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Some causal connections between stochastic dynamic systems

Ljiljana Petrovića

aUniversity of Belgrade, Faculty of Economics, Belgrade, Serbia

Abstract. In this paper we consider a problem that follows directly from realization problem: how to find
Markovian representations , even minimall, for a given family of Hilbert spaces, understood as outputs
of a stochastic dynamic system S1, provided it is in a certain causality relationship with another family of
Hilbert spaces , i. e. with some informations about states of a stochastic dynamic system S2.

This paper is continuation of the papers Gill and Petrović [7] and Petrović [16, 17].

1. Introduction

After this introduction, in Section 2, we present different concepts of causality between flows of infor-
mation that are represented by families of Hilbert spaces. Then we give a generalization of a causality
relationship ”G is a cause of E within H” which (in terms of σ-algebras) was first given in [14] and which
is based on Granger’s definition of causality (see [8]).

The study of Granger-causality has been mainly preoccupied with time series. We, however, concentrate
on continuous time processes. Many of systems to which it is natural to apply tests of causality, take place
in continuous time. For example, this is generally the case within physics and within economy. Causality
concepts expressed in terms of orthogonality in Hilbert spaces of square integrable random variables was
studied by Hosoya [12], Gill and Petrović [7].

In Section 3, we relate concepts of causality to the stochastic realization problem. The approach adopted
in this paper is that of [13]. However, since our results do not depend on probability distribution, we deal
with arbitrary Hilbert spaces instead of those generated by Gaussian processes.

It is clear that all results from this paper can be extended on theσ-algebras generated by finite dimensional
Gaussian random variables. But, in the case that σ-algebras are arbitrary, the extensions of the proofs from
this paper is nontrivial because one can not take an orthogonal complement with respect to a σ-algebra as
one can with respect to subspaces in Hilbert space.

2. Preliminaries and notations

Let F = (Ft), t ∈ R be a family of Hilbert spaces. We shall think about Ft as a basis for approximation an
information available at time t, or as a basis for approximation current information. Total information F<∞
carried by F is defined by F<∞ = ∨t∈RFt, while past and future information of F at t is defined as F≤t = ∨s≤tFs
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and F≥t = ∨s≥tFs, respectively. It is to be understood that F<t = ∨s<tFs and F>t = ∨s>tFs do not have to
coincide with F≤t and F≥t respectively; F<t and F>t are sometimes referred to as the real past and real future
of F at t. Analogous notation will be used for families H = (Ht), G = (Gt) and E = (Et).

If F1 and F2 are arbitrary subspaces of a Hilbert space H then P(F1|F2) will denote the orthogonal
projection of F1 onto F2 and F1 ⊖ F2 will denote a Hilbert space generated by all elements x− P(x|F2), where
x ∈ F1. If F2 ⊆ F1, then F1 ⊖ F2 coincides with F1 ∩ F⊥2 , where F⊥2 is the orthogonal complement of F2 inH .

Possibly the weakest form of causality can be introduced in the following way.
Definition 2.1. It is said that H is submitted to G (and written as H ⊆ G) if H≤t ⊆ G≤t for each t.

It will be said that families H and G are equivalent (and written as H = G) if H ⊆ G and G ⊆ H.

Definition 2.2. It is said that H is strictly submitted to G (and written as H ≤ G) if Ht ⊆ Gt for each t.
It is easy to see that strict submission implies submission and that converse does not hold.
The notion of minimality of families of Hilbert spaces is specified in the following definition.

Definition 2.3. It will be said that F is a minimal (respectively, strictly minimal) family having a certain prop-
erty if there is no family F∗ having the same property which is submitted (respectively, strictly submitted)
to F.

It will be said that F is a (respectively, strictly maximal) family having a certain property if there is no
family F∗ having the same property such that family F is submitted (respectively, strictly submitted) to F∗.

It should be understood that a minimal (respectively, strictly minimal) and maximal (respectively, strictly
maximal) family having a certain property are not necessarily unique.

