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Remarks on neighborhood star-Lindelöf spaces II
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Abstract. A space X is said to be neighborhood star-Lindelöf if for every open cover U of X there exists
a countable subset A of X such that for every open O ⊇ A, X = St(O,U). In this paper, we continue
to investigate the relationship between neighborhood star-Lindelöf spaces and related spaces, and study
topological properties of neighborhood star-Lindelöf spaces in the classes of normal and pseudocompact
spaces.

1. Introduction

By a space, we mean a topological space. In the rest of this section, we give definitions of terms
which are used in this paper. Let X be a space and U a collection of subsets of X. For A ⊆ X, let
St(A,U) =

∪{U ∈ U : U ∩ A , ∅}. As usual, we write St(x,U) for St({x},U).
Recall that a space X is strongly starcompact (see [6, 8, 9] under different name) if for every open cover

U of X there exists a finite subset A of X such that X = St(A,U); A space X is strongly star-Lindelöf (see [2,
3, 6, 9, 10] under different name) if for every open coverU of X there exists a countable subset A of X such
that X = St(A,U); A space X is starcompact (resp., star-Lindelöf) (see [6, 9] under different name) if for every
open coverU of X there exists a finite (resp., countable) subsetV ofU such that X = St(

∪V,U). Clearly,
every strongly starcompact space is strongly star-Lindelöf, every strongly starcompact space starcompact,
every strongly star-Lindelöf space is star-Lindelöf and every strongly star-Lindelöf space is star-Lindelöf.
It is known that every countably compact space is strongly starcompact, and every Hausdorff strongly
starcompact space is countably compact (see [6, 9]).

It is natural in this context to introduce the following definitions:

Definition 1.1. ([4]) A space X is said to be weakly starcompact if for every open coverU of X there exists a
finite subset A of X such that for every open O ⊇ A, X = St(O,U).

Definition 1.2. ([5]) A space X is said to be neighborhood star-Lindelöf if for every open cover U of X there
exists a countable subset A of X such that for every open O ⊇ A, X = St(O,U).

From the definitions, it is clear that every weakly starcompact space is neighborhood star-Lindelöf,
every strongly star-Lindelöf space is neighborhood star-Lindelöf and every neighborhood star-Lindelöf
space is star-Lindelöf.
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Lindelöf
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The theory becomes more interesting when star-covering properties are considered in conjunction
with other properties. In [12], the author studied the relationship between neighborhood star-Lindelöf
spaces and related spaces, and investigated topological properties of neighborhood star-Lindelöf spaces.
Pseudocompactness is particularly interesting in this case as it may be treated as a star-covering property
(see [6, 9]). In this note, we continue to study the relationship between neighborhood star-Lindelöf spaces
and related spaces, and investigate topological properties of neighborhood star-Lindelöf spaces in the
classes of normal and pseudocompact spaces.

Throughout this paper, the cardinality of a set A is denoted by |A|. Letω denote the first infinite cardinal,
ω1 the first uncountable cardinal, c the cardinality of the set of all real numbers. For a cardinal κ, let κ+ be the
smallest cardinal greater than κ. For each pair of ordinals α, β with α < β, we write [α, β) = {γ : α ≤ γ < β},
(α, β] = {γ : α < γ ≤ β}, (α, β) = {γ : α < γ < β} and [α, β] = {γ : α ≤ γ ≤ β}. As usual, a cardinal is an initial
ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the
usual order topology. Other terms and symbols that we do not define follow [7].

2. Main results

In [12], the author showed that there exists a Tychonoff neighborhood star-Lindelöf space X that is not
weakly starcompact and there exists a Tychonoff star-Lindelöf space that is not neighborhood star-Lindelöf.
But these spaces are neither normal nor pseudocompact. In the following, we construct pseudocompact
and normal examples. Recall that a space is called Urysohn if every two distinct points have neighborhoods
with disjoint closures. Clearly, the property is between the Hausdorff condition and regularity. Bonanzinga
et al. in [4] showed that the three properties, countable compactness, strongly starcompactness, and weak
starcompactness, are equivalent for Urysonn spaces.

