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A note on spacelike surfaces in Minkowski 3-space

Ana Irina Nistora
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Abstract. We characterize and classify spacelike surfaces endowed with a canonical principal direction in
Minkowski 3-space E3

1. Under the maximality condition, a new characterization for the catenoid of the 1st
kind is obtained.

1. Introduction

A recent problem in the field of classical differential geometry consists in the study of constant angle
surfaces. By definition, a surface for which the unit normal ξ in every point makes a constant angle θ with
a fixed direction k is called a constant angle surface. Full classification results were obtained in different
homogeneous 3-spaces and a survey on this topic is given in [9] (see also References therein). In particular,
constant angle surfaces in Euclidean 3-space E3 are assumed to be known in literature, but a new approach
on their classification is presented in [10]. Passing now from the Euclidean 3-space to the Minkowski
3-space E3

1, similar techniques are used in [7] in order to classify constant angle surfaces in E3
1. Another

class of spacelike surfaces inE3
1, namely the constant slope ones, i.e. their unit normal makes constant angle

with the position vector, were studied in [3].
An important property of constant angle surfaces in Euclidean 3-space E3 and product spaces S2 × R,

H2 × R is the following. If we denote by U the projection of the fixed direction k on the tangent plane of
the surface, then U is a principal direction of the surface with the corresponding principal curvature 0. A
new problem that appears in the context of constant angle surfaces is to study those surfaces for which U
remains a principal direction but the corresponding principal curvature is different from zero. First results
were given for surfaces isometrically immersed in S2 ×R [1],H2 ×R [2] and E3 [11], where U was called a
canonical principal direction.

In the present note we continue this study for spacelike surfaces in the Minkowski 3-spaceE3
1. Recalling

the general theory of surfaces in E3
1, see for example [4], [6], the angle function θ is well defined between

future-directed timelike vectors ξ and k and it is called hyperbolic angle function. In the next section we
formulate the main results, namely characterization and classification theorems for spacelike surfaces
endowed with a canonical principal direction. Notice that an extensively studied property of spacelike
surfaces is the maximality, i.e. spacelike surfaces with vanishing mean curvature, see e.g. [5], [8], [12] a.s.o.
With this motivation in mind, we study the maximal spacelike surfaces endowed with a canonical principal
direction, and we obtain a new characterization for the catenoid of the 1st kind. Finally, in the last section
we prove all these classification results.
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2. Background and main results

Let us denote by ⟨ , ⟩ = dx2
1 + dx2

2 − dx2
3 the Minkowski metric on E3

1. We briefly recall (see e.g. [6] ) that a
vector v ∈ E3

1 is called spacelike if ⟨v, v⟩ > 0 or v = 0, timelike if ⟨v, v⟩ < 0 and lightlike if ⟨v, v⟩ = 0, v , 0. In a
similar manner, a surface M in E3

1 endowed with the metric 1 given by the restriction of ⟨ , ⟩ to M is called
spacelike if the metric 1 is positive definite, timelike if 1 is indefinite and lightlike or isotropic if the matrix
associated to 1 has rank 1. In other words, if ξ , 0 is the normal of the surface, then the surface is spacelike
(timelike, respectively lightlike) if and only if, at every point p ∈ M, ξ is a timelike (spacelike, respectively
lightlike) vector.

Consider r : M→ E3
1 a spacelike immersion, i.e. the induced metric on M is a Riemannian metric. Hence,

any normal vector field ξ on M is timelike in each point. In particular, if r is spacelike, then the surface M is
orientable.

According to [7], a constant angle spacelike surface inE3
1 is a spacelike surface whose unit normal vector

ξ makes a constant hyperbolic angle θ with the timelike vector k = (0, 0, 1). Notice that the concept of
angle between two vectors is well defined for timelike vectors; more precisely, when the two vectors are
future-directed. In our case, ξ is future-directed if ⟨ξ(p), k⟩ < 0, in any point of the surface p ∈ M, and the
hyperbolic angle θ between ξ and k is defined by coshθ = −⟨ξ, k⟩.

Projecting the fixed direction k on the tangent plane to the surface, we get

k = U + coshθξ, (1)

where U is the tangent component of k.
If M is a constant angle spacelike surface in E3

1, namely θ ≥ 0 is constant, then a property of this surface
tells us that U is a principal direction with the corresponding principal curvature identically zero. (Check
[7] for details.)

