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Abstract. The aim of this paper is to interpret Generalized Priority Constraint Satisfaction Problem
(GPFCSP) using the interpretational method. We will interpret the ŁΠ 1

2 logic into the first order theory
of the reals, in order to obtain alternative, simple-complete axiomatization of ŁΠ 1

2 logic. A complete
axiomatization using the interpretation method as a syntactical approach is given.

1. Introduction

In order to give a syntactical approach to GPFCSP, we will interpret the ŁΠ 1
2 logic into the first order

theory of the reals. Our aim is to use the interpretation method in order to obtain alternative, simple-
complete axiomatization of ŁΠ 1

2 logic in the following sense: if ϕ is an arbitrary ŁΠ 1
2 -formula, then its

maximal satisfaction degree is s iff Cϕ = s is a theorem of TLΠ
1
2 . The reason for such approach lies in the fact

that ŁΠ 1
2 logic is only complete with respect to finite theories. Namely, an ŁΠ 1

2 -theory

T = {¬Π(p→ 0)} ∪ {p→ 10−n | n <N}

is finitely satisfiable, but not satisfiable since any evaluation of p that satisfies T must be a proper infinitesi-
mal.

PFCSP is actually a fuzzy constraint satisfaction problem (FCSP) in which the notion of priority is
introduced. Luo, Lee, Leung, Jennings [13] develop the idea and axiomatize PFSCP. Finally, Takači [20]
and Takači, Škrbić [21] generalize PFCSP and obtain Generalized Priority Fuzzy Constraint Satisfaction
Problem.

Our aim is to develop a logic that handles atomic symbols in the form (vi, ρi). The first coordinate vi
represents local satisfaction degree of a fuzzy constraint, while the second coordinate represents its priority.

Finally, a logic whose atomic symbols are prioritized constraints may be seen as a possibilistic logic
[19]. The main difference here is in the syntactical representation of the set of all valid formulas. As
we have mentioned above, instead of giving a complete Hilbert-style axiomatization, we have used the
interpretation method and obtain a variant of simple completeness (Theorem 3.5).
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2. Generalized Priority Fuzzy Constraint Satisfaction Problem

Constraint satisfaction problems (CSP) deal with a set of constraints and the means to find a solution,
i.e., an evaluation of variables that satisfies all the constraints and are a well developed concept. If we
cannot precisely determine whether a constraint is satisfied, i.e., if there can be many levels of constraint
satisfaction, we can expand CSP allowing a constraint to have a satisfaction degree from the unit interval.
In practice, most of constraints have inherited fuzziness (tall, bald, strong, young, age around 24, good
stamina, etc.) and they are more naturally represented as fuzzy sets. Constraints are modelled as fuzzy
sets over a particular domain which leads to the fuzzy constraint satisfaction problems (FCSP). Obviously,
the degree of satisfaction of a constraint is the membership degree of its domain value on the fuzzy set
that represents it. In order to obtain the global satisfaction degree, we need to aggregate the values of each
constraint. Operators t-norms, t-conorms and fuzzy negation are used to aggregate constraint satisfaction
degrees.

Besides the satisfaction degree we add to each constraint an importance value, i.e., priority. Many
concepts of priority have been studied. Priority of constraints is considered as the global importance of a
constraint among other ones. The more important the constraint is, the more impact it has on the aggregated
output of the PFCSP.

Priority Fuzzy Constraint Satisfaction Problem (PFCSP) make decisions that depend not only on the
satisfaction degree of each constraint (which is the case in FCSP), but also on the priority that each constraint
has. PFCSP are introduced by an axiomatic framework.

The problem is that FCSP only deals with the conjunction of the constraints. Obviously, PFCSP need to
be generalized in order to handle disjunction and negation. The result is that PFCSP systems evolve into a
GPFCSP that can handle priorities which are incorporated into each atomic formula (see [21]).

Definition 2.1. (see [13]) A fuzzy constraint satisfaction problem (FCSP) is a triple ⟨X,D,C f ⟩ such that:

• X = {x1, . . . , xn} is a set of variables.

