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Abstract. In this paper, we discuss the semi-cubic hyponormality of recursively generated weighted
shifts with weight α(x) :

√
x, (
√

a,
√

b,
√

c)∧ to give a new bridge between cubically hyponormal and
quadratically hyponormal weighted shifts. Using weight sequences with first two equal weights, we
show that two notions of quadratic hyponormality and semi-cubic hyponormality are different one from
another. Moreover, we characterize the semi-cubic hyponormality of weighted shifts.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space and let L(H) be the algebra of all
bounded linear operators on H . A bounded operator T is said to be polynomially hyponormal if p(T) is
hyponormal for all complex polynomials p. An operator T in L(H) is weakly k-hyponormal if for every
polynomial p of degree k or less, p(T) is hyponormal ([4], [8], [9]). For a positive integer k, an operator
T ∈ L(H) is called semi-weakly k-hyponormal if T + sTk is hyponormal for all s ∈ C ([10]). It is obvious that
a weakly k-hyponormal operator is semi-weakly k-hyponormal. In particular, weak 2-hyponormality is
equivalent to semi-weak 2-hyponormality.

For A, B ∈ L(H), we denote [A,B] := AB − BA. A k-tuple T = (T1, ...,Tk) of operators on H is called
hyponormal if the operator matrix ([T∗j ,Ti])k

i, j=1 is positive on the direct sum ofH⊕· · ·⊕H with k copies. Also

an operator T is said to be (strongly) k-hyponormal for each positive integer k if (I,T, ...,Tk) is hyponormal. The
Bram-Halmos criterion shows that an operator T is subnormal if and only if T is k-hyponormal for all k ≥ 1
([1]). We note that k-hyponormality implies weak k-hyponormality for each positive integer k. The following
implications provide a bridge between subnormal and hyponormal operators: subnormal⇒ polynomially
hyponormal⇒ · · · ⇒ weakly 3-hyponormal⇒ weakly 2-hyponormal⇒ hyponormal. However, one does
not know concrete examples about converse implications for n ≥ 3 yet; see [7], [14] and [15] for weak 2- and
weak 3-hyponormalities. In particular, weakly 2-hyponormal (or weakly 3-hyponormal) is referred to as
quadratically hyponormal (or cubically hyponormal, resp.). In [8] and [9], Curto-Putinar proved that there exists

2010 Mathematics Subject Classification. Primary 47B37; Secondary 47B20
Keywords. weighted shifts, quadratic hyponormality, semi-cubic hyponormality
Received: 10 October 2012; Accepted: 15 February 2013
Communicated by Dragana Cvetkovic Ilic
The first author was partially supported by the National Science Foundation of China (NSFC) under Grant 11171301. The second

author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the
Ministry of Education, Science and Technology(2010-0025830)

*Corresponding author
Email addresses: chunjili2000@aliyun.com (Chunji Li), leemr@knu.ac.kr (Mi Ryeong Lee*), seunghwan0101@gmail.com

(Seunghwan Baek)



C. Li et al. / Filomat 27:6 (2013), 1043–1056 1044

an operator that is polynomially hyponormal but not 2-hyponormal. Although the existence of a weighted
shift which is polynomially hyponormal but not subnormal was established in [8] and [9], concrete example
of such weighted shifts has not been found yet.

J. Stampfli ([16]) proved that a subnormal weighted shift with two equal weights αn = αn+1 for some
nonnegative n has the flatness property, i.e., α1 = α2 = · · · . Stampfli’s result has been used to attempt
the construction of nonsubnormal polynomially hyponormal weighted shifts (cf. [2], [3], [10], [14]). In
[2], Choi proved that if a weighted shift Wα is polynomially hyponormal with first two equal weights,
then Wα has flatness. In [3], Curto obtained a quadratically hyponormal weighted shift with first two
equal weights but not satisfying flatness. Also in [14], they showed that a weighted shift Wα with weights

α :
√

2
3 ,

√
2
3 ,

√
n+1
n+2 (n ≥ 2) is not cubically hyponormal. However, the flatness of cubically hyponormal

weighted shifts has been not known well. Recently, in [10], it was proved that there exists a semi-cubically
hyponormal weighted shift Wα with α0 = α1 < α2 but not 2-hyponormal.

In this paper we observe that semi-weak k-hyponormality can provide a new bridge between sub-
normality and hyponormality. For this study, we focus on the class of the weighted shift and study the
relations of a semi-cubic hyponormality and quadratic hyponormality. In Section 2 we recall some termi-
nology and notations concerning semi-cubically hyponormal weighted shifts. In Section 3 we characterize
the semi-cubic hyponormality of weighted shifts Wα(x) with weight sequence α(x) :

√
x, (
√

a,
√

b,
√

c)∧ for
0 < x ≤ a < b < c. In Section 4, we characterize the semi-cubic hyponormality of weighted shift Wα with
first two equal weights. Finally, using the results for the quadratic hyponormality in [6], we show that two
notions of quadratic hyponormality and semi-cubic hyponormality are different one from another.

Some of the calculations in this paper were aided by using the software tool Mathematica ([17]).

2. Preliminaries

We recall some standard terminology and definitions about semi-cubically hyponormal weighted shifts
(cf. [10]). Let α = {αi}∞i=0 be a weight sequence in the positive real number R+. The weighted shift Wα

acting on ℓ2(N0), with an orthonormal basis {ei}∞i=0, is defined by Wα(e j) = α je j+1 for all j ∈N0 :=N ∪ {0}. A
weighted shift Wα is called semi-cubically hyponormal (or semi-weakly 3-hyponormal) if

[(Wα + sW3
α)∗,Wα + sW3

α] ≥ 0, s ∈ C.

Let Pm denote the orthogonal projection onto ∨m
k=0{ek}. For m ∈N0, define Dm(s) by

Dm (s) = Pm

[(
Wα + sW3

α

)∗
,Wα + sW3

α

]
Pm for all s ∈ C.