Definition 2.4. (compare with [26], with conditional independence from [24] and [3, 4]) If F1, F2 and F are
arbitrary Hilbert spaces, then it is said that F is splitting for F1 and F2 or that F1 and F2 are conditionally
orthogonal given F (and written as F1 ⊥ F2|F) if F1 ⊖ F ⊥ F2 ⊖ F.

When F is trivial, i. e. F = { 0 }, this reduces to the usual orthogonality F1 ⊥ F2.

The following result gives an alternative way of defining splitting.
Lemma 2.1. (see [7] and [24]) F1 ⊥ F2|F if and only if P(Fi|F j ∨ F) ⊆ F, for i, j = 1, 2, i , j.

The following results will be used later (for the proof see the given reference).
Theorem 2.1. ([13]) The space F is minimal one such that F1 ⊥ F2|F if and only if F = P(F1|S) for some space S such
that F2 ⊆ S ⊆ (F2 ∨ P(F2|F1)) ⊕ (F1 ∨ F2)⊥.

Corollary 2.1.1. ([13]) The space F ⊆ F1 ∨ F2 is a minimal one such that F1 ⊥ F2|F if and only if F = P(F1|S)
for some space S such that F2 ⊆ S ⊆ F2 ∨ P(F2|F1).

In this paper the following definition of markovian property will be used.
Definition 2.5. (compare with [26]) Family G will be called Markovian if P(G≥t|G≤t) = Gt for each t.

Now we give a definition of a stochastic dynamic system in terms of Hilbert spaces. The characterizing
property is the condition that past informations of outputs and states and future informations of outputs
and states are conditionally orthogonal given the current state.
Definition 2.6. (compare with [13] and [24]) A stochastic dynamic system (s.d.s.) is a set of two families: H
(outputs) and G (states), that satisfy the condition

H<t ∨ G<t ⊥ H>t ∨ G>t|Gt. (1)

For given family of outputs H, any family G satisfying (1) is called a realization of a s.d.s. with those outputs.
It is clear that realization of a s.d.s. is Markovian.

The next intuitively justifiable notion of causality has been proposed by Petrović [15].
Definition 2.7. [15] It is said that G is a cause of E within H (and written as E |< G; H) if E<∞ ⊆ H≤∞, G ⊆ H
and E<∞ ⊥ H≤t|G≤t for each t.
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Intuitively, E |< G; H means that, for arbitrary t, information about E<∞ provided by H≤t is not ”bigger”
than that provided by G≤t. The meaning of this interpretation is specified in the next result.

Lemma 2.2. ( see [7])E |< G; H if and only if E<∞ ⊆ H<∞, G ⊆ H and P(E<∞|H≤t) = P(E<∞|G≤t) for each t.
A definition, analogous to Definition 2.7, formulated in terms of σ-algebras, was first given in [14];

however, a strict Hilbert space version of the definition in [14] contains also the condition E ⊆ H (instead of
E<∞ ⊆ H<∞) which does not have an intuitive justification.

If G and H are such that G |< G; H, we shall say that G is its own cause within H (compare with Mykland).
It should be mentioned that the notion of subordination (as introduced in [25]) is equivalent to the notion of
being one’s own cause, as defined here.

If G and H are such that G |< G; G ∨H (where G ∨H is a family determined by (G ∨H)t = Gt ∨Ht), we
shall say that H does not cause G. It is clear that the interpretation of Granger-causality is now that H does
not cause G if G |< G; G ∨H (see [14]). Without difficulty, it can be shown that this term and the term ”H
does not anticipate G” (as introduced in [26]) are identical.

The analog of Definition 2.7 in terms of σ-algebras is considered in recent papers (see [20], [21], [23]
and [27]). Specially, motivated with [6] and recent studies of stochastic systems with memory, the new
concept of causality for continuous time stochastic processes which deal with finite horizon of the past in
continuous time is given in [21].

Also, having in mind classification of causality concepts given in [5], this analog definition lies in the
strong-global group.

