Filomat 27:5 (2013), 875–880 DOI 10.2298/FIL1305875S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Remarks on neighborhood star-Lindelöf spaces II

Yan-Kui Song^a

^aInstitute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, P.R. China

Abstract. A space *X* is said to be *neighborhood star-Lindelöf* if for every open cover \mathcal{U} of *X* there exists a countable subset *A* of *X* such that for every open $O \supseteq A$, $X = St(O, \mathcal{U})$. In this paper, we continue to investigate the relationship between neighborhood star-Lindelöf spaces and related spaces, and study topological properties of neighborhood star-Lindelöf spaces in the classes of normal and pseudocompact spaces.

1. Introduction

By a space, we mean a topological space. In the rest of this section, we give definitions of terms which are used in this paper. Let *X* be a space and \mathcal{U} a collection of subsets of *X*. For $A \subseteq X$, let $St(A, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap A \neq \emptyset \}$. As usual, we write $St(x, \mathcal{U})$ for $St(\{x\}, \mathcal{U})$.

Recall that a space X is *strongly starcompact* (see [6, 8, 9] under different name) if for every open cover \mathcal{U} of X there exists a finite subset A of X such that $X = St(A, \mathcal{U})$; A space X is *strongly star-Lindelöf* (see [2, 3, 6, 9, 10] under different name) if for every open cover \mathcal{U} of X there exists a countable subset A of X such that $X = St(A, \mathcal{U})$; A space X is *starcompact* (resp., *star-Lindelöf*) (see [6, 9] under different name) if for every open cover \mathcal{U} of X there exists a finite (resp., *star-Lindelöf*) (see [6, 9] under different name) if for every open cover \mathcal{U} of X there exists a finite (resp., *star-Lindelöf*) (see [6, 9] under different name) if for every open cover \mathcal{U} of X there exists a finite (resp., countable) subset \mathcal{V} of \mathcal{U} such that $X = St(\bigcup \mathcal{V}, \mathcal{U})$. Clearly, every strongly starcompact space is strongly star-Lindelöf and every strongly star-Compact space is star-Lindelöf. It is known that every countably compact space is strongly starcompact, and every Hausdorff strongly starcompact space is countably compact (see [6, 9]).

It is natural in this context to introduce the following definitions:

Definition 1.1. ([4]) A space *X* is said to be *weakly starcompact* if for every open cover \mathcal{U} of *X* there exists a finite subset *A* of *X* such that for every open $O \supseteq A$, $X = St(O, \mathcal{U})$.

Definition 1.2. ([5]) A space *X* is said to be *neighborhood star-Lindelöf* if for every open cover \mathcal{U} of *X* there exists a countable subset *A* of *X* such that for every open $O \supseteq A$, $X = St(O, \mathcal{U})$.

From the definitions, it is clear that every weakly starcompact space is neighborhood star-Lindelöf, every strongly star-Lindelöf space is neighborhood star-Lindelöf and every neighborhood star-Lindelöf space is star-Lindelöf.

²⁰¹⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54D10, 54D30

Keywords. Strongly starcompact, starcompact, weakly starcompact, strongly star-Lindelöf, star-Lindelöf, neighborhood star-Lindelöf

Received: 28 August 2012; Revised: 03 October 2012; Accepted: 06 October 2012 Communicated by Ljubiša D.R. Kočinac

The author acknowledges the support from the National Natural Science Foundation (grant 11271036) of China

Email address: songyankui@njnu.edu.cn (Yan-Kui Song)

The theory becomes more interesting when star-covering properties are considered in conjunction with other properties. In [12], the author studied the relationship between neighborhood star-Lindelöf spaces and related spaces, and investigated topological properties of neighborhood star-Lindelöf spaces. Pseudocompactness is particularly interesting in this case as it may be treated as a star-covering property (see [6, 9]). In this note, we continue to study the relationship between neighborhood star-Lindelöf spaces and related spaces, and investigate topological properties of neighborhood star-Lindelöf spaces and related spaces, and investigate topological properties of neighborhood star-Lindelöf spaces in the classes of normal and pseudocompact spaces.