• D = {d1, . . . , dn} is a set of domains. Each domain di is a finite set of possible values for the corresponding
variable xi.

• C f is a finite nonempty set of elements called fuzzy constraints, where each constraint Ci ∈ C f , i ∈ {1, . . . ,m}
has a form:

Ci : di1 × · · · × dik −→ [0, 1], 1 6 k 6 n.

�

The membership degree of each constraint indicates the local degree to which the constraint is satisfied.
In order to obtain the global satisfaction degree, local degrees are aggregated using a certain t–norm [18, 22].
Adding priorities to the FCSP and allowing constraints to be aggregated by any logical formula produces
the GPFCSP.

Definition 2.2. Let (X,D,C f ) be defined an FCSP, and let ρ : C f → [0,∞) and a compound label vX of all variables
in X, and , 1 : [0, 1) × [0,∞]→ [0, 1].

Generalized PFCSP is defined as a tuple (X,D,C f , ρ, 1,∧,∨,¬).
An elementary formula in generalized PFCSP is a pair (x, ρ(Ci)) where Ci ∈ C f , x ∈ Dom(Ci) represents the

satisfaction degree of a constraint Ci and pi = ρ(Ci) represents its priority.
A formula in GPFCSP is defined in the following way:
(i) An elementary formula is a formula.
(ii) If f1 and f2 are formulas then also ∧( f1, f2), ∨( f1, f2) and ¬( f1) are formulas.
For each valuation vX a satisfaction degree αF(vX) of a formula F is calculated depending on the interpretation of

connectives.
A system is a GPFCSP if
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1. Let F = ∧i∈{1,...,n} fi be a formula in GPFCSP where fi, i ∈ {1, . . . , n} are elementary formulas and let C f be a set
of constrains that appear in the formula. If for the fuzzy constraint R f

max we have

ρmax = ρ(R f
max) = max{ρ(R f ) | R f ∈ C f },

then for each formula F we have:

µR f
max

(vX) = 0⇒ αF(vX) = 0.

2. If ∀R f ∈ C f , ρ(R f ) = ρ0, then for each formula F it holds:

αF(vX) = FL(vX)

where FL is the interpretation of the logical formula F in fuzzy logic L(∧,∨,¬)).

3. For R f
i , R f

j ∈ C f , assume ρ(R f
i ) ≥ ρ(R f

j ), δ > 0 and assume that there are two different compound labels vX

and v′X such that:

• if ∀R f , R f
i and ∀R f , R f

j , then

µR f (vX) = µR f (v′X),

• if R f = R f
i , then µR f (vX) = µR f (v′X) + δ,

• if R f = R f
j , then µR f (v′X) = µR f (vX) + δ.

Then the following properties hold for

F =
n∧

k=1

(xk, ρ(Rk)), xk ∈ Dom(Rk)

or F =
∨n

k=1(xk, ρ(Rk)), xk ∈ Dom(Rk):

αF(vX) ≥ αF(v′X).

4. Assume that two different compound labels vX and v′X such that ∀R f ∈ C f satisfy

µR f (vX) ≥ µR f (v′X).

If formula F that has no negation connective, then it holds

αF(vX) ≥ αF(v′X).

5. Let there be a compound label such that ∀R f ∈ C f , µR f (vX) = 1.

If F is a formula F =
n∧

i=1
fi, where fi are elementary formulas then

αF(vX) = 1.