At this point, the following problem may be formulated: Study spacelike surfaces in E3
1 endowed with a

canonical principal direction, i.e. those surfaces for which U is principal direction.

In the present note we solve this problem and we provide characterization and classification results.

Theorem 2.1 (Characterization theorem). Let M be a spacelike surface in E3
1, and θ , 0 be the hyperbolic angle

function. Let (u, v) be local orthogonal coordinates on M such that ∂u is in the direction of U. Then, U is a principal
direction for M if and only if θv = 0.

Remark that a similar result is obtained in [11] to characterize surfaces with a canonical principal
direction in Euclidean 3-space.

In the sequel we give the classification of spacelike surfaces with a canonical principal direction.

Theorem 2.2 (Classification theorem). Let r : M → E3
1 be a spacelike surface isometrically immersed in E3

1 and
let θ , 0 be the hyperbolic angle function. Then, M has a canonical principal direction if and only if M is parametrized
by one of the following:

(a) r(u, v) =
(

cos v, sin v, 0
)
ϕ(u) −

(
0, 0, 1

)
χ(u) + γ(v),

where γ(v) =
( ∫

ψ(v) sin v dv, −
∫
ψ(v) cos v dv, 0

)
, ψ ∈ C∞(M),

(b) r(u, v) =
(

cos v0, sin v0, 0
)
ϕ(u) −

(
0, 0, 1

)
χ(u) + γ0(v),

where γ0(v) =
(
− (sin v0)v, (cos v0)v, 0

)
, and v0 is a real constant.

In both cases ϕ(u) =
∫ u

coshθ(τ)dτ and χ(u) =
∫ u

sinhθ(τ)dτ.

Under additional assumptions of maximality, respectively flatness, we may formulate the following two
results.
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Theorem 2.3. The only maximal spacelike surfaces in E3
1 with a canonical principal direction are the catenoids of the

1st kind, parameterized in local coordinates (u, v) as:

(u, v) 7→
(√

u2 − c2 cos v,
√

u2 − c2 sin v, c ln(u +
√

u2 − c2)
)
, (2)

where c ∈ R \ {0}.

Theorem 2.4. The only flat spacelike surfaces in E3
1 with a canonical principal direction are generalized cylinders,

parameterized in local coordinates (u, v) as:

(u, v) 7→ σ(u) + v0v, (3)

where σ(u) =
(

cos v0

∫ u

coshθ(τ)dτ, sin v0

∫ u

coshθ(τ)dτ, −
∫ u

sinhθ(τ)dτ
)
, v0 = (− sin v0, cos v0, 0),

v0 ∈ R, and θ , 0 denotes the hyperbolic angle function.

Remark 2.5. We may regard Theorem 2.3 as a new characterization for the catenoid of the 1st kind, namely
the only maximal spacelike surface endowed with a canonical principal direction.

Remark 2.6. The catenoid of the 1st kind which we obtained as a maximal spacelike surface with a canonical
principal direction U may be generated by rotating the curve (c sinh

(
t
c − ln c

)
, 0, t) around the Oz axis.

These rotations are Lorentz transformations of the Minkowski 3-space E3
1. See [12].

Remark 2.7. The flat spacelike surfaces endowed with a canonical principal direction classified in Theo-
rem 2.4 are given by the generalized cylinders from case (b) of Theorem 2.2. More precisely, these surfaces
are cylinders over spacelike curves with spacelike rulings orthogonal to k = (0, 0, 1).

3. Proof of theorems

Let r : M→ E3
1 be a spacelike immersion endowed with the Riemannian metric 1 given by the restriction

of the Minkowski metric ⟨ , ⟩ from the ambient space in the points of M.
Denote by ∇ and ∇̃ the Levi Civita connections on M and E3

1 respectively, and by R the curvature tensor
on M. Recall the structural equations of the surface M, consisting of the classical Gauss and Weingarten
formulas:

(G) ∇̃XY = ∇XY + h(X,Y),
(W) ∇̃Xξ = −AξX,

together with the equations of Gauss and Codazzi:
(E.G.) ⟨R(X,Y)Z,W⟩ = 1(AY,Z)1(AX,W) − 1(AX,Z)1(AY,W),
(E.C.) ∇XAY − ∇YAX + A[X,Y] = 0,

where X,Y,Z,W ∈ X(M) are tangent vector fields to M, h is a symmetric (1, 2)−tensor field called the
second fundamental form of the surface, and A is a symmetric (1, 1)−tensor field called the shape operator
associated to the normal ξ.