Then

Dm(s) =



q0 0 z0 0 · · · 0

0 q1 0 z1
. . .

...

z̄0 0 q2
. . .

. . . 0

0 z̄1
. . .

. . .
. . . zm−2

...
. . .

. . .
. . .

. . . 0
0 · · · 0 zm−2 0 qm


, (2.1)

where for all k ∈N0,

qk := uk + vk|s|2, zk :=
√

wks̄, uk := α2
k − α2

k−1,

vk := α2
kα

2
k+1α

2
k+2 − α2

k−3α
2
k−2α

2
k−1, wk := α2

kα
2
k+1(α2

k+2 − α2
k−1)2 (2.2)
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with α−3 = α−2 = α−1 = 0. It is obvious that Wα is semi-cubically hyponormal if and only if Dm(s) ≥ 0 for
every s ∈ C and every m ≥ 0.

By changing the basis of Cm+1, it follows from [10, Lemma 2.1] that Dm(t) in (2.1) is unitarily equivalent
to D(1)

n (t) ⊕D(2)
n (t) for t := |s|2 and n := [ m

2 ], where

D(1)
n (t) =



q0 z0 0
z0 q2 z2 0

0 z2 q4 z4
. . .

0 z4
. . .

. . .
. . .

. . . q2n


, D(2)

n (t) =



q1 z1 0
z1 q3 z3 0

0 z3 q5 z5
. . .

0 z5
. . .

. . .
. . .

. . . q2n+(−1)m+1


.

It is clear that if two matrices D(1)
n (t) and D(2)

n (t) are positive for all n ≥ 0, then Dm(s) ≥ 0 for m ≥ 0 (cf. [10]).
We now recall some terminology in [5]. Consider the following matrix in [5] below:

Mn (t) =



q̌0 ř0 0
ř0 q̌1 ř1 0

0 ř1 q̌2 ř2
. . .

0 ř2
. . .

. . . 0
. . .

. . . q̌n−1 řn−1
0 řn−1 q̌n


,

where q̌k := ǔk + v̌kt, rk :=
√

w̌kt (k ≥ 0) , and ǔk ≥ 0, v̌k ≥ 0, w̌k ≥ 0, t ≥ 0. If we put dn (t) for the determinant
of Mn(t), then

dn (t) =
n+1∑
i=0

c (n, i) ti,

and some computations provide the following:

c(0, 0) = ǔ0, c(0, 1) = v̌0,

c(1, 0) = ǔ0ǔ1, c(1, 1) = ǔ1v̌0 + ǔ0v̌1 − w̌0, c(1, 2) = v̌1v̌0,

c(n, i) = ǔnc(n − 1, i) + v̌nc(n − 1, i − 1) − w̌n−1c(n − 2, i − 1), (2.3)
c(n,n + 1) = v̌0v̌1 · · · v̌n, for all n ≥ 2, 0 ≤ i ≤ n,

with c(−n,−i) := 0 for all n, i ∈N. Observe that ǔnv̌n+1 = w̌n (n ≥ 2), which implies that

c(n, i) =


v̌n · · · v̌2c(1, 2), if i = n + 1,
ǔnc(n − 1,n) + v̌n · · · v̌3ρ, if i = n,
ǔnc(n − 1,n − 1) + v̌n · · · v̌3τ, if i = n − 1,
ǔnc(n − 1, i), if 0 ≤ i ≤ n − 2,

(2.4)

for all n ≥ 3, where

ρ := v̌2c(1, 1) − w̌1c(0, 1) and τ := v̌2c(1, 0) − w̌1c(0, 0).

Recall that if c(n,n + 1) > 0 and c(n, i) ≥ 0 for all n ≥ 0 with 0 ≤ i ≤ n, then every matrix Mn(t) is obviously
positive for all n ≥ 0 and t > 0. To detect the positivity of Dm(t) for all t > 0 and m ≥ 2, we adapt the above
method to D(ℓ)

n (t) (ℓ = 1, 2). Denote

d(ℓ)
n (t) := det D(ℓ)

n (t) =
n+1∑
i=0

cℓ(n, i)ti,
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for ℓ = 1, 2. We may see that each coefficients of cℓ(n, i) (ℓ = 1, 2) satisfies (2.3) for all n ≥ 0 (cf. [10]).
Now we recall a Stampfli’s method ([5], [16]) for the subnormal completion. For given numbers α0, α1, α2

with 0 < α0 < α1 < α2, define

α2
n = Ψ1 +

Ψ0

α2
n−1

for all n ≥ 3, (2.5)

whereΨ0 = −
α2

0α
2
1(α2

2−α2
1)

α2
1−α2

0
andΨ1 =

α2
1(α2

2−α2
0)

α2
1−α2

0
. Then we obtain a recursive weight sequence {αn}∞n=0 generated

by (2.5), which is usually denoted by (α0, α1, α2)∧; for example, see [16]. It follows from [5] that

α2
n ↗ L2 :=

1
2

(
Ψ1 +

√
Ψ2

1 + 4Ψ0

)
as n→∞,

which will be used frequently in this paper.

3. Recursive weighted shifts with Stampfli tail

In this section we characterize the semi-cubic hyponormality of weighted shifts Wα(x) with a recursive
weight α(x) :

√
x, (
√

a,
√

b,
√

c)∧. In particular, either a = b or b = c forces the flatness of Wα(x) ([10]). To
avoid the trivial case, we assume x ≤ a < b < c throughout this section.

3.1. Technical lemmas. We give several lemmas for characterizing the semi-cubic hyponormality of
weighted shifts. Let x, a, b, c with x ≤ a < b < c be given. According to (2.5), we may produce a recursive
weight sequence {αn}∞n=0 such that α2

n = Ψ1 +
Ψ0

α2
n−1

(n ≥ 3), where α2
0 = x, α2

1 = a, α2
2 = b, α2

3 = c, Ψ0 = − ab(c−b)
b−a

andΨ1 =
b(c−a)

b−a .