2.1. GPFCSP Example

In [13] it has been proven that if we take ∧(x, y) = TL(x, y) = max(x + y − 1, 0), ∨(x, y) = SL(x, y) =
min(x + y, 1), ¬(x) = N(x) = 1 − x and finally if the elementary formulae are evaluated in the following way
α f = α(x,ρ(C)) = Sp(x, 1−ρ(c)) = µC(x)+ (1−ρ(C))− (µC(x) ∗ (1−ρ(C))) for each constraint C (where TL,SL,N,Sp
are the Lukasiewicz T-norm, Lukasiewicz T-conorm, standard negation and product T-norm respectively
and µC is the membership function of the fuzzy set that represents the constraint C) we obtain a proper
interpretation of GPFCSP connectives. Let us give a proper, real-life example of a GPFCSP.
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For our example we will use the data needed to optimize bioethanol production in batch culture by free
Saccharomyces cerevisiae cells from intermediates of sugar beet processing which was statistically analyzed
in [5, 6] and also a neural network model was made in [2]. A GPFCSP system is based on these results will
be constructed.

Our system will be based on two input variables Initial sugar mass fraction (x1), Fermentation time (x2)
and Ph value (x3) . The most important factor for evaluation of bioethanol production efficiency is Ethanol
volume fraction at the end of fermentation. The GPFCSP system that is created in this example will be able
to evaluate each combination of input parameters i.e. the higher the satisfaction degree obtained the better
the combination is for bioethanol production. The constraints will be based on the results found in [2, 5, 6].

Let us now give the architecture of the system.

• Set of variables X = {x1, x2, x3} are:

– x1 - Initial sugar mass fraction,

– x2 - Fermentation time,

– x3 - Ph value.

• Set of domains d = {d1, d2, d3} are:

– d1 = [5, 25] ,

– d2 = [0, 48] ,

– d3 = [0, 14].

In order to introduce the set of constraints we need to recall the notion of triangular, trapezoidal and
left(right) shoulder fuzzy numbers. A triangular fuzzy number is a fuzzy number whose membership
function is first linearly increasing form point [c − l, 0] to [c, 1] then linearly decreasing to [c + r, 0]
forming a triangle. Number c is called the center of the fuzzy number and l and r are left and
right tolerances respectively. The left shoulder fuzzy number has an increasing linear membership
function that connects the points [−∞, 0], [c, 0], [d, 1], [d,∞]. Analogously, right shoulder fuzzy number
has an decreasing membership function that connects the points [−∞, 1], [c, 1], [d, 0], [d,+∞]. Finally,
the membership function of a trapezoidal fuzzy number forms a trapeze between the points [c −
l, 0], [c, 1], [d, 1], [d + r, 0]. We denote triangular fuzzy numbers Tri(c, l, r), trapezoidal fuzzy number
Trap(c, d, l, r), left shoulder ones inc(c, d) and right shoulder ones dec(c, d).

• Set of constraints C f = {C1,C2,C3,C4}with their according domains dc f = {dC1 , dC2 , dC3 , dC4 } are:

– C1 = Trap(4, 5, 0.5, 0.5) , dC1 = d3,

– C2 = Inc(5, 16), dC2 = d1,

– C3 = Tri(36, 36, 12), dC3 = d2,

– C4(x1, x2) = x1−5
20 ∗

x2
48 , dC3 = d1 × d2.

The constraint C1 represents the fact that the optimal Ph value for bioethanol production is between
4 and 5. Constraint C2 represents the finding that the increase of the initial sugar mass fraction to up
to 16% increases the production. Constraint C3 states that it is feasible to increase the fermentation time
up to 36 hours in order to obtain optimal production. Finally, constraint C4 states the interaction of
two factors is positive to the final outcome. It has been shown that constraints C1 and C4 are the most
important ones, and constraint C3 is the least important. Thus we have the following constraint priorities:
ρ(C1) = ρ(C4) = 1, ρ(C3) = 0.8 and ρ(C2) = 0.5. Finally, let us propose a formula whose satisfaction degree
will be calculated:

F = ∧( f1,∧( f4,∨( f2, f3)),
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where fi = (xi, ρ(Ci)), xi ∈ dci , i = 1, 2, 3, 4 is an elementary formula that represents the constraint Ci.
Suppose we want to calculate the satisfaction degree for the following evaluation: vX = (36, 12, 3.8).