Example 2.1. There exists a pseudocompact, neighborhood star-Lindelöf Tychonoff space X that is not weakly star-
compact.

Proof. Let X = ω ∪ R be the Isbell-Mrówka space (see [11]), where R is a maximal almost disjoint family
of infinite subsets of ω with |R| = c. Then X is Tychonoff pseudocompact. Since ω is a countable dense
subset of X. Then X is strongly star-Lindelöf. Thus X is neighborhood star-Lindelöf. But X is not countably
compact, since R is an uncountable discrete closed subset of X. Thus X is not weakly starcompact, since
countable compactness is equivalent to weakly starcompactness for Tychonoff spaces.

In [12], the author gave an example showing that there exists a Tychonoff neighborhood star-Lindelöf
space X that is not weakly starcompact. In fact, the space is normal.

Example 2.2. There exists a normal neighborhood star-Lindelöf space X that is not weakly starcompact.

For the next example, we need the following lemma.

Lemma 2.3. ([5]) A space X is neighborhood star-Lindelöf if and only if for every open coverU of X there exists a
countable subset A of X such that St(x,U) ∩ A , ∅ for each x ∈ X.

Example 2.4. There exists a pseudocompact star-Lindelöf Tychonoff space that is not neighborhood star-Lindelöf.

Proof. Let D = {dα : α < c} be a discrete space of cardinality c and let D∗ = D ∪ {d∗} be the one-point
compactification of D, where d∗ < D.

Let
X = (D∗ × [0, c+]) \ {⟨d∗, c+⟩}

be the subspace of D∗ × [0, c+]. Then X is pseudocompact Tychonoff. In fact, it has a countably compact,
dense subspace D∗ × [0, c+).

First we show that X is star-Lindelöf. For this end, let U be an open cover of X. For each α < c, there
exists Uα ∈ U such that ⟨dα, c+⟩ ∈ Uα, we can find βα < c+ such that {dα}×(βα, c+] ⊆ Uα.Let β = sup{βα : α < c}.
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Then β < c+. Let K = D∗ × {β}. Then K is compact and Uα ∩ K , ∅ for each α < c. Since U covers K, there
exists a finite subsetU′ ofU such that K ⊆ ∪U′. Then

D × {c+} ⊆ St(
∪
U′,U).

On the other hand, since D∗ × [0, c+) is countably compact, we can find a finite subsetU′′ ofU such that

D∗ × [0, c+) ⊆ St(
∪
U′′,U).

If we put V = U′ ∪ U′′, then V is a finite subset of U such that X = St(
∪V,U), which shows that X is

star-Lindelöf.
Next we show that X is not neighborhood star-Lindelöf. For each α < c, let

Uα = {dα} × [0, c+].

Let us consider the open cover
U = {Uα : α < c} ∪ {D∗ × [0, c+)}

of X. It suffices to show that for any countable subset F of X, there exists a point x ∈ X such that
St(x,U) ∩ F = ∅ by Lemma 2.3. Let F be any countable subset of X. Then there exists an α0 < c such that
F ∩ Uα0 = ∅. Since Uα0 is the only element of U containing ⟨dα0 , c

+⟩, then St(⟨dα0 , c
+⟩,U) = Uα0 . By the

constructions of the topology of X and the open coverU, we have St(⟨dα0 , c+⟩,U) = Uα0 . Thus we complete
the proof.

For normal spaces, we have the following example.

Example 2.5. Assuming 2ℵ0 = 2ℵ1 , there exists a star-Lindelöf normal space X that is not neighborhood star-Lindelöf.