Lemma 3.1. Let α(x) :
√

x, (
√

a,
√

b,
√

c)∧ be as above. Then

unvn+2 = wn (n ≥ 2) . (3.1)

Proof. The case n = 2 in (3.1) follows easily from a direct computation. So we assume n ≥ 3. Observe that

α2
n+1α

2
n = Ψ1α

2
n +Ψ0. (3.2)

Using (3.2), we have

α2
n+2α

2
n+1α

2
n =

(
Ψ1α

2
n+1 +Ψ0

)
α2

n =
(
Ψ2

1 +Ψ0

)
α2

n +Ψ1Ψ0, (3.3)

which implies that

vn+2 = α
2
n+2α

2
n+3α

2
n+4 − α2

n−1α
2
nα

2
n+1 =

(
Ψ2

1 +Ψ0

) (
α2

n+2 − α2
n−1

)
=

(
Ψ2

1 +Ψ0

)
(un + un+1 + un+2) .

Since un = α2
n − α2

n−1 = −
Ψ0

α2
n−2α

2
n−1

un−1, we obtain

un + un+1 + un+2 = un −
Ψ0

α2
n−1α

2
n

un +
Ψ2

0

α2
n−1α

4
nα

2
n+1

un =

1 − Ψ0

α2
n−1α

2
n
+

Ψ2
0

α2
n−1α

4
nα

2
n+1

 un,

which implies that

unvn+2 =
(
Ψ2

1 +Ψ0

) 1 − Ψ0

α2
n−1α

2
n
+

Ψ2
0

α2
n−1α

4
nα

2
n+1

 u2
n. (3.4)
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On the other hand, for n ≥ 3, since

wn = α
2
nα

2
n+1

(
α2

n+2 − α2
n−1

)2
= α2

nα
2
n+1 (un + un+1 + un+2)2 , (3.5)

by (3.4) and (3.5), we can obtain

unvn+2 − wn = Ξ

1 − Ψ0

α2
n−1α

2
n
+

Ψ2
0

α2
n−1α

4
nα

2
n+1

 u2
n,

where

Ξ := Ψ2
1 +Ψ0 − α2

nα
2
n+1

1 − Ψ0

α2
n−1α

2
n
+

Ψ2
0

α2
n−1α

4
nα

2
n+1

 .
It follows from (3.3) that

(
Ψ2

1 +Ψ0

)
α2

n−1 = α
2
n+1α

2
nα

2
n−1 −Ψ1Ψ0 (n ≥ 3), which induces that

Ξ =
1

α2
n−1α

2
n

(
(Ψ2

1 +Ψ0)α2
n−1α

2
n − α2

n−1α
4
nα

2
n+1 +Ψ0α

2
nα

2
n+1 −Ψ2

0

)
=

1
α2

n−1α
2
n

(
−Ψ1Ψ0α

2
n +Ψ0α

2
nα

2
n+1 −Ψ2

0

)
.

By (3.2), obviously Ξ = 0. Thus unvn+2 = wn (n ≥ 3). Hence the proof is complete. �

We note from Lemma 3.1 that every coefficient cℓ(n, i) (0 ≤ i ≤ n + 1) of d(ℓ)
n (t) (ℓ = 1, 2) satisfies (2.4) for

all n ≥ 3. If ηn := vn
un

(n ≥ 0), where the sequences {un}∞n=0 and {vn}∞n=0 are given in (2.2), then by Lemma 3.1,
the following result can be provided.

Lemma 3.2. Let α(x) :
√

x, (
√

a,
√

b,
√

c)∧ be as above. Then for ℓ ≥ 2,

qℓ −
z2
ℓ

qℓ+2 −
z2
ℓ+2

. . .
...

qℓ+2k−2−
z2
ℓ+2k−2
qℓ+2k

= vℓt +
uℓ

1 + ηℓ+2t + ηℓ+2ηℓ+4t2 + · · · + ηℓ+2ηℓ+4 · · · ηℓ+2ktk
,

where t = |s|2 and k ≥ 1.

Proof. Using Lemma 3.1 and z2
n = wn|s|2, we obtain that for n ≥ 2,

qn −
z2

n

qn+2
= un + vnt − unvn+2t

un+2 + vn+2t
= vnt +

un

1 + ηn+2t
. (3.6)

For a large number n, it follows from (3.6) that

qn−2 −
z2

n−2

qn − z2
n

qn+2

= vn−2t +
un−2

1 + ηnt + ηnηn+2t2 .

Similarly, we have

qn−4 −
z2

n−4

qn−2 −
z2

n−2

qn−
z2
n

qn+2

= un−4 + vn−4t − un−4vn−2t
vn−2t + un−2

1+ηnt+ηnηn+2t2

= vn−4t +
un−4

1 + ηn−2t + ηn−2ηnt2 + ηn−2ηnηn+2t3 .

Continuing this process in the mathematical induction with ℓ = n − 2(k − 1) (k ≥ 1), we have this lemma. �
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Lemma 3.3. Let α(x) :
√

x, (
√

a,
√

b,
√

c)∧ be as above. Then
(i) ηn+1 ≥ ηn for all n ≥ 4,

(ii) limn→∞ ηn = Q := (Ψ2
1+Ψ0)2

Ψ2
0

L4.

