphere
S or a hyperplane H such that C2(K \ S) = 0 or C2(K \ H) = 0. Do there exist domains D,Ω which are not
nearly everywhere equal and contain K such that I(K,D) = I(K,Ω) and the Green equilibrium measures of
K relative to D and Ω are the same?
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