First, we calculate the local satisfaction degree for each constraint:

α f1 (VX) = SP(µC1 (3.8), 1 − ρ(C1)) = Sp(0.8, 0) = 0.8
α f2 (VX) = SP(µC2 (12), 1 − ρ(C2)) = Sp(0.63, 0.5) = 0.82
α f3 (VX) = SP(µC3 (36), 1 − ρ(C3)) = Sp(1, 0.2) = 1
α f3 (VX) = SP(µC4 (12, 36), 1 − ρ(C4)) = Sp(0.31, 0) = 0.31

Now we can calculate αF(vX):

αF(vX) = ∧(α f1 (VX),∧(α f4 (VX),∨(α f2 (VX), α f3 (VX))) =
= TL(0, 8,TL(0.31, SP(1, 0.82))) = 0.11

3. The theory RCFLΠ

In order to give a syntactical approach to GPFCSP, we will interpret the ŁΠ 1
2 logic into the first order

theory of the reals. There are Hilbert-style axiomatizations of the Łukasiewicz logic, Product logic and
Gödel logics and the reader may find them, e.g., in Hajek’s book [7]. Complete axiomatizations of ŁΠ and
ŁΠ 1

2 logics, applications of these logics in formalization of conditional probabilities and default reasoning,
characterization of definability of continuous t-norms and many other important concepts connected to our
work can be found in [4, 9–12, 14–17].

Our aim is to use the interpretation method in order to obtain alternative, simple-complete axiomati-
zation of ŁΠ 1

2 logic in the following sense: if ϕ is an arbitrary ŁΠ 1
2 -formula, then its maximal satisfaction

degree is s iff Cϕ = s is a theorem of TLΠ
1
2 . The reason for such approach lies in the fact that ŁΠ 1

2 logic
is only complete with respect to finite theories, provided that we have restricted the class of all models to
[0, 1]-valued (which is a standard semantics for fuzzy logics). Namely, an ŁΠ 1

2 -theory

T = {¬Π(p→ 0)} ∪ {p→ 10−n | n ∈N}

is finitely satisfiable, but not satisfiable since any evaluation of p that satisfies T must ba a proper infinites-
imal. Note that the same effect would be achieved with any sequence ⟨an | n ∈ N⟩ of positive rational
numbers that converges to 0 (provided that an 6 1 for all n), i.e. the theory

{¬Π(p→ 0)} ∪ {p→ an | n ∈N}

is unsatisfiable in any [0, 1]-valued model of ŁΠ 1
2 . In fact, any theory that propagates existence of proper

infinitesimal is unsatisfiable. This is a consequence of the fact that ⟨[0, 1] 6⟩ is not ω1-saturated. One
well known way to tame this non-compactness phenomena is to extend ŁΠ 1

2 logic with certain infinitary
inference rules that will provide inconsistency of theories such as the above T. For instance, one such rule
is the Archimedean rule:

From the set of premises {
ϕ→Π s − 1

n
| n > 1

s

}
infer ϕ→Π s.

Another way is to extend semantics of the ŁΠ 1
2 logic to the hyperreal valued truth functions and use

the interpretation method to show that compactness theorem will hold for the extended semantics. Since
compactness can be obtain in the exactly the same way as the simple completeness, we will only show the
simple completeness via interpretation method.

As the input, we have the following data:
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• The satisfaction degree of each constraint.

• The priority of each constraint.

Thus, our propositional letters are pairs of the form ⟨v, ρ⟩, where the first coordinate refers to the satisfaction
degree of the constraint, while the second coordinate refers to its priority. A query will be an ŁΠ 1

2 -formula
over the introduced propositional letters.

Now, we shall start with the technical details. Concerning model theoretical notions, our notation and
terminology is standard and follows. Let LOF = {+,−, ·,6, 0, 1} be the language of the ordered fields, let
RCF be the first order LOF–theory of the real closed fields, and letV = {vn | n < ω}, P = {P} ∪ {ρn | n ∈ N}
and C = {⟨v, ρ⟩ | v ∈ V and ρ ∈ P}. The letters u, v and w denote the elements ofV, while ρ, η and ζ denote
the elements of P. We define the set For of fuzzy propositional formulae as the set of ŁΠ 1

2 -formulae over
the set of propositional letters C. The elements of For will be denoted by ϕ, ψ and θ, indexed or primed if
necessary.