Proof. It follows by the definition of ηn and (3.3) that for all n ≥ 4,

ηn =

(
Ψ2

1 +Ψ0

) (
α2

n − α2
n−3

)
α2

n − α2
n−1

=
(
Ψ2

1 +Ψ0

) 1 +
α2

n−1 − α2
n−2

α2
n − α2

n−1

+
α2

n−2 − α2
n−3

α2
n − α2

n−1

 .
Using (2.5), we get

α2
n−1 − α2

n−2

α2
n − α2

n−1

= −
α2

n−1α
2
n−2

Ψ0
and

α2
n−2 − α2

n−3

α2
n − α2

n−1

=
α2

n−1α
4
n−2α

2
n−3

Ψ2
0

,

which implies that

ηn =
(
Ψ2

1 +Ψ0

) 1 −
α2

n−1α
2
n−2

Ψ0
+
α2

n−1α
4
n−2α

2
n−3

Ψ2
0

 .
Since {αn}∞n=1 is non-decreasing,Ψ0 < 0 andΨ2

1+Ψ0 > 0, we have ηn ≤ ηn+1 for all n ≥ 4. Also, since α2
n → L2

(n→∞) and L4 = L2Ψ1 +Ψ0, we can obtain

lim
n→∞

ηn =
(
Ψ2

1 +Ψ0

) 1 − L4

Ψ0
+

L8

Ψ2
0

 =
(
Ψ2

1 +Ψ0

)2

Ψ2
0

L4.

Hence the proof is complete. �

For t(= |s|2) ≥ 0 and for each n ∈N, we define

An(t) =



q0 0 −
√

w0t 0 · · · 0

0 q1 0 −
√

w1t
. . .

...

−
√

w0t 0 q2 0
. . . 0

0 −
√

w1t 0 q3
. . . −

√
wn−2t

...
. . .

. . .
. . .

. . . 0
0 · · · 0 −

√
wn−2t 0 qn


, (3.7)

where the qi and wi are as in (2.2). Applying [15, Lemma 3.1] to the matrix Dn(s) as in (2.1), we can see that
Wα is semi-cubically hyponormal if and only if An(t) ≥ 0 for all t ≥ 0 and n ≥ 0.

We now consider the quadratic form for An(t) at a vector x = (x0, . . . , xn) in Rn+1
+ as follows:

Fn(x0, x1, ..., xn, t) := ⟨An(t)x, x⟩.

For n ≥ 4, it follows from Lemma 3.1 that

Fn(x0, x1, ..., xn, t) =
1∑

i=0

(ui + tvi) x2
i +t

3∑
i=2

vix2
i −2
√

t
1∑

i=0

√
wixixi+2+un−1x2

n−1+unx2
n+

n−2∑
i=2

(√
uixi −

√
tvi+2xi+2

)2
.

For our convenience, we denote f2 (x0, x1, x2, x3, t) as follows:

f2 (x0, ..., x3, t) :=
1∑

i=0

(ui + tvi) x2
i + t

3∑
i=2

vix2
i − 2

√
t

1∑
i=0

√
wixixi+2.
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Lemma 3.4. Let α(x) :
√

x, (
√

a,
√

b,
√

c)∧ and n ≥ 4. Then the following conditions are equivalent:
(i) Fn (x0, ..., xn, t) ≥ 0 for any xi, t ∈ R+ (i = 0, 1, . . . ,n) ;
(ii) for any xi, t ∈ R+ (i = 0, 1, 2, 3) ,

f2(x0, x1, x2, x3, t) + P(2; n)x2
2 + P(3; n)x2

3 ≥ 0,

where for ℓ ≥ 2,

P(ℓ; n) =
uℓ

1 + ηℓ+2t + ηℓ+2ηℓ+4t2 + · · · + ηℓ+2ηℓ+4 · · · ηℓ+2[(n−ℓ)/2]t[(n−ℓ)/2]
.

Proof. For brevity, we write Fn := F(x0, ..., xn, t) and f2 := f2(x0, ..., x3, t). Using definitions of qn and zn in (2.2),
we have

F4 = f2 + u3x2
3 +

(√
u4 + tv4x4 −

√
tw2√

u4 + tv4
x2

)2

+
(
u2 −

tw2

u4 + tv4

)
x2

2

= f2 + u3x2
3 +

(
√

q4x4 −
z2√
q4

x2

)2

+

(
u2 −

z2
2

q4

)
x2

2. (3.8)

Substituting x4 =
z2
q4

x2 in (3.8), we get

F4(x0, ..., x4, t) ≥ 0 =⇒ f2 + u3x2
3 +

(
u2 −

z2
2

q4

)
x2

2 ≥ 0.

A similar method proves that

F5 = f2 +
5∑

i=4

(
√

qixi −
zi−2√

qi
xi−2

)2

+

(
u2 −

z2
2

q4

)
x2

2 +

u3 −
z2

3

q5

 x2
3. (3.9)

If we take x4 =
z2
q4

x2 and x5 =
z3
q5

x3 in (3.9) again, then we have

F5 ≥ 0 =⇒ f2 +
(
u2 −

z2
2

q4

)
x2

2 +

u3 −
z2

3

q5

 x2
3 ≥ 0.

Also, similarly we obtain

F6 = f2 +
6∑

i=5

(
√

qixi −
zi−2√

qi
xi−2

)2

+

u3 −
z2

3

q5

 x2
3 +


√

q4 −
z2

4

q6
x4 −

√√√√ z2
2

q4 −
z2

4
q6

x2


2

+

u2 −
z2

2

q4 −
z2

4
q6

 x2
2. (3.10)

Since x4, x5 and x6 in (3.10) are arbitrary, we may take

x4 =
z2

q4 −
z2

4
q6

x2, x5 =
z3

q5
x3 and x6 =

z2z4

q6

(
q4 −

z2
4

q6

)x2 (=
z4

q6
x4),

so that we may have the following implication

F6(x0, ..., x6, t) ≥ 0 =⇒ f2 +

u2 −
z2

2

q4 −
z2

4
q6

 x2
2 +

u3 −
z2

3

q5

 x2
3 ≥ 0.
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For n ≥ 4 and ℓ = 2, 3, if we continue the above processes
[

n−ℓ
2

]
times, then we may take the coefficients

P(ℓ; n) of x2
ℓ such that

Fn(x0, ..., xn, t) ≥ 0 =⇒ f2(x0, ..., x3, t) + P(2; n)x2
2 + P(3; n)x2

3 ≥ 0,

where

P(ℓ; n) = uℓ −
z2
ℓ

qℓ+2 −
z2
ℓ+2

qℓ+4−
z2
ℓ+4

...
...

qℓ+2[(n−ℓ)/2]−2−
z2
ℓ+2[(n−ℓ)/2]−2
qℓ+2[(n−ℓ)/2]

.