Throughout this paper, the cardinality of a set *A* is denoted by |A|. Let ω denote the first infinite cardinal, ω_1 the first uncountable cardinal, \mathfrak{c} the cardinality of the set of all real numbers. For a cardinal κ , let κ^+ be the smallest cardinal greater than κ . For each pair of ordinals α , β with $\alpha < \beta$, we write $[\alpha, \beta] = \{\gamma : \alpha \le \gamma < \beta\}$, $(\alpha, \beta] = \{\gamma : \alpha < \gamma \le \beta\}$, $(\alpha, \beta) = \{\gamma : \alpha < \gamma < \beta\}$ and $[\alpha, \beta] = \{\gamma : \alpha \le \gamma \le \beta\}$. As usual, a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often viewed as a space with the usual order topology. Other terms and symbols that we do not define follow [7].

2. Main results

In [12], the author showed that there exists a Tychonoff neighborhood star-Lindelöf space *X* that is not weakly starcompact and there exists a Tychonoff star-Lindelöf space that is not neighborhood star-Lindelöf. But these spaces are neither normal nor pseudocompact. In the following, we construct pseudocompact and normal examples. Recall that a space is called *Urysohn* if every two distinct points have neighborhoods with disjoint closures. Clearly, the property is between the Hausdorff condition and regularity. Bonanzinga et al. in [4] showed that the three properties, countable compactness, strongly starcompactness, and weak starcompactness, are equivalent for Urysonn spaces.

Example 2.1. There exists a pseudocompact, neighborhood star-Lindelöf Tychonoff space X that is not weakly starcompact.

Proof. Let $X = \omega \cup \mathcal{R}$ be the Isbell-Mrówka space (see [11]), where \mathcal{R} is a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = c$. Then X is Tychonoff pseudocompact. Since ω is a countable dense subset of X. Then X is strongly star-Lindelöf. Thus X is neighborhood star-Lindelöf. But X is not countably compact, since \mathcal{R} is an uncountable discrete closed subset of X. Thus X is not weakly starcompact, since countable compactness is equivalent to weakly starcompactness for Tychonoff spaces. \Box

In [12], the author gave an example showing that there exists a Tychonoff neighborhood star-Lindelöf space *X* that is not weakly starcompact. In fact, the space is normal.

Example 2.2. There exists a normal neighborhood star-Lindelöf space X that is not weakly starcompact.

For the next example, we need the following lemma.

Lemma 2.3. ([5]) A space X is neighborhood star-Lindelöf if and only if for every open cover \mathcal{U} of X there exists a countable subset A of X such that $\overline{St(x, \mathcal{U})} \cap A \neq \emptyset$ for each $x \in X$.

Example 2.4. There exists a pseudocompact star-Lindelöf Tychonoff space that is not neighborhood star-Lindelöf.

Proof. Let $D = \{d_{\alpha} : \alpha < c\}$ be a discrete space of cardinality c and let $D^* = D \cup \{d^*\}$ be the one-point compactification of D, where $d^* \notin D$.

Let

$$X = (D^* \times [0, \mathfrak{c}^+]) \setminus \{\langle d^*, \mathfrak{c}^+ \rangle\}$$

be the subspace of $D^* \times [0, c^+]$. Then *X* is pseudocompact Tychonoff. In fact, it has a countably compact, dense subspace $D^* \times [0, c^+)$.

First we show that X is star-Lindelöf. For this end, let \mathcal{U} be an open cover of X. For each $\alpha < \mathfrak{c}$, there exists $U_{\alpha} \in \mathcal{U}$ such that $\langle d_{\alpha}, \mathfrak{c}^+ \rangle \in U_{\alpha}$, we can find $\beta_{\alpha} < \mathfrak{c}^+$ such that $\{d_{\alpha}\} \times (\beta_{\alpha}, \mathfrak{c}^+) \subseteq U_{\alpha}$. Let $\beta = \sup\{\beta_{\alpha} : \alpha < \mathfrak{c}\}$.