Definition 2.7 can be extended from fixed times to stopping times. So, in [20], characterization of
causality using σ-fields associated to stopping times is given.

We shall give some properties of causality relationship from Definition 2.7 which will be needed later.
From the following result it follows that relationship ”being one’s own cause” is the transitive relation-

ship.
Lemma 2.3. ( compare with [14]) From G |< G; H and H |< H; E it follows that G |< G; E.

Lemma 2.4. ([7]) If G<∞ ⊆ H<∞ and if H |< H ; E holds, it follows that G |< H ; E holds.

Now we give some examples to illustrate the notions from this part.
Definition 2.8. It will be said that second order stochastic processes are in a certain relationship if and only
if the Hilbert spaces they generate are in this relationship.

Example 2.1. Let X(t) =
n∑

k=1

∫ t

−∞ 1n(t,u) dZn(u), t ∈ [0, 1] be a proper canonical (or Hida–Cramer) represen-

tation of the stochastic process X(t), t ∈ [0, 1]. Any process Zn(t), n = 1,N, is its own cause within X(t), i. e.
FZn |< FZn ; FX holds for any n = 1,N. If we define the process Y(t) as a non–anticipative transformation of
Zn(t), i. e.

Y(t) =
∫ t

0
h(t,u)Zn(u) du , t ∈ [0, 1],

it is easy to see that Zn is a cause of Y within X, i. e. that FY |< FZn ; FX holds. �

Example 2.2. Let W(t) be a Wiener process defined on [0, 1], and let

X(t) =W(t), Y(t) =W(t2), 0 ≤ t ≤ 1 .

It is clear that the equality FY
<1 = FX

<1 holds, and for any t < 1 we have

FY
≤t = L{W(u2), u ≤ t } = L{W(u), u ≤ t2 } = FX

≤t2 ⊆ FX
≤t

which means that FY is submitted to FX.
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Let us prove that Y is not its own cause within X, i. e. that FY |< FY; FX does not hold. If x ∈ FY
<1 ⊖ FY

≤t, it
is easy to see that, because of FY

≤t = FX
≤t2 , element x can have the form

x =
∫ 1

t2
f (u) dW(u)

where f is a function from L2(dt), not identically equal to zero on (t2, 1). But, such x is not orthogonal to FX
≤t,

since it is not orthogonal, for example, to the element
∫ t

t2 f (u) dW(u), which belongs to FX
≤t. Thus we have

proved that FY
<1 ⊖ FY

≤t ⊥ FX
≤t does not hold, i. e. FY |< FY; FX does not hold. �

Example 2.3. Let Z(t), 0 ≤ t ≤ T be a (t, ω)–measurable signal process such that
∫ T

0 E|Z(t)|2 dt < ∞ and let

Y(t) =
∫ t

0
Z(s) ds +W(t) , 0 ≤ t ≤ T ,

be the observation process where W(t) is a Wiener process such that W(t) −W(s) is orthogonal on FW
≤s ∨ FZ

≤s
for 0 ≤ s ≤ t ≤ T. Then Z(t) does not cause W(t), i. e. FW |< FW; FW∨Z holds.

If we suppose that FY
<T ⊆ FW

<T, according to Lemma 2.2 we have that FW is a cause of FY within FW∨Z, i. e.
FY |< FW; FW∨Z holds.

If FW ⊆ FY, then FW |< FW; FY and FW |< FY; FW∨Z hold. �

Remark 1. If stochastic process Y(t), t ∈ R is a realization of a stochastic dynamic system with outputs X(t),
then there exists a stochastic process Z(t) with orthogonal increments which is a realization of the same
system. Stochastic process Z(t) is not uniquely determined, but its spectral type is uniquely determined.
This follows from the fact that realization of a stochastic dynamic system is Markovian, i. e. process with
multiplicity one, so process Y(t) is equivalent (in the sense that FY

≤t = FZ
≤t, t ∈ R) to some process with

orthogonal increments.

Remark 2. The condition of Granger causality is actually a condition of transitivity largely used in sequential
analysis (in statistics), see [2] and [9].