Applying Lemma 3.2, it follows at once that

P(ℓ; n) =
uℓ

1 + ηℓ+2t + ηℓ+2ηℓ+4t2 + · · · + ηℓ+2ηℓ+4 · · · ηℓ+2[(n−ℓ)/2]t[(n−ℓ)/2]
.

For the converse implication, we note that Fn(x0, ..., xn, t) for n ≥ 4 can be expressed by sum of
f2(x0, ..., x3, t) + P(2; n)x2

2 + P(3; n)x2
3 and other quadratic forms. Hence Fn(x0, ..., xn, t) ≥ 0 for all xi, t ∈ R+

(i = 0, ..., n) and n ≥ 4. �

Applying the argument in [15] to the quadratic form of Fn in Lemma 3.4 and using Lemma 3.3, we
obtain easily the following lemma.

Lemma 3.5. Suppose n ≥ 4. Then Fn(x0, x1, ..., xn, t) ≥ 0 for any xi ∈ R+ and t > 1
Q if and only if f2(x0, ..., x3, t) ≥ 0

for any x0, ..., x3 ∈ R+ and t > 1
Q .

To obtain the dominating number of x, we let

ĥ3 = min{
√

a,
√
Θ}, where Θ :=

ab
{
(c − a)2 (c − b) Q + c

(
a2bc − a2b2 + a2c2 + 2ab2c − 4abc2 + bc3

)}
a2bc (b − a)2 + (c − a)2 (a2 + bc − 2ab) Q

,

for Q as in Lemma 3.3 (ii).

Lemma 3.6. sup{x : f2(x0, x1, x2, x3, t) ≥ 0, t > 1/Q} ≤ (̂h3)2.

Proof. Since the function f2(x0, ..., x3, t) is the quadratic form, the corresponding symmetric matrix Ω (t) to
f2(x0, ..., x3, t) can be represented by

Ω (t) =


x + abxt 0 −

√
txab2 0

0 a − x + abct 0 −
√

tab (c − x)2

−
√

txab2 0 tbcα2
4 0

0 −
√

tab (c − x)2 0 t
(
cα2

4α
2
5 − xab

)


,

where

α2
4 =

b(c2 − 2ac + ab)
c(b − a)

, α2
5 =

a(2c − a)b2 + c(c2 − 4ac + a2)b + a2c2

(b − a)(c2 − 2ac + ab)
.
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We can easily see that detΩ (t) = d1(t) · d2(t), where

d1 (t) = det
(

x + abxt −
√

txab2

−
√

txab2 tbcα2
4

)
, d2 (t) = det

 a − x + abct −
√

tab (c − x)2

−
√

tab (c − x)2 t
(
cα2

4α
2
5 − xab

)
 .

A straightforward computation shows that

d1(t) =
b2xt
b − a

(
abt(c2 − 2ac + ab) + (a − c)2

)
> 0 for all t > 0.

By a simple calculation, we have

d2 (t) =
bt (A(x)t + B(x))

(b − a)2 ,

where

A(x) = abc
(
−a (b − a)2 x − a2b2 + a2bc + a2c2 + 2ab2c − 4abc2 + bc3

)
,

B(x) = (c − a)2
(
ab(c − b) + x(2ab − bc − a2)

)
.

Note that d2(t) ≥ 0 for all t > 1
Q ⇔ A(x) ≥ 0 and − B(x)

A(x) ≤ 1
Q . From the assumption a < b < c, a direct

computation shows that A(x) ≥ 0 for all x ≤ a. Therefore, d2(t) ≥ 0 for t > 1
Q ⇔ x ≤ Θ. Since 0 < x ≤ a, we

have x ≤ (̂h3)2. �

3.2. Characterization. The following is contained in main results of this paper.

Theorem 3.7. Let α(x) :
√

x, (
√

a,
√

b,
√

c)∧ with x ≤ a < b < c and let Wα(x) be the associated weighted shift. Then
the following assertions are equivalent:
(i) Wα(x) is semi-cubically hyponormal;
(ii) Fn(x0, x1, ..., xn, t) ≥ 0 for all x0, x1, ..., xn, t in R+ and all n ≥ 2;
(iii) Fn(x0, x1, ..., xn, t) ≥ 0 for all x0, x1, ..., xn in R+, t > 1/Q and all n ≥ 4;
(iv) f2(x0, x1, x2, x3, t) ≥ 0 for all x0, x1, x2, x3 in R+ and all t > 1/Q;
(v)
√

x ≤ ĥ3.

Proof. (i)⇔ (ii) and (ii)⇒ (iii) It is obvious.
(iii)⇔ (iv) and (iv)⇒ (v) Use Lemma 3.5 and Lemma 3.6, respectively.
(v)⇒ (i) Let 0 <

√
x ≤ ĥ3. To show the semi-cubic hyponormality of Wα(x), we will use the methods in Section

2 under the same notation, i.e., we will prove that every coefficient cℓ(n, i) is nonnegative (n ≥ 0; 0 ≤ i ≤ n+1)
in polynomials of determinants D(ℓ)

n ≡ D(ℓ)
n (t) (ℓ = 1, 2) for t := |s|2 (s ∈ C).

First of all, we can see from (2.3) that

c1(0, 1) = v̌0 = v0 = xab > 0 and c2(0, 1) = v̌1 = v1 = abc > 0,

for 0 < x ≤ a < b. Also we have c1(n, 0) = ǔn · · · ǔ0 = u2nu2(n−1) · · ·u0 > 0 and c2(n, 0) = u2n+1u2n−1 · · ·u1 ≥ 0
for 0 < x ≤ a.