Proof. Let Y = L∪ω be a separable normal T1 space where L is a closed and discrete subset of Y with |L| = ℵ1
and each element of ω is isolated. See Example E [14] for the construction of such a space. Let

X = L ∪ ([0, ω1) × [0, ω))

and topologize X as follows: A basic neighborhood of l ∈ L in X is a set of the form

GU,α(l) = (U ∩ L) ∪ ((α,ω1) × (U ∩ [0, ω)))

for a neighborhood U of l in Y and α < ω1, and a basic neighborhood of ⟨α,n⟩ ∈ ω1 × ω in X is a set of the
form

GV(⟨α,n⟩) = V × {n},
where V is a neighborhood of α in ω1. The author showed that X is normal (see [13]).

First we show that X is star-Lindelöf. To this end, letU be an open cover of X. Let

M = {n ∈ ω : (∃U ∈ U)(∃β < ω1)((β, ω1) × {n} ⊆ U)}.

For each n ∈ M, there exist Un ∈ U and βn < ω1 such that (βn, ω1) × {n} ⊆ Un. If we putV′ = {Un : n ∈ M},
then

L ⊆ St(
∪
V′,U).

On the other hand, for each n ∈ ω, since [0, ω1) × {n} is countably compact, we can find a finite subfamily
Vn ofU such that

[0, ω1) × {n} ⊆ St(
∪
Vn,U).

Consequently, if we putV = V′ ∪∪{Vn : n ∈ ω}, thenV is a countable subset ofU and X = St(
∪V,U).

Hence X is star-Lindelöf.
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Next we show that X is not neighborhood star-Lindelöf. Since |L| = ℵ1, we can enumerate L as
{lα : α < ω1}. Since {lα : α < ω1} is discrete and closed in Y, for each α < ω1, there exists an open
neighborhood Vα of lα in Y such that

Vα ∩ L = {lα}.
Let us consider the open cover

U = {GVα,α (lα) : α < ω1} ∪ {ω1 × ω}
of X. It suffices to show that for any countable subset F of X, there exists a point x ∈ X such that
St(x,U)∩ F = ∅ by Lemma 2.3. To show this, let F be a countable subset of X. Since F∩ L is countable, there
exists β′ < ω1 such that

F ∩ {lα : α > β′} = ∅.
On the other hand, for each n ∈ ω, there exists an αn < ω1 such that

F ∩ ((αn, ω1) × {n}) = ∅,

since F is countable. Let β′′ = sup{αn : n ∈ ω}, then β′′ < ω1. If we pick β0 > max{β′, β′′}, then F∩GVβ0 ,β0 (lβ0 ) =
∅. Since GVβ0 ,β0 (lβ0 ) is the only element ofU containing lβ0 , then St(lβ0 ,U) = GVβ0 ,β0 (lβ0 ). By the constructions

of the topology of X and the open coverU, we have St(lβ0 ,U) = GVβ0 ,β0 (lβ0 ). Thus we complete the proof.

Remark 2.6. The definition of the space X in the proof of Example 2.5 is more complicated than it is
necessary. In fact, X is the subspace (Y × (ω1 + 1)) \ ((ω × {ω1}) ∪ (L ×ω1)) of the product space Y × (ω1 + 1).
But, for the convenience of the proof of Example 2.5, we use the definition from [13].

In the following, we show an example from [1] showing that there exists a first countable, star-Lindelöf
Tychonoff space that is not neighborhood star-Lindelöf. The example uses the the Alexandorff duplicate
A(X) of a space X. The underlying set A(X) is X × {0, 1}; each point of X × {1} is isolated and a basic
neighborhood of ⟨x, 0⟩ ∈ X×{0} is a set of the form (U×{0})∪ ((U×{1}) \ {⟨x, 0⟩}),where U is a neighborhood
of x in X. For the next example, we need the following Lemma.

Lemma 2.7. ([12]) A space X having a dense Lindelöf subspace is star-Lindelöf.