Proposition 3.1. For any vector X tangent to the surface M, we have:

∇XU = (coshθ) AX, (4)
X(coshθ) = 1(AU,X). (5)

Proof. On one hand ∇̃Xk = 0, for any X ∈ X(M), and on the other hand we may compute ∇̃Xk using Gauss
formula (G). Identifying the tangent and normal parts, we get the expressions (4) and (5).
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Define an orthonormal basis {e1, e2} in each tangent plane TpM, such that e1 =
U
|U| and e2 is orthogonal

to e1. Taking into account that the fixed direction is unitary and future directed, ⟨k, k⟩ = −1, together with
expression (1), we get that |U| = sinhθ and the decomposition (1) of k becomes:

k = sinhθe1 + coshθξ. (6)

Proof. [of Theorem 2.1] It is a known fact that one can always choose orthogonal coordinates (u, v) on M
such that the metric is given by

1 = α(u, v)2du2 + β(u, v)2dv2, α, β ∈ C∞(M). (7)

Then, from the choice of the principal direction U parallel to ∂u, we have U =
sinhθ
α

∂u.

By straightforward reasoning and using Proposition 3.1, we write AU =
θu sinhθ

α2 ∂u +
θv sinhθ

β2 ∂v.

Hence, if U is a principal direction, then θv = 0.
Conversely, from (5) we get 1(AU, ∂v) = 0 which means that U is parallel to ∂u, and thus U is a principal

direction, concluding the proof.

Concerning the geometry of a spacelike surface in Minkowski 3-space endowed with the principal
direction given by U, we formulate the following result.

Proposition 3.2. Let M be a spacelike surface in E3
1, and the hyperbolic angle function θ , 0. If U is a principal

direction of M, then we may choose local coordinates (u, v) on the surface such that ∂u is in the direction of U, the
metric is given by

1 = du2 + β(u, v)2dv2, (8)

and the shape operator may be expressed in the basis {∂u, ∂v} as:

A =
(
θu 0
0 tanhθ βu

β

)
. (9)

Moreover, the hyperbolic angle function θ satisfies θv = 0, and β has one of the following expressions:

β(u, v) = −
∫ u

coshθ(τ)dτ + ψ(v), where ψ ∈ C∞(M), (10.a)

β(u, v) = β(v). (10.b)

Proof. Using standard computation techniques, starting from the metric (7) one obtains the Levi Civita
connection∇ and the shape operator A in orthogonal coordinates (u, v). Furthermore, due to Proposition 3.1,
the symmetry property of A yields

αv tanhθ + αθv = 0,

which implies ∂v(α sinhθ) = 0 and hence α = ψ(u)
sinhθ , for a certain function ψ. Since U is a principal direction,

from Theorem 2.1 we have that θv = 0, i.e. θ depends only on u. After a change of coordinates such that
ψ(u) = sinhθ, we get α ≡ 1. Then, formulas (8) and (9) are proved. From the Codazzi equation (E.C.) we
obtain that θ and β satisfy the following partial differential equation:

βuθu tanhθ − βuu = 0.

Solving this equation we find the two solutions for β given by (10).
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We call the coordinates (u, v) from Proposition 3.1 canonical coordinates on the spacelike surface M
endowed with the principal direction U. At this point we are ready to prove the classification theorem of
spacelike surfaces with a canonical principal direction in E3

1.

Proof. [of Theorem 2.2] From Proposition 3.2 we choose local coordinates (u, v) on the spacelike surface M.
Then, the metric on M has expression (8), with β given by (10).

Case (a). Let us consider first β(u, v) = −
∫ u

coshθ(τ)dτ + ψ(v).

The Levi Civita connection ∇ and the shape operator A may be expressed as:

∇∂u∂u = 0, ∇∂u∂v = −
coshθ
β

∂v = ∇∂v∂u, ∇∂v∂v = β coshθ ∂u +
ψ′(v)
β

∂v, (11)

A =
(
θu 0
0 − sinhθ

β

)
. (12)

The Gauss formula (G) and h(X,Y) = −1(AX,Y)ξ, together with (11) and (12) yield that the immersion
r(u, v) =

(
r1(u, v), r2(u, v), r3(u, v)

)
is the solution of the following system of partial differential equations:

ruu = −θu ξ, (13)

ruv = −
coshθ
β

rv, (14)

rvv = β coshθ ru +
ψ′(v)
β

rv + β sinhθ ξ. (15)