Claim 1. For n ≥ 1, c1(n, i) ≥ 0 with 1 ≤ i ≤ n + 1.
A straightforward computation shows that for all x > 0,

c1 (1, 1) =
bx

(
a(b − c)2 + (c − a)(b − a)(a + c)

)
b − a

> 0, c1 (1, 2) =
ab3(ab − 2ac + c2)x

b − a
> 0.
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Since ǔ2 = u4, v̌2 = v4 and w̌1 = w2 in the matrix D(1)
n , we get

ρ1 = v̌2c1 (1, 1) − w̌1c1 (0, 1) =
b3(a − c)2

(
ab2 + a2c + bc2 − 3abc

)2
x

c (a − b)4 > 0,

τ1 = v̌2c1 (1, 0) − w̌1c1 (0, 0) = 0.

From (2.3), we have the following:

c1(2, 1) = ǔ2c1(1, 1) > 0, c1(2, 3) = v̌2c1(1, 2) > 0,
c1(2, 2) = ǔ2c1(1, 2) + v̌2c1(1, 1) − w̌1c1(0, 1) = ǔ2c1(1, 2) + ρ1 > 0.

Using (2.4) and the mathematical induction, we have c1(n, i) ≥ 0 for x ≤ a and all n ≥ 3 with 1 ≤ i ≤ n + 1.
Claim 2. For n ≥ 1, c2(n, i) ≥ 0 with 1 ≤ i ≤ n + 1.

From standard computations, it follows that

c2(1, 2) = ab2c
(

bc3 − a2b2 + a2c2 − 4abc2 + 2ab2c + a2bc
(a − b)2 − ax

)
.

Write x̂ = bc3−a2b2+a2c2−4abc2+2ab2c+a2bc
a(a−b)2 . For simple computations, we sometimes substitute b = a + h and

c = a + h + k for any h, k > 0. A straightforward calculation shows that x̂ > a and x̂ > Θ, which implies that
c2(1, 2) > 0 for 0 < x ≤ (̂h3)2. So c2(2, 3) = v̌2c2(1, 2) > 0 and thus c2(n,n + 1) = v̌n · · · v̌3c2(1, 2) > 0 (n ≥ 3).
Denote

xi := sup{x > 0 : c2(i, i) ≥ 0} for i = 1, 2, 3.

By some computations, we can obtain Θ < x3 < xi (i = 1, 2) (see Appendix for the detail), i.e., xi ≥ (̂h3)2.
Hence c2(i, i) ≥ 0 for i = 1, 2, 3 and x ∈ (0, (̂h3)2]. Since τ2 = v̌2c2(1, 0) − w̌1c2(0, 0) = 0, using (2.3) and (2.4),
we obtain that three coefficients c2(2, 1), c2(3, 1) and c2(3, 2) are positive. Since ǔ2 = u5, v̌2 = v5 and w̌1 = w3

in the matrix D(2)
n , we have

ρ2 = v̌2c2 (1, 1) − w̌1c2 (0, 1)

=
b2 (a − c)2 (c − b)

(
ab2 + a2c + bc2 − 3abc

)2

(b − a)5 (ab − 2ac + c2)

(
ab(c − b) −

(
a2 − 2ba + bc

)
x
)
.

Write

ŝ :=
ab(c − b)

a2 − 2ab + bc
.

By substitution b = a + h and c = a + h + k (h, k > 0), we can have ŝ < a and ŝ < Θ, which induces ρ2 ≥ 0 for
x ∈ (0, ŝ] and ρ2 < 0 for x ∈ (ŝ, (̂h3)2]. So we consider two cases below.

Now we consider 0 < x ≤ ŝ, i.e., ρ2 ≥ 0. Using (2.4) and c2(n, n + 1) ≥ 0 (n ≥ 2), we have

c2(n,n) = ǔnc2(n − 1,n) + v̌n · · · v̌3ρ2 ≥ 0 (n ≥ 3).

Since τ2 = 0 in (2.4), obviously c2(n,n − 1) ≥ 0 (n ≥ 3). Using the mathematical induction in (2.4), we have
c2(n, i) ≥ 0 (n ≥ 3; 1 ≤ i ≤ n − 2) for all x ∈ (0, ŝ].

Next we suppose that ŝ < x ≤ (̂h3)2, i.e., ρ2 < 0. We already obtained c2(n, i) ≥ 0 for n = 1, 2, 3 with
1 ≤ i ≤ n + 1, which is independent to the sign of ρ2. For all n ≥ 4, using (2.4), we can see that

c2(n,n) = v̌n−1 · · · v̌3ǔn

(
v̌2c2(1, 2) +

v̌n

ǔn
ρ2

)
.
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It follows from Lemma 3.3 that v̌n
ǔn
↗ Q (n→ ∞). Hence, if Ω2 := v̌2c2(1, 2) +Qρ2 ≥ 0 for x ∈ (ŝ, (̂h3)2], since

ρ2 < 0, we have c2(n,n) ≥ 0 (n ≥ 4). Observe that

Ω2 = b2(c − b)(ab2 + a2c + bc2 − 3abc)2 N1 −N2x
(b − a)5(ab − 2ac + c2)

,

where

N1 := ab
(
(a − c)2(c − b)Q + c(bc3 − a2b2 + a2c2 − 4abc2 + 2ab2c + a2bc)

)
,

N2 := (c − a)2(a2 − 2ab + bc)Q + a2bc(b − a)2.