Remark 3. Some special cases of given causality concept links Granger–causality with adapted distribution.
The consequence of FX,Z |< FX,Z ; F ; P is

∀A ∈ F X,Z
<∞ P(A | F X,Z

t ) = P(A | Ft),

which links Granger–causality with the concept of adapted distribution which have been studied by Aldous
[1], Hoover [10] and Hoover and Keisler [11]. Some results are given in [19].

The given causality concept is shown to be equivalent to a generalization of the notion of weak uniqueness
for weak solutions of stochastic differential equations (see [18, 22]).

In [23] it is shown that the given causality concept is closely connected to extremality of measures and
ımartingale problem. Also, in [27] the given concept of causality is related to the orthogonality of martingales
and local martingales. This connection is considered for the stopped local martingales, too.

3. Causality and Stochastic Dynamic Systems

3.1. Explanation of the considered problems
Suppose that a stochastic dynamic system S1 causes, in a certain sense, changes of another stochastic

dynamic system S2. It is natural to assume that outputs H of system S1 can be registered and that some
information E about the states (or perhaps states themselves) of system S2 is given. Results that we shall
prove will tell us under which conditions concerning the relationships between H and E it is possible to
find states G (i.e. Markovian representations) of system S1 having certain causality relationship in the sense
of Definition 2.7 with H and E. More precisely, the following cases will be considered:
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1◦ available information about s.d.s. S2 are a cause of states of a s.d.s. S1 within outputs of a s.d.s. S1;
2◦ outputs of a s.d.s. S1 are cause of states of the same system within available information about s.d.s.

S2;
3◦ states of a s.d.s. S1 are a cause of the available information about s.d.s. S2 within outputs of a s.d.s.

S1,
4◦ states of a s.d.s. S1 are a cause of outputs of the same system within available information about s.d.s.

S2;
5◦ the available information about S2 is a cause of outputs of S1 within states of S1;
6◦ outputs of a s.d.s. S1 are cause of the available information about S2 within states of a s.d.s. S1.

We consider different kinds of causality between families G, H and E, while G and H are in the same
relationship, that is, G is a realization of an s.d.s. with outputs H in all cases.

In all cases 1◦ - 6◦ it is of interest to find minimal and maximal realizations that satisfy given conditions.
We can see that, in some cases, family of extremal realizations is trivial, so as that extremal realizations is
unique.

In the 1◦ we ask for realizations G such that G |< E; H holds, and in the case 2◦ realization G such that
G |< H; E holds. Minimal realization G such that G |< E; H or G |< H; E hold, is defined by Gt = {0} for each t,
but this family is not a realization of a s.d.s. S1 with outputs H (except in the case when H<t ⊥ H>t for each
t). For these cases the given problem is only partially solved.

For the case 3◦, we define some minimal realizations G ( of a s.d.s. with given outputs H) such that
E |< G; H holds. It is easy to see that maximal families G for which E |< G; H holds are all families such that
G≤t = H≤t for each t. One of these families is defined by Gt = H≤t and it is strictly maximal realization of a
s.d.s. with outputs H such that E |< G; H holds.

For the case 4◦, we define some minimal realizations G (of a s.d.s. with outputs H) such that H |< G; E
holds. Maximal families G such that H |< G; E holds are families defined by G≤t = E≤t for each t. If H ⊆ E,
family defined by Gt = E≤t, t ∈ R is strictly maximal realization of a s.d.s. with outputs H such that H |< G; E
holds.

For the cases 5◦ and 6◦ we define minimal and strictly maximal realizations such that H |< E; G,
respectively E |< H; G hold. In case 5◦ we ask for realizations G such that H |< E; G holds. Minimal families
G such that H |< E; G holds are all families for which G≤t = E≤t for each t. If H ⊆ E, family defined by
Gt = E≤t, t ∈ R is strictly maximal realization of a s.d.s. with outputs H such that H |< E; G holds. In case
6◦ we ask for realizations G of a s.d.s. S1 such that E |< H; G holds. Minimal families G such that E |< H; G
holds are all families for which G≤t = H≤t for each t. One of these families, defined by Gt = H≤t, t ∈ R is
strictly minimal realization of a s.d.s. with outputs H such that E |< H; G holds.