Then $\beta < c^+$. Let $K = D^* \times \{\beta\}$. Then *K* is compact and $U_\alpha \cap K \neq \emptyset$ for each $\alpha < c$. Since \mathcal{U} covers *K*, there exists a finite subset \mathcal{U}' of \mathcal{U} such that $K \subseteq \bigcup \mathcal{U}'$. Then

$$D \times {\mathfrak{c}^+} \subseteq St(\bigcup \mathcal{U}', \mathcal{U}).$$

On the other hand, since $D^* \times [0, c^+)$ is countably compact, we can find a finite subset \mathcal{U}'' of \mathcal{U} such that

$$D^* \times [0, \mathfrak{c}^+) \subseteq St(\bigcup \mathcal{U}'', \mathcal{U}).$$

If we put $\mathcal{V} = \mathcal{U}' \cup \mathcal{U}''$, then \mathcal{V} is a finite subset of \mathcal{U} such that $X = St(\bigcup \mathcal{V}, \mathcal{U})$, which shows that X is star-Lindelöf.

Next we show that *X* is not neighborhood star-Lindelöf. For each $\alpha < \mathfrak{c}$, let

$$U_{\alpha} = \{d_{\alpha}\} \times [0, \mathfrak{c}^+].$$

Let us consider the open cover

$$\mathcal{U} = \{U_{\alpha} : \alpha < \mathfrak{c}\} \cup \{D^* \times [0, \mathfrak{c}^+)\}$$

of *X*. It suffices to show that for any countable subset *F* of *X*, there exists a point $x \in X$ such that $\overline{St(x, \mathcal{U})} \cap F = \emptyset$ by Lemma 2.3. Let *F* be any countable subset of *X*. Then there exists an $\alpha_0 < \mathfrak{c}$ such that $F \cap U_{\alpha_0} = \emptyset$. Since U_{α_0} is the only element of \mathcal{U} containing $\langle d_{\alpha_0}, \mathfrak{c}^+ \rangle$, then $St(\langle d_{\alpha_0}, \mathfrak{c}^+ \rangle, \mathcal{U}) = U_{\alpha_0}$. By the constructions of the topology of *X* and the open cover \mathcal{U} , we have $\overline{St(\langle d_{\alpha_0}, \mathfrak{c}^+ \rangle, \mathcal{U})} = U_{\alpha_0}$. Thus we complete the proof. \Box

For normal spaces, we have the following example.

Example 2.5. Assuming $2^{\aleph_0} = 2^{\aleph_1}$, there exists a star-Lindelöf normal space X that is not neighborhood star-Lindelöf.

Proof. Let $Y = L \cup \omega$ be a separable normal T_1 space where L is a closed and discrete subset of Y with $|L| = \aleph_1$ and each element of ω is isolated. See Example E [14] for the construction of such a space. Let

$$X = L \cup ([0, \omega_1) \times [0, \omega))$$

and topologize *X* as follows: A basic neighborhood of $l \in L$ in *X* is a set of the form

$$G_{U\alpha}(l) = (U \cap L) \cup ((\alpha, \omega_1) \times (U \cap [0, \omega)))$$

for a neighborhood *U* of *l* in *Y* and $\alpha < \omega_1$, and a basic neighborhood of $\langle \alpha, n \rangle \in \omega_1 \times \omega$ in *X* is a set of the form

$$G_V(\langle \alpha, n \rangle) = V \times \{n\},\$$

where *V* is a neighborhood of α in ω_1 . The author showed that *X* is normal (see [13]).