Definition 3.1. Let L∗ = LOF ∪ V ∪ P ∪ {Cα | α ∈ For}. Here the elements of L∗ \ LOF are treated as new
constant symbols. We define the theory RCFLΠ as an L∗–theory with the following axioms:

1. All axioms of RCF
2. 0 6 vn ∧ vn 6 1, n ∈N
3. 0 < ρ0

4. ρn < ρm, whenever n < m
5. ρn < P, n ∈N
6. C⟨v,ρ⟩ = 1 − (1 − v) · ρ · P−1

7. C¬Lϕ = 1 − Cϕ
8. Cϕ = 0 → C¬Πϕ = 1
9. Cϕ > 0 → C¬Πϕ = 0

10. Cϕ∧Lψ = max(Cϕ + Cψ − 1, 0)
11. Cϕ∨Lψ = min(Cϕ + Cψ, 1)
12. Cϕ∧Πψ = Cϕ · Cψ
13. Cϕ∨Πψ = Cϕ + Cψ − Cϕ · Cψ
14. Cϕ 6 Cψ → Cϕ→Πψ = 1
15. Cϕ > Cψ → Cϕ · Cϕ→Πψ = Cψ
16. Cϕ→Lψ = min(1, 1 − Cϕ + Cψ).

Let us briefly comment the above axiomatization. Pairs of the form ⟨v, p⟩ are typical for priority language.
Cϕ stands for prioritized satisfaction degree of the queryϕ ∈ For. Axiom (2) states that each local satisfaction
degree is between 0 and 1. Axioms (3), (4) and (5) state that priorities form a positive sequence1) whose
order type is ω + 1. Axiom (6) introduces priority in the calculation of the satisfaction degree. The rest
of the axioms follows the usual truth functions for connectives. It is important to say that in this context,
+,−, ·,−1 ,max and min are purely syntactical symbols.

Theorem 3.2. RCFLΠ is consistent.

Proof. We use the compactness argument. That is, in order to prove consistency of RCFLΠ, it is sufficient
to prove consistency of its arbitrary finite subset. Suppose that Γ is an arbitrary finite subset of RCFLΠ. Let
ϕ1, . . . , ϕn be all fuzzy formulas appearing (as indices) in Γ. We construct the modelM for Γ as follows:

• The universe M ofM is the universe of some fixed real closed fieldM. The languageLOF is interpreted
as inM. We may assume (without any loss of generality) that Q ⊆M.

1)each member of the sequence is > 0



A. Takači, A. Perović, A. Jovanović / Filomat 27:5 (2013), 889–897 895

• Each vm appearing in ϕ1, . . . , ϕn is interpreted as 1
n+1

• Each ρm is interpreted as m + 1. If k is the maximum of all such interpretations, then P is interpreted
as k + 1

• CM⟨v,ρ⟩ = 1 −M (1 −M vM) ·M ρM · PM−1M

• All constant symbols of the form Cϕ are interpreted according to the truth tables of ŁΠ 1
2 connectives.

For instance, CM¬Lϕ
= 1 −M CMϕ .

Clearly, ⟨M, CMϕ1
, . . . , CMϕn

⟩ is a model of Γ, so we have our claim. �

Theorem 3.3. For each sentence φ of L∗ there is a sentence φ∗ of LOF such that RCFLΠ ⊢ φ iff RCF ⊢ φ∗. In other
words, RCFLΠ is interpretable in RCF.