Using (6), one computes ⟨k, ru⟩ = sinhθ and ⟨k, rv⟩ = 0. So, the third component of the parametrization may
be immediately obtained,

r3(u, v) = −
∫ u

sinhθ(τ)dτ. (16)

Moreover, the same decomposition (6) yields the expression of the normal

ξ =
(
− (r j)u tanhθ, coshθ

)
, j = 1, 2. (17)

From the Weingarten formula (W) we get that ξu = −θuru and comparing it with the expression of ξu
obtained from (17), we get that

(r j)u = f (v) coshθ, where f (v) = ( f1(v), f2(v)). (18)

Since ⟨ru, ru⟩ = 1, there exists a real functionφ(v) such that f (v) = (cosφ(v), sinφ(v)). After a first integration
in (18), and taking into account (16), it follows

r(u, v) =
(

cosφ(v), sinφ(v), 0
) ∫ u

coshθ(τ)dτ −
(
0, 0, 1

) ∫ u

sinhθ(τ)dτ + γ(v), (19)

where γ(v) =
(
γ1(v), γ2(v), 0

)
.

Computing ruv, taking successive derivatives in (19) with respect to u and v and combining the obtained
expression with (14), we have

rv = −β φ′(v)
(

cosφ(v), sinφ(v), 0
)
. (20)

Since β has expression (10.a) and ⟨rv, rv⟩ = β2(u, v), we get that (φ′(v))2 = 1 and hence we may take φ(v) = v.



A.I. Nistor / Filomat 27:5 (2013), 843–849 848

Comparing now the expression of rv obtained from (19) with the previous expression (20), we find the
curve γ, namely

γ(v) =
( ∫

ψ(v) sin v dv, −
∫
ψ(v) cos v dv, 0

)
. (21)

Hence, case (a) of Theorem 2.2 is proved by plugging (21) in (19).
Case (b). Suppose β(u, v) = β(v).
After a change of v−coordinate, we may assume β(u, v) ≡ 1, and thus, the metric becomes 1 = du2 + dv2.

Now, the Levi Civita connection is identically zero, ∇∂u∂u = ∇∂u∂v = ∇∂v∂u = ∇∂v∂v = 0, and the shape

operator is A =
(
θu 0
0 0

)
. In the same way as in the previous case, we get item (b) from Theorem 2.2.

In order to conclude the proof, the converse part follows immediately, checking that the surfaces
parameterized by the two cases admit a canonical principal direction.

Proof. [of Theorem 2.3]
As in the previous proof, let us study the two cases corresponding to each expression of β.
If β is given by (10.a), then, under the maximality assumption, we get from the expression of the shape

operator (12) that β and θ fulfill:

θu −
sinhθ
β
= 0. (22)

Replacing the expression of β by (10.a), and solving the obtained partial differential equation, we get that
the hyperbolic angle function is:

θ = −arctanh
c
u
, c ∈ R∗. (23)

From (22) we notice that β depends only on u, and comparing with (10.a) we get that ψ(v) = 0. Then,
applying Theorem 2.2, case (a), we find that γ(v) = 0.

Using (23), we immediately compute

−
∫ u

sinhθ(τ)dτ = c ln
(
u +
√

u2 − c2
)
,

∫ u

coshθ(τ)dτ =
√

u2 − c2,

and substituting these expressions in case (a) of Theorem 2.2 we obtain (2), namely the parametrization of
the catenoid of 1st kind.

On the other hand, if β is given by (10.b), namely β(u, v) = β(v), a change of the v−coordinate allows
us to take β(u, v) ≡ 1 and the shape operator has expression (3). The maximality assumption yields that θ
satisfies θu = 0. Then, combing it with θv = 0, it follows that θ is constant, case excluded in our study.

Proof. [of Theorem 2.4] As before, let us discuss separately the two cases corresponding to the expressions
of the function β.

If β is given by (10.a), then the shape operator may be written as (12). From the flatness condition, the
hyperbolic angle function θ satisfies the following partial differential equation:

θu sinhθ = 0.

But this case cannot occur since the hyperbolic angle function θ cannot be constant.
If β has expression (10.b), then a change of v−coordinate furnishes β ≡ 1. The flatness assumption

yields precisely case (b) from the classification Theorem 2.2, and hence, parametrization (3) of generalized
cylinders is obtained.
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