Example 2.8. There exists a first countable, star-Lindelöf Tychonoff space that is not neighborhood star-Lindelöf.

Proof. Let X = (A(I) × [0, ω]) \ ((I × {0}) × {ω}) where I denotes the closed unit interval. Clearly, X is first
countable and Tychonoff. Since A(I) × [0, ω) is a dense σ-compact subset of X, then X is star-Lindelöf by
Lemma 2.7, since every σ-compact subset is Lindelöf.

We show that X is not neighborhood star-Lindelöf. For each a ∈ I, let

Ua = {⟨a, 1⟩} × [0, ω].

Then
Ua is s clopen subset of X

and
Ua ∩Ua′ = ∅ for a , a′.

Let us consider the open cover
U = {Ua : a ∈ I} ∪ {A(I) × [0, ω)}

of X. It suffices to show that for any countable subset F of X, there exists a point x ∈ X such that
St(x,U) ∩ F = ∅ by Lemma 2.3. Let F be any countable subset of X. Then there exists a ∈ I such that
F ∩ Ua = ∅. Since Ua is the only element of U containing ⟨⟨a, 1⟩, ω⟩, then St(⟨⟨a, 1⟩, ω⟩,U) = Ua. By the
constructions of the topology of X and the open coverU, we have St(⟨⟨a, 1⟩, ω⟩,U) = Ua. Thus we complete
the proof.
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In [12], the author showed that a regular-closed subset of a Tychonoff neighborhood star-Lindelöf
space X need not be neighborhood star-Lindelöf. But the space is not pseudocompact. Now we give a
pseudocompact example. Here a subset A of a space X is said to be regular-closed in X if clXintXA = A.

Example 2.9. There exists a pseudocompact, neighborhood star-Lindelöf Tychonoff space having a regular-closed
Gδ-subspace which is not neighborhood star-Lindelöf.

Proof. Let S1 be the same space X as in the proof of Example 2.4. Then S1 is Tychonoff pseudocompact, not
neighborhood star-Lindelöf.

Let S2 = ω ∪ R be the Isbell-Mrówka space (see [11]), where R is a maximal almost disjoint family of
infinite subsets of ω with |R| = c. Then S2 is Tychonoff pseudocompact neighborhood star-Lindelöf.

We assume S1 ∩ S2 = ∅. Let π : D × {c+} → R be a bijection. Let X be the quotient image of the disjoint
sum S1 ⊕ S2 obtained by identifying ⟨dα, c+⟩ of S1 with π(⟨dα, c+⟩) of S2 for every α < c. Let φ : S1 ⊕ S2 → X
be the quotient map. Then X is pseudocompact, since S1 and S2 are pseudocompact. It is clear that φ(S1) is
a regular-closed subspace of X. Let

Un = φ(S1 ∪ (R ∪ {m ∈ ω : m > n})) for each n ∈ ω.

Then Un is open in X and φ(S1) =
∩

n∈ωUn. Thus φ(S1) is a regular-closed Gδ-subspace of X. However φ(S1)
is not neighborhood star-Lindelöf, since it is homeomorphic to S1.

Finally we show that X is neighborhood star-Lindelöf. We need only show that X is strongly star-
Lindelöf, since every strongly star-Lindelöf space is neighborhood star-Lindelöf. To this end, let U be an
open covers of X. Since φ(S2) is homeomorphic to S2, then

φ(S2) ⊆ St(φ(ω),U),

since φ(ω) is a dense subset of φ(S2). On the other hand, since φ(D∗× [0, c+)) is homeomorphic to D∗× [0, c+),
then φ(D∗ × [0, c+)) is countably compact, so there exists a finite subset F′ of φ(D∗ × [0, c+)) such that

φ(D∗ × [0, c+)) ⊆ St(F′,U).

If we put F = φ(ω) ∪ F′. Then F is a countable subset of X such that X = St(F,U), which completes the
proof.

For normal spaces, we have the following example.