First we show that *X* is star-Lindelöf. To this end, let \mathcal{U} be an open cover of *X*. Let

$$M = \{n \in \omega : (\exists U \in \mathcal{U}) (\exists \beta < \omega_1) ((\beta, \omega_1) \times \{n\} \subseteq U)\}.$$

For each $n \in M$, there exist $U_n \in \mathcal{U}$ and $\beta_n < \omega_1$ such that $(\beta_n, \omega_1) \times \{n\} \subseteq U_n$. If we put $\mathcal{V}' = \{U_n : n \in M\}$, then

$$L \subseteq St(\bigcup \mathcal{V}', \mathcal{U}).$$

On the other hand, for each $n \in \omega$, since $[0, \omega_1) \times \{n\}$ is countably compact, we can find a finite subfamily \mathcal{V}_n of \mathcal{U} such that

$$[0,\omega_1)\times\{n\}\subseteq St(\bigcup \mathcal{V}_n,\mathcal{U}).$$

Consequently, if we put $\mathcal{V} = \mathcal{V}' \cup \bigcup \{\mathcal{V}_n : n \in \omega\}$, then \mathcal{V} is a countable subset of \mathcal{U} and $X = St(\bigcup \mathcal{V}, \mathcal{U})$. Hence *X* is star-Lindelöf. Next we show that *X* is not neighborhood star-Lindelöf. Since $|L| = \aleph_1$, we can enumerate *L* as $\{l_\alpha : \alpha < \omega_1\}$. Since $\{l_\alpha : \alpha < \omega_1\}$ is discrete and closed in *Y*, for each $\alpha < \omega_1$, there exists an open neighborhood V_α of l_α in *Y* such that

$$V_{\alpha} \cap L = \{l_{\alpha}\}.$$

Let us consider the open cover

 $\mathcal{U} = \{G_{V_{\alpha,\alpha}}(l_{\alpha}) : \alpha < \omega_1\} \cup \{\omega_1 \times \omega\}$

of *X*. It suffices to show that for any countable subset *F* of *X*, there exists a point $x \in X$ such that $\overline{St(x, \mathcal{U})} \cap F = \emptyset$ by Lemma 2.3. To show this, let *F* be a countable subset of *X*. Since $F \cap L$ is countable, there exists $\beta' < \omega_1$ such that

$$F \cap \{l_{\alpha} : \alpha > \beta'\} = \emptyset.$$

On the other hand, for each $n \in \omega$, there exists an $\alpha_n < \omega_1$ such that

$$F \cap ((\alpha_n, \omega_1) \times \{n\}) = \emptyset,$$

since *F* is countable. Let $\beta'' = \sup\{\alpha_n : n \in \omega\}$, then $\beta'' < \omega_1$. If we pick $\beta_0 > \max\{\beta', \beta''\}$, then $F \cap G_{V_{\beta_0,\beta_0}}(l_{\beta_0}) = \emptyset$. Since $G_{V_{\beta_0,\beta_0}}(l_{\beta_0})$ is the only element of \mathcal{U} containing l_{β_0} , then $St(l_{\beta_0}, \mathcal{U}) = G_{V_{\beta_0,\beta_0}}(l_{\beta_0})$. By the constructions of the topology of *X* and the open cover \mathcal{U} , we have $\overline{St(l_{\beta_0}, \mathcal{U})} = G_{V_{\beta_0,\beta_0}}(l_{\beta_0})$. Thus we complete the proof. \Box

Remark 2.6. The definition of the space *X* in the proof of Example 2.5 is more complicated than it is necessary. In fact, *X* is the subspace $(Y \times (\omega_1 + 1)) \setminus ((\omega \times \{\omega_1\}) \cup (L \times \omega_1))$ of the product space $Y \times (\omega_1 + 1)$. But, for the convenience of the proof of Example 2.5, we use the definition from [13].

In the following, we show an example from [1] showing that there exists a first countable, star-Lindelöf Tychonoff space that is not neighborhood star-Lindelöf. The example uses the the Alexandorff duplicate A(X) of a space X. The underlying set A(X) is $X \times \{0, 1\}$; each point of $X \times \{1\}$ is isolated and a basic neighborhood of $\langle x, 0 \rangle \in X \times \{0\}$ is a set of the form $(U \times \{0\}) \cup ((U \times \{1\}) \setminus \{\langle x, 0 \rangle\})$, where U is a neighborhood of x in X. For the next example, we need the following Lemma.