Since a < b < c, we have N1 > 0 and N2 > 0. Observe that Θ = N1
N2

. This implies that Ω2 ≥ 0 for all

x ∈ (ŝ, (̂h3)2]. Furthermore, since c2(n,n) ≥ 0 (n ≥ 3) and τ2 = 0, we get c2(n,n − 1) = ǔnc2(n − 1,n − 1) ≥ 0
(n ≥ 3). And, by the mathematical induction we have c2(n, i) ≥ 0 (n ≥ 3; 2 ≤ i ≤ n − 1). Hence the proof is
complete. �

For α(x) :
√

x, (
√

a,
√

b,
√

c)∧ with 0 < x ≤ a < b < c, we denote

h+2 :=
(
sup

{
x|Wα(x) is positively quadratically hyponormal

}) 1
2 ,

h2 :=
(
sup

{
x|Wα(x) is quadratically hyponormal

}) 1
2 ,

as in [5, Theorem 4.3]. Recall that the weighted shift Wα(x) is positively quadratically hyponormal if and
only if it is quadratically hyponormal ([15, Theorem 4.1]). Then it follows from [5, Theorem 4.3] that

h+2 = h2 = min

√a,
(

a2b2c + ab2 (c − a) K + ab (c − b) K2

a3b + ab (c − a) K + (a2 − 2ab + bc) K2

) 1
2
 , (3.11)

where K := −Ψ
2
1
Ψ0

L2.
We now give an example of a weighted shift with quadratic hyponormality but not semi-cubic hyponor-

mality.

Example 3.8. Let Wα(x) be a weighted shift with weight sequence α(x) :
√

x,
(
1,
√

2,
√

3
)∧

, where 0 <

x ≤ 1. A straightforward computation shows that Ψ0 = −2,Ψ1 = 4, K = 8
√

2 + 16 and Q = 49(
√

2 +

2)2. So by (3.11), we obtain h2 =
(

2
50881 (23043 − 3104

√
2)

) 1
2 ≈ 0.85628 (cf. [5, Example 4.5]) and ĥ3 =

1
17

(
1

411 (108047 − 19208
√

2)
) 1

2 ≈ 0.82520. The interval (̂h3, h2] is the range of
√

x such that Wα(x) is quadrati-
cally hyponormal but not semi-cubically hyponormal. In fact, we will prove that two notions of quadratic
hyponormality and semi-cubic hyponormality are different one from another (see Theorem 4.2 below).

4. Recursive weighted shifts with two equal weights

We first recall from [10] that there exists a nontrivial semi-cubically hyponormal weighted shift. So it is
worthwhile to discuss semi-cubically hyponormal weighted shifts with first two equal weights (cf. [3]). For
this purpose we consider a recursively generated weighted shift Wα with weight sequenceα : 1, (1,

√
x,
√

y)∧.
To avoid the trivial case we assume 1 < x < y in this section. Let us consider x = 1 + h and y = 1 + h + k for
all h, k > 0. Then

Q =
1

4h4k2 (h3 + h2 + hk + 2h2k + k2 + hk2)2((h + 1)(h + k) + Sh,k)2,
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where Q as in Lemma 3.3 (ii) and Sh,k =
(
(h + 1)(h(h + k)2 + (h − k)2)

)1/2
.

The following theorem comes immediately from Theorem 3.7.

Theorem 4.1. Let α : 1, (1,
√

x,
√

y)∧ and let Wα be the associated weighted shift. Put x = 1 + h and y = 1 + h + k
(h, k > 0). Then Wα is semi-cubically hyponormal if and only if p̂3 (h, k) =

∑9
i=0 ξiki ≤ 0, where

ξ0 = 2h9 (h + 1)4 , ξ1 = h8 (16h + 7) (h + 1)3 ,

ξ2 = 4h6
(
3h + 14h2 + 14h3 − 1

)
(h + 1)2 ,

ξ3 = h5 (h + 1)
(
3h + 98h2 + 190h3 + 112h4 − 4

)
,

ξ4 = h4
(
2h + 109h2 + 322h3 + 356h4 + 140h5 − 5

)
,

ξ5 = 2h3 (h + 1)
(
5h + 46h2 + 88h3 + 56h4 − 1

)
,

ξ6 = h2 (h + 1)
(
13h + 64h2 + 104h3 + 56h4 − 1

)
,

ξ7 = h2 (h + 1)
(
34h + 42h2 + 16h3 + 9

)
,

ξ8 = 2h
(
4h + h2 + 2

)
(h + 1)2 , and ξ9 = (h + 1)3 .

We exhibit the relationship between semi-cubic hyponormality and quadratic hyponormality of weighted
shift Wα with a weight α : 1, (1,

√
x,
√

y)∧. Recall from [6] that Wα is quadratically hyponormal if and only
if p2 (h, k) =

∑7
i=0 ρiki ≤ 0, where

ρ0 = h7 (h + 2) (h + 1)3 , ρ1 = h6
(
16h + 6h2 + 7

)
(h + 1)2 ,

ρ2 = h4
(
5h + 53h2 + 96h3 + 66h4 + 15h5 − 4

)
,

ρ3 = h3 (h + 1)
(
5h + 52h2 + 65h3 + 20h4 − 4

)
,

ρ4 = h2
(
8h + 35h2 + 15h3 − 1

)
(h + 1)2 ,

ρ5 = 3h2
(
6h + 2h2 + 3

)
(h + 1)2 , ρ6 = h(h + 5)(h + 1)3, ρ7 = (h + 1)3.

We now denote

R2 = {(h, k) : Wα is quadratically hyponormal},
R̂3 = {(h, k) : Wα is semi-cubically hyponormal},

and will see that the quadratic hyponormality and semi-cubic hyponormality of Wα are different one from
another in the following theorem.

Theorem 4.2. Let Wα be a weighted shift with weight sequence α : 1, (1,
√

x,
√

y)∧. ThenR2\R̂3, R̂3\R2 andR2∩R̂3
are all nonempty sets.