Proof. Notice that we only need to equivalently eliminate constant symbols Cϕ. Obviously, each Cϕ has the
form

F(C⟨vi1 ,ρi1 ⟩, C⟨vi2 ,ρi2 ⟩, . . . , C⟨vik ,ρik ⟩), (1)

where F is certain composition of +,−, ·,−1 ,max and min. Since F is definable in RCF, it remains to give the
elimination of C⟨v,ρ⟩’s. It is easy to show that

RCFLΠ ⊢ φ(F(C⟨vi1 ,ρi1 ⟩, C⟨vi2 ,ρi2 ⟩, . . . , C⟨vik ,ρik ⟩))

iff
RCF ⊢ ∀x̄, ȳ, z̄, t(φ(F(z̄))∧

k∧
i=1

zi = 1 − (1 − xi)yi

t
∧ ψ(x̄) ∧ θ(ȳ, t)),

where, ψ(x̄) is the formula
0 6 x1 6 1 ∧ · · · ∧ 0 6 xk 6 1

and θ(ȳ, t) is the formula
0 < y1 < t ∧ · · · ∧ 0 < yk < t.

Thus, we have established the elimination of new constants, so we have our claim. �

Corollary 3.4. RCFLΠ is decidable.

Proof. By the previous theorem, for each sentence φ ofL, there is a sentence φ∗ ofLOF such that RCFLΠ ⊢ φ
iff RCF ⊢ φ∗. It is well known that the latter predicate is decidable. Thus, RCFLΠ is decidable. �

Concerning complexity, both RCF and RCFLΠ are in EXPSPACE. However, prioritized queries can be
modelled with Σ0-sentences. Such sentences can be interpreted in the existential theory of the reals. In
this way, using [1], we obtain a PSPACE containment for the decision procedure for Σ0-sentences, since the
translation procedure is in PTIME.

We will conclude this section with a variant of simple completeness theorem for our logic.

Theorem 3.5. Suppose that ϕ is an arbitrary prioritized formula (ϕ ∈ For). Then, the satisfaction degree of ϕ is
equal to r ∈ [0, 1] ∩Q iff RCFLΠ ⊢ Cϕ = r.
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Proof. As in the proof of Theorem 3.3, Cϕ has a form

F(C⟨vi1 ,ρi1 ⟩, C⟨vi2 ,ρi2 ⟩, . . . , C⟨vik ,ρik ⟩),

where F is certain composition of +,−, ·,max and min. Now we have the following:

RCFLΠ ⊢ F(C⟨vi1 ,ρi1 ⟩, C⟨vi2 ,ρi2 ⟩, . . . , C⟨vik ,ρik ⟩) = r

if and only if

RCF ⊢ ∀x̄, ȳ, z̄, t(F(z̄) = r ∧
k∧

i=1

zi = 1 − (1 − xi)yi

t
∧ ψ(x̄) ∧ θ(ȳ, t)), (2)

where ψ(x̄) is the formula 0 6 x1 6 1 ∧ · · · ∧ 0 6 xk 6 1 and θ(ȳ, t) is the formula 0 < y1 < t ∧ · · · ∧ 0 < yk < t.
Since each two models of RCF satisfy the same sentences, (2) is equivalent to

⟨R,+, ·,6, 0, 1⟩ |= ∀x̄, ȳ, z̄, t(F(z̄) = r ∧
k∧

i=1

zi = 1 − (1 − xi)yi

t
∧ ψ(x̄) ∧ θ(ȳ, t)).

By definition, the latter statement is equivalent to the one that claims that satisfaction degree of ϕ is equal
to r. Hence, we have our claim.

4. Concluding remarks

A formalization of GPFCSP is presented in this paper. The interpretation method used here is not a
technical novelty - similar ideas applied on probability are well known, see for example [3, 8]. In the
future we will examine other approaches and see how they compare to the interpretation method. Also,
since GPFCSP have a wide application in decision making this formalization can be used to determine the
complexity of calculation in GPFCSP.

In our further research we will examine applications of GPFCSP, specially in the field of fuzzy relational
databases (FRDB). Similar methodology will be used to formalize FRDB.
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[7] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, 1998.
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