Lemma 2.7. ([12]) A space X having a dense Lindelöf subspace is star-Lindelöf.

Example 2.8. There exists a first countable, star-Lindelöf Tychonoff space that is not neighborhood star-Lindelöf.

Proof. Let $X = (A(I) \times [0, \omega]) \setminus ((I \times \{0\}) \times \{\omega\})$ where *I* denotes the closed unit interval. Clearly, *X* is first countable and Tychonoff. Since $A(I) \times [0, \omega)$ is a dense σ -compact subset of *X*, then *X* is star-Lindelöf by Lemma 2.7, since every σ -compact subset is Lindelöf.

We show that *X* is not neighborhood star-Lindelöf. For each $a \in I$, let

$$U_a = \{ \langle a, 1 \rangle \} \times [0, \omega].$$

Then

 U_a is s clopen subset of X

and

$$U_a \cap U_{a'} = \emptyset$$
 for $a \neq a'$.

Let us consider the open cover

$$\mathcal{U} = \{U_a : a \in I\} \cup \{A(I) \times [0, \omega)\}$$

of *X*. It suffices to show that for any countable subset *F* of *X*, there exists a point $x \in X$ such that $\overline{St(x, \mathcal{U})} \cap F = \emptyset$ by Lemma 2.3. Let *F* be any countable subset of *X*. Then there exists $a \in I$ such that $F \cap U_a = \emptyset$. Since U_a is the only element of \mathcal{U} containing $\langle \langle a, 1 \rangle, \omega \rangle$, then $St(\langle \langle a, 1 \rangle, \omega \rangle, \mathcal{U}) = U_a$. By the constructions of the topology of *X* and the open cover \mathcal{U} , we have $\overline{St(\langle \langle a, 1 \rangle, \omega \rangle, \mathcal{U})} = U_a$. Thus we complete the proof. \Box

In [12], the author showed that a regular-closed subset of a Tychonoff neighborhood star-Lindelöf space *X* need not be neighborhood star-Lindelöf. But the space is not pseudocompact. Now we give a pseudocompact example. Here a subset *A* of a space *X* is said to be *regular-closed* in *X* if $cl_xint_xA = A$.

Example 2.9. There exists a pseudocompact, neighborhood star-Lindelöf Tychonoff space having a regular-closed G_{δ} -subspace which is not neighborhood star-Lindelöf.

Proof. Let S_1 be the same space X as in the proof of Example 2.4. Then S_1 is Tychonoff pseudocompact, not neighborhood star-Lindelöf.

Let $S_2 = \omega \cup \mathcal{R}$ be the Isbell-Mrówka space (see [11]), where \mathcal{R} is a maximal almost disjoint family of infinite subsets of ω with $|\mathcal{R}| = \mathfrak{c}$. Then S_2 is Tychonoff pseudocompact neighborhood star-Lindelöf.

We assume $S_1 \cap S_2 = \emptyset$. Let $\pi : D \times \{\mathfrak{c}^+\} \to \mathcal{R}$ be a bijection. Let *X* be the quotient image of the disjoint sum $S_1 \oplus S_2$ obtained by identifying $\langle d_{\alpha}, \mathfrak{c}^+ \rangle$ of S_1 with $\pi(\langle d_{\alpha}, \mathfrak{c}^+ \rangle)$ of S_2 for every $\alpha < \mathfrak{c}$. Let $\varphi : S_1 \oplus S_2 \to X$ be the quotient map. Then *X* is pseudocompact, since S_1 and S_2 are pseudocompact. It is clear that $\varphi(S_1)$ is a regular-closed subspace of *X*. Let

$$U_n = \varphi(S_1 \cup (\mathcal{R} \cup \{m \in \omega : m > n\}))$$
 for each $n \in \omega$.

Then U_n is open in X and $\varphi(S_1) = \bigcap_{n \in \omega} U_n$. Thus $\varphi(S_1)$ is a regular-closed G_{δ} -subspace of X. However $\varphi(S_1)$ is not neighborhood star-Lindelöf, since it is homeomorphic to S_1 .