In cases 1◦, 2◦, 3◦ and 4◦, we ask for realizations G such that G ⊆ E, or G ⊆ H that is, the given families
E and H are a natural ”framework” in which we find realizations G of an s.d.s. S1. However, in the cases 5◦

and 6◦, where E ⊆ G, respectively, H ⊆ G the family E and H are submitted to unknown family G, so that
we will assume that all considered families of Hilbert spaces are submitted to some given ”framework”
family F of Hilbert spaces.

3.2. Main results
This paper is continuation of the papers [7, 16, 17]. In these papers cases 1◦, 3◦ and 4◦ are considered.

In the remaining part of this paper we consider cases 2◦, 5◦ and 6◦.

The first two theorems deals with case 2◦.
Theorem 3.1. (compare with [7]) If G is its own cause within H, then G is a realization of a s.d.s. with outputs H
if and only if G is Markovian and H<t ⊥ H>t|Gt for each t.

This result follows from Theorem 2.1 and Corollary 2.1.1. �

It H is its own cause within E, then Theorem 3.1 gives one solution for the case 2◦, i.e. gives realization
G (of a s.d.s. with outputs H) such that G |< H; E holds.
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The following result gives strictly minimal realization (of a s.d.s. with outputs H) such that G |< H; E
holds.
Theorem 3.2. If H is its own cause within E, then H is a cause of realization G (of a s.d.s. with outputs H) defined
by (4) within E.

The proof follows from Lemma 2.4. �

If families G, H and E are such that e E |< E; H. (respectively, H |< H; E) and G ⊆ E (i.e. G ⊆ H), then the
following holds

P(G≥t |H≤t) = P(G≥t |E≤t), t ∈ R.

That means, if we want to predict realization G, then (under conditions given in the above results) we can
use any of families H or E.

In the remaining cases 5◦ and 6◦ we will assume that all considered families of Hilbert spaces are
submitted to some given ”framework” family F of Hilbert spaces.

The solutions of these problems follow from the next more general result which gives conditions under
which it is possible to find minimal realizations of a s.d.s. S1, that is a cause for H within a family E1 = H∨E.

The following theorem considers the problem of determining the possible states G (of an s.d.s. with
outputs H) such that the family E1 = H ∨ E is a cause of outputs H within G.

Theorem 3.3. (i) Each Markovian family G such that H ∨ E |< H ∨ E; G and P(H>t|G<t) ⊆ Gt for each t is a
realization (of a s. d. s. with outputs H) and the family H ∨ E is a cause of H within G.

(ii) If J is a Markovian family such that H ∨ E |< H ∨ E; J and P(J<t|H≤t ∨ E≤t) ⊥ H>t|P(Jt|H≤t ∨ E≤t) for each t,
then family G, defined by

Gt = P(Jt|H≤t ∨ E≤t), t ∈ R , (2)

is minimal among the realizations (of a s. d. s. with outputs H) such that the family H ∨ E is a cause of H within G.
(iii) If families E and H are submitted to some given ”framework” family F and if H ∨ E |< H ∨ E; F holds, then

the family G, defined by

Gt = F≤t, t ∈ R , (3)

is strictly maximal among the realizations (of a s. d. s. with outputs H) such that H ∨ E is a cause of H within G.
Proof. (i) According to Lemma 2.1, the assumption G<t ⊥ H>t|Gt is equivalent to P(H>t|G≤t) ⊆ Gt. From that
and the assumption that G is Markovian family, we get

Gt = P(G≥t|G≤t) = P(G≥t ∨H>t|G≤t)

which is equivalent to G≤t ⊥ G≥t ∨ H>t|Gt. However, since H<t ⊆ G≤t (which is an obvious consequence of
H ∨ E |< H ∨ E; G) the last relation means that G is a realization of a s. d. s. with outputs H. According to
Lemma 2.4, from H ∨ E |< H ∨ E; G it follows that H |< H ∨ E; G holds.