Example 2.10. Assuming 2ℵ0 = 2ℵ1 , there exists a normal neighborhood star-Lindelöf space having a regular-closed
subspace which is not neighborhood star-Lindelöf.

Proof. Let
S1 = L ∪ ([0, ω1) × [0, ω))

be the same space X as in the proof of Example 2.5. Then S1 is normal, not neighborhood star-Lindelöf (see
the above Example 2.5).

Let S2 = L ∪ ω be the same space Y as in the proof of Example 2.5. Then S2 is strongly star-Lindelöf,
since ω is a countable dense subset of S2. Thus S2 is normal, neighborhood star-Lindelöf.

Let X be the quotient image of the disjoint sum S1 ⊕ S2 obtained by identifying l of S1 with l of S2 for
any l ∈ L. Let φ : S1 ⊕ S2 → X be the quotient map. Then X is normal, since S1 and S2 are normal, and L is
closed in S1 and S2. It is clear that φ(S1) is a regular-close subspace of X by the construction of the topology
of X. However φ(S1) is not neighborhood star-Lindelöf, since φ(S1) is homomorphic to S1.

Finally we show that X is neighborhood star-Lindelöf. We need only show that X is strongly star-
Lindelöf, To this end, let U be an open cover of X. Since ω is a countable dense subset of S2 and φ(ω) is
homeomorphic to φ(S2), then φ(ω) is a countable dense subset of φ(S2), thus

φ(S2) ⊆ St(φ(ω),U).
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On the other hand, since φ([0, ω1) × {n}) is homomorphic to [0, ω1) × {n}, then φ([0, ω1) × {n}) is countably
compact for each n ∈ ω, thus there exists a finite subset Fn of φ(ω1 × {n}) such that

φ([0, ω1) × {n}) ⊆ St(Fn,U).

If we put F = φ(ω)∪∪{Fn : n ∈ ω}, then F is a countable subset of X and X = St(F,U), which shows that
X is strongly star-Lindelöf.

Remark 2.11. It is well-known that 2ℵ0 = 2ℵ1 implies negation of CH. Examples 2.5 and 2.10 give consistent
examples. The author does not know if there are ZFC counterexamples.

Next we give a positive result.

Theorem 2.12. An open Fσ-subset of a neighborhood star-Lindelöf space is neighborhood star-Lindelöf.

Proof. Let X be a neighborhood star-Lindelöf space and let Y =
∪{Hn : n ∈ ω} be an open Fσ-subset of X,

where the set Hn is closed in X for each n ∈ ω. To show that X is neighborhood star-Lindelöf. LetU be an
open cover of Y. We have to find a countable subset F of Y such that for each open O ⊇ F, St(O,U) = Y. For
each n ∈ ω, consider the open cover

Un =U ∪ {X \Hn}
of X. Since X is neighborhood star-Lindelöf, there exists a countable subset Fn of X such that for each
open O′ ⊇ Fn, such that St(O′,U) = X. For each n ∈ ω, let Mn = Fn ∩ Y. Then Mn is a countable sunset
of Y such that for each open O ⊇ Mn, such that Hn ⊆ St(O,U). If we put F =

∪{Mn : n ∈ ω}, then F is a
countable subset of Y such that for each open O ⊇ F, St(O,U) = Y, which shows that X is neighborhood
star-Lindelöf.

A cozero-set in a space X is a set of the form f−1(R \ {0}) for some real-valued continuous function f on
X. Since a cozero-set is an open Fσ-set, we have the following corollary of Theorem 2.12.

Corollary 2.13. A cozero-set of a neighborhood star-Lindelöf space is neighborhood star-Lindelöf.

Remark 2.14. Bonanzinga et al. in [5] showed that there exists a Urysohn neighborhood star-Lindelöf
space that is not strongly star-Lindelöf. But the author does not know if there exists a Tychonoff (or normal)
example.
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