Finally we show that *X* is neighborhood star-Lindelöf. We need only show that *X* is strongly star-Lindelöf, since every strongly star-Lindelöf space is neighborhood star-Lindelöf. To this end, let \mathcal{U} be an open covers of *X*. Since $\varphi(S_2)$ is homeomorphic to S_2 , then

$$\varphi(S_2) \subseteq St(\varphi(\omega), \mathcal{U}),$$

since $\varphi(\omega)$ is a dense subset of $\varphi(S_2)$. On the other hand, since $\varphi(D^* \times [0, \mathfrak{c}^+))$ is homeomorphic to $D^* \times [0, \mathfrak{c}^+)$, then $\varphi(D^* \times [0, \mathfrak{c}^+))$ is countably compact, so there exists a finite subset F' of $\varphi(D^* \times [0, \mathfrak{c}^+))$ such that

$$\varphi(D^* \times [0, \mathfrak{c}^+)) \subseteq St(F', \mathcal{U})$$

If we put $F = \varphi(\omega) \cup F'$. Then *F* is a countable subset of *X* such that $X = St(F, \mathcal{U})$, which completes the proof. \Box

For normal spaces, we have the following example.

Example 2.10. Assuming $2^{\aleph_0} = 2^{\aleph_1}$, there exists a normal neighborhood star-Lindelöf space having a regular-closed subspace which is not neighborhood star-Lindelöf.

Proof. Let

$$S_1 = L \cup ([0, \omega_1) \times [0, \omega))$$

be the same space X as in the proof of Example 2.5. Then S_1 is normal, not neighborhood star-Lindelöf (see the above Example 2.5).

Let $S_2 = L \cup \omega$ be the same space Y as in the proof of Example 2.5. Then S_2 is strongly star-Lindelöf, since ω is a countable dense subset of S_2 . Thus S_2 is normal, neighborhood star-Lindelöf.

Let *X* be the quotient image of the disjoint sum $S_1 \oplus S_2$ obtained by identifying *l* of S_1 with *l* of S_2 for any $l \in L$. Let $\varphi : S_1 \oplus S_2 \to X$ be the quotient map. Then *X* is normal, since S_1 and S_2 are normal, and *L* is closed in S_1 and S_2 . It is clear that $\varphi(S_1)$ is a regular-close subspace of *X* by the construction of the topology of *X*. However $\varphi(S_1)$ is not neighborhood star-Lindelöf, since $\varphi(S_1)$ is homomorphic to S_1 .

Finally we show that *X* is neighborhood star-Lindelöf. We need only show that *X* is strongly star-Lindelöf, To this end, let \mathcal{U} be an open cover of *X*. Since ω is a countable dense subset of S_2 and $\varphi(\omega)$ is homeomorphic to $\varphi(S_2)$, then $\varphi(\omega)$ is a countable dense subset of $\varphi(S_2)$, thus

$$\varphi(S_2) \subseteq St(\varphi(\omega), \mathcal{U}).$$

On the other hand, since $\varphi([0, \omega_1) \times \{n\})$ is homomorphic to $[0, \omega_1) \times \{n\}$, then $\varphi([0, \omega_1) \times \{n\})$ is countably compact for each $n \in \omega$, thus there exists a finite subset F_n of $\varphi(\omega_1 \times \{n\})$ such that

$$\varphi([0,\omega_1)\times\{n\})\subseteq St(F_n,\mathcal{U}).$$

If we put $F = \varphi(\omega) \cup \bigcup \{F_n : n \in \omega\}$, then *F* is a countable subset of *X* and $X = St(F, \mathcal{U})$, which shows that *X* is strongly star-Lindelöf. \Box

Remark 2.11. It is well-known that $2^{\aleph_0} = 2^{\aleph_1}$ implies negation of CH. Examples 2.5 and 2.10 give consistent examples. The author does not know if there are ZFC counterexamples.

Next we give a positive result.