(ii) From (2) it follows that G≤t = H≤t ∨ E≤t and immediately we get H |< H ∨ E; G and G |< G; J.
According to Definition 2.7, it is clear that the family G, defined by (2), is a minimal family such that
H |< H ∨ E; G. From the assumptions that H ∨ E |< H ∨ E; J and the fact that J is Markovian we get
P(G≥t|G≤t) = P(J≥t|H≤t∨E≤t) = P(P(J≥t|J≤t)|H≤t∨E≤t) = P(Jt|H≤t∨E≤t) = Gt which means that G is Markovian.
Now, according to part (i) of this theorem, it follows that the family G, defined by (2) is a realization (of a
s. d. s. with outputs H) such that H |< H ∨ E; G.

(iii) Since G≤t = F≤t, the assumption H∨E |< H∨E; F, is equivalent to H∨E |< H∨E; G, so that according
to Lemma 2.4, it follows H |< H∨E; G. From Gt = G≤t, and H ⊆ G immediately follows that G is a realization
of a s. d. s. with outputs H. From the fact that F is a ”framework” family (i.e., G ⊆ F) it is clear that G is a
strictly maximal realization with given properties. �

It is easy to see that for given outputs H of a s.d.s. S1 and information E about a s.d.s. S2, the family G,
defined by (2), is not an unique minimal realization (of a s. d. s. S1) such that H |< H∨E; G. For each family
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J∗ ⊆ F which satisfies conditions from part (ii) of Theorem 3.3., with G∗t = P(J∗t |H≤t ∨ E≤t), t ∈ R is defined a
minimal realization (of a s. d. s. S1) such that H |< H ∨ E; G∗. All these minimal realizations have the past
information equivalent to H≤t ∨ E≤t, t ∈ R, but their present information at t is different.

The next example shows that family G defined by (2) is not strictly minimal realization of a s. d. s. with
outputs H such that H |< H ∨ E; G.
Example 3.4. Let A and B be arbitrary Hilbert spaces and let H = (Ht), E = (Et) and J = (Jt), t ∈ { 1, 2, 3 } be
defined by

H1 = A, H2 = B, H3 = A ∨ B,
E1 = A, E2 = B, E3 = A,
J1 = A, J2 = A ∨ B, J3 = B.

It is easy to see that J is Markovian, H∨ E |< H∨ E; J and P(J<t|H≤t ∨ E≤t) ⊥ H>t|P(Jt|H≤t ∨ E≤t) for each t.
If the family G is defined by (2), then

G1 = A, G2 = A ∨ B, G3 = B.

According to part (ii) of the Theorem 3.3, G is a minimal realization (of a s. d. s. with outputs H) and
H |< H ∨ E; G. However, family G∗ = (G∗t), t ∈ { 1, 2, 3 }, defined by

G∗1 = A, G∗2 = A ∨ B, G∗3 = { 0 },

is another realization of the same s. d. s. and H |< H ∨ E; G∗. Obviously, G∗ ≤ G. �

The problem of determining a strictly minimal realization G (of a s.d.s. with outputs H) such that
H |< H ∨ E; G. is still open. If it would be possible to find a strictly minimal family Jm between families
J∗ ⊆ F that satisfy conditions from part (ii) of Theorem 3.3., this strictly minimal family Jm would define a
strictly minimal family Gm (with (2)) among all families G of part (ii) of Theorem 3.3. It is clear that if there
exists such strictly minimal family, it can not be necessarily unique, so that a strictly minimal realization
with given properties is not necessarily unique.