Proof. Let x = 1+h and y = 1+h+ k with h, k > 0. To show that the sets in the conclusion of this theorem are
nonempty, we take a proper number h = 1

100 (in fact, we may find a proper number using the Mathematica
computer program). We denote f (k) = p2(1/100, k) and 1(k) = p̂3(1/100, k) for k > 0. Then

f (k) =
7∑

i=0

ciki and 1(k) =
9∑

j=0

d jk j,



C. Li et al. / Filomat 27:6 (2013), 1043–1056 1055

where ci ≡ ρi|h=1/100 (0 ≤ i ≤ 7) and d j ≡ ξ j|h=1/100 (0 ≤ j ≤ 9) are the coefficients of polynomials f (k) and 1(k),
respectively. Observe that

c0,c1, c5, c6, c7 > 0 and ci < 0 (i = 2, 3, 4),
d0,d1, d7, d8, d9 > 0 and d j < 0 ( j = 2, ..., 6).

Then it follows from Descartes’ rule of signs in calculus that each of polynomials f (k) and 1(k) has two sign
changes. Hence each of f (k) and 1(k) has at most two positive roots. We now consider the following sets

K2 = {k > 0 : f (k) ≤ 0} and K̂3 = {k > 0 : 1(k) ≤ 0},

which are the projections of R2 and R̂3, respectively. Since

f (0) > 0, f (1/100) < 0, f (1) > 0 and f ′(k) > 0 for all k ≥ 1,

by a simple computation, f (k) has only two positive roots α1 and α2 in R+ such that K2 = [α1, α2]; in fact,
α1 = 0.000787776068 · · · and α2 = 0.0422764016 · · · . Observe that

1(0) > 0, 1(1/100) < 0, 1(1) > 0 and 1′(k) > 0 for all k ≥ 1,

which implies that 1(k) has only two positive roots β1 and β2 in R+ such that K̂3 = [β1, β2]; in fact,
β1 = 0.000786885627 · · · and β2 = 0.0402782805 · · · . Hence we obtain

[
α1, β2

]
= K2 ∩ K̂3,

(
β2, α2

]
= K2\K̂3

and
[
β1, α1

)
= K̂3\K2, which prove that R2 ∩ R̂3, R2\R̂3 and R̂3\R2 are nonempty. Hence the proof is

complete. �

Appendix

I. Proof of x3 > Θ in the proof of Theorem 3.7.
To simplify the computations, it is convenient to make the substitutions b = a+ h, c = a+ h+ k with h, k > 0.
Then

Q =
(a + h)(h(h + k)2 + a(h2 + hk + k2))2(a(h2 + k2) + (h + k)(h2 + hk + S))

2a2h4k2 ,

where S :=
√

(a + h)(ah2 + h3 − 2ahk + 2h2k + ak2 + hk2), which implies that

x3 −Θ =
ψ1,a,h,k

(
(a + h + k)S + a2(k − h) − 2ah2 − h3 − ahk − 2h2k − ak2 − hk2

)
∑10

i=0 ϕ1,iki
(
ψ2,a,h,kS +

∑9
i=0 ϕ2,iki

) ,

where

ψ1,a,h,k := a3h4k2(h + k)3(a + h + k)(ah2 + h3 + ahk + 2h2k + ak2 + hk2)4,

ψ2,a,h,k := (h + k)3(h2 + ak + hk)(h(h + k)2 + a(h2 + hk + k2))2,

ϕ1,0 := h10(a + h)4, ϕ1,1 := h8(a + h)3(a2 + 6ah + 10h2),

ϕ1,2 := h6(a + h)2(a4 + 4a3h + 25a2h2 + 58ah3 + 45h4),

ϕ1,3 := h6(a + h)(10a4 + 62a3h + 187a2h2 + 248ah3 + 120h4),

ϕ1,4 := 2h5(5a5 + 50a4h + 190a3h2 + 349a2h3 + 308ah4 + 105h5),

ϕ1,5 := h4(a + 2h)(8a4 + 84a3h + 253a2h2 + 301ah3 + 126h4),

ϕ1,6 := h3(4a5 + 75a4h + 348a3h2 + 684a2h3 + 616ah4 + 210h5),

ϕ1,7 := h2(a + h)(a4 + 42a3h + 173a2h2 + 248ah3 + 120h4),

ϕ1,8 := h2(a + h)2(19a2 + 58ah + 45h2),

ϕ1,9 := 2h(a + h)3(3a + 5h), ϕ1,10 := (a + h)4,
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and

ϕ2,0 := h10(a + h)3, ϕ2,1 := h8(a + h)2(a + 3h)2,

ϕ2,2 := h6(a + h)(2a4 + 4a3h + 25a2h2 + 52ah3 + 36h4),

ϕ2,3 := h6(11a4 + 64a3h + 169a2h2 + 196ah3 + 84h4),

ϕ2,4 := 2h5(7a4 + 49a3h + 128a2h2 + 147ah3 + 63h4),

ϕ2,5 := 2h4(8a4 + 55a3h + 139a2h2 + 154ah3 + 63h4),

ϕ2,6 := 7h3(a + h)(a + 2h)2(2a + 3h), ϕ2,7 := 9h2(a + h)2(a + 2h)2,

ϕ2,8 := h(a + h)3(4a + 9h), ϕ2,9 := (a + h)4.

Since

S2 − (a2(h − k) + 2ah2 + h3 + ahk + 2h2k + ak2 + hk2)2

(a + h + k)2 =
4a2(a + h)k3

(a + h + k)2 > 0,

we can obtain that x3 −Θ > 0 for all h, k > 0.

II. Proof of x1 > x3 and x2 > x3 in the proof of Theorem 3.7.
If we put b = a + h, c = a + h + k with h, k > 0 and follow the similar method in Appendix I, we may obtain
the following expressions

x1 − x3 =
ah2k(a + h + k)

∑10
i=0 11,iki

(h + k)2(h2 + ak + hk)
∑10

i=0 12,iki
,

x2 − x3 =
a3h2k3(a + h)(h + k)4(ah2 + h3 + ahk + 2h2k + ak2 + hk2)4∑10

i=0 12,iki
∑7

i=0 13,iki
,

where 1i, j are some polynomials with a and h such that all of the coefficients of 1i j are strictly positive.
Hence x1 > x3 and x2 > x3.
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