Theorem 2.12. An open F_{σ} -subset of a neighborhood star-Lindelöf space is neighborhood star-Lindelöf.

Proof. Let *X* be a neighborhood star-Lindelöf space and let $Y = \bigcup \{H_n : n \in \omega\}$ be an open F_{σ} -subset of *X*, where the set H_n is closed in *X* for each $n \in \omega$. To show that *X* is neighborhood star-Lindelöf. Let \mathcal{U} be an open cover of *Y*. We have to find a countable subset *F* of *Y* such that for each open $O \supseteq F$, $St(O, \mathcal{U}) = Y$. For each $n \in \omega$, consider the open cover

$$\mathcal{U}_n = \mathcal{U} \cup \{X \setminus H_n\}$$

of *X*. Since *X* is neighborhood star-Lindelöf, there exists a countable subset F_n of *X* such that for each open $O' \supseteq F_n$, such that $St(O', \mathcal{U}) = X$. For each $n \in \omega$, let $M_n = F_n \cap Y$. Then M_n is a countable subset of *Y* such that for each open $O \supseteq M_n$, such that $H_n \subseteq St(O, \mathcal{U})$. If we put $F = \bigcup \{M_n : n \in \omega\}$, then *F* is a countable subset of *Y* such that for each open $O \supseteq F$, $St(O, \mathcal{U}) = Y$, which shows that *X* is neighborhood star-Lindelöf. \Box

A *cozero-set* in a space X is a set of the form $f^{-1}(R \setminus \{0\})$ for some real-valued continuous function f on X. Since a cozero-set is an open F_{σ} -set, we have the following corollary of Theorem 2.12.

Corollary 2.13. A cozero-set of a neighborhood star-Lindelöf space is neighborhood star-Lindelöf.

Remark 2.14. Bonanzinga et al. in [5] showed that there exists a Urysohn neighborhood star-Lindelöf space that is not strongly star-Lindelöf. But the author does not know if there exists a Tychonoff (or normal) example.

Acknowledgment. The author would like to thank Prof. Rui Li for his kind help and valuable suggestions. He would also like to thank the referee for his/her careful reading of the paper and a number of valuable suggestions which led to improvements on several places.

References

- [1] L.P. Aiken, Countability and star covering properties, Topology Appl. 158 (2011) 1732–1737.
- [2] O.T. Alas, L.R. Junqueira, R.G. Wilson, Countability and star covering properties, Topology Appl. 158 (2011) 620–626.
- [3] O.T. Alas, L.R. Junqueira, J. van Mill, V.V. Tkachuk, R.G. Wilson, On the extent of star countable spaces, Cent. Eur. J. Math. 9 (2011) 603–615.
- [4] M. Bonanzinga, F. Cammaroto, M.V. Matveev, On a weaker form of countable compactness, Quaest. Math. 30 (2007) 407–415.
- [5] M. Bonanzinga, F. Cammaroto, Lj.D.R. Kočinac, M.V. Matveev, On weaker forms of Menger, Rothberger and Hurewicz properties, Mat. Vesnik 61 (2009) 13–23
- [6] E.K. van Douwen, G.K. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39 (1991) 71-103.
- [7] R. Engelking General Topology, Revised and completed edition, Heldermann Verlag Berlin, 1989.
- [8] W.M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1970) 1–9.
- [9] M.V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No. 330, 1998.
- [10] J. van Mill, V.V. Tkachuk, R.G. Wilson, Classes defined by stars and neighbourhood assignments, Topology Appl. 154 (2007) 2127–2134.
- [11] S. Mrówka, On complete regular spaces, Fund. Math. 41 (1954) 105–106.
- [12] Y.-K. Song, Remarks on neighborhood star-Lindelöf spaces, Filomat 27:1 (2013) 149-155.
- [13] Y.-K. Song, Remarks on countability and star covering properties, Topology Appl. 158 (2011) 1121–1123.
- [14] F.D. Tall, Normality versus Collectionwise Normality, in: Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.) North-Holland, Amsterdam (1984) 685-732.