Especially, if H ⊆ E, Theorem 3.3. gives realizations of a s.d.s. with outputs H such that the family E is
a cause of outputs H within G. More precisely, the next corollary to Theorem 3.3. gives a partial solution
of the problem 5◦ formulated above.
Corollary 3.3.1. ([17]) (i) Let H and E be such that H ⊆ E. Each Markovian family G such that E |< E; G and
G<t ⊥ H>t|Gt for each t is a realization (of a s. d. s. with outputs H) and E is a cause of H within G.

(ii) Let H, E and J be such that H ⊆ E, as well as E |< E; J and P(J<t|E≤t) ⊥ H>t|P(Jt|E≤t) for each t. If J is
Markovian, then the family G, defined by

Gt = P(Jt|E≤t), t ∈ R,

is minimal among the realizations (of a s. d. s. with outputs H) such that E is a cause of H within G.
(iii) If H ⊆ E and if given ”framework” family F is such that E |< E; F, then the family G, defined by

Gt = F≤t, t ∈ R,

is strictly maximal among the realizations (of a s. d. s. with outputs H) such that E is a cause of H within G.

Now we consider case 6◦ formulated above.
It is clear that realizations from Theorem 3.3. are such that i E |< E ∨ H; G holds. Especially, if E ⊆ H,

then for realizations G holds E |< H; G, i.e. in case E ⊆ H, Theorem 3.3 gives the solutions of case 6◦.

The following result does not require that E ⊆ H, but, in that case we defined only minimal and strictly
maximal realizations such that E |< H; G holds.
Theorem 3.4. (i) Let families E and H are such that E<∞ ⊆ H<∞. If J is markovian family such that H |< H; J
holds and P(J<t |H≤t) ⊥ H>t|P(Jt |H≤t) for each t, then family G, defined by

Gt = P(Jt |H≤t), t ∈ R, (4)
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is minimal realization (of a s.d.s. with outputs H) such that outputs H are a cause for family E within G.
(ii) Let families E and H be such that E<∞ ⊆ H<∞ holds. Fog given ”framework” family F such that H |< H; F

family G, defined by

Gt = F≤t, t ∈ R (5)

is strictly maximal realization (of a s. d. s. with outputs H) such that outputs H are a cause for family E within G.
Proof. (i) From the assumption H |< H; J it follows Gt = P(Jt |H<∞) and G≤t = H≤t, so that E |< H; G

follows immediately. It is clear (according to Definition 2.7) that family G, defined by (4), minimal family
such that E |< H; G holds. From the assumptions H |< H; J and that family J is markovian, we gets
P(G≥t |G≤t) = P(J≥t |H≤t) = P(P(J≥t | J≤t) |H≤t) = P(Jt |H≤t) = Gt which means that family G is markovian.
This fact, together with assumption P(J<t |H≤t) ⊥ H>t|P(Jt | H≤t) (or , equivalently, G<t ⊥ H>t|Gt), gives
G<t ⊥ H>t ∨ G>t|Gt. Now, from G≤t = H≤t, t ∈ R, it follows that G is a realization of a s. d. s. with outputs
H.

(ii) From (5) it follows that G≤t = F≤t, t ∈ R, so from assumption H |< H; F we gets H |< H; G. From this
relation and assumption E<∞ ⊆ H<∞, according to Lemma 2.1, it follows E |< H; G. From Gt = G≤t, t ∈ R,
and H ⊆ G we get that G is a realization of a s. d. s. with outputs H. �

It is clear that family G, defined by (4), is not unique minimal realization (of a s. d. s. with outputs H)
such that E |< H; G holds.

The family G, defined by (4) is not strictly minimal realization (of a s. d. s. with outputs H) such that
E |< H; holds. The problem of finding such that realization is still open.

Final remark. It is of an interest to find conditions for the existence of a realization with certain properties
less restrictive than those obtained in this paper.

Also, the problems formulated here and in the papers [7, 16, 17] can be considered in the σ-algebraic
approach when stochastic dynamic system is defined for σ-algebra families in terms of the conditional
independence relation (see [13]).
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[15] Lj. Petrović, Causality and Stochastic Realization Problem, Publ. Inst. Math. (Beograd), 45(59), (1989), 203-210.
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