Filomat 27:6 (2013), 1121–1126 DOI 10.2298/FIL1306121A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Existence of covering topological *R*-modules

Nazmiye Alemdar^a, Osman Mucuk^b

^a Department of Mathematics, Erciyes University Kayseri 38039, Turkey ^b Department of Mathematics, Erciyes University Kayseri 38039, Turkey

Abstract. Let *R* be a topological ring with identity and *M* a topological (left) *R*-module such that the underlying topology of *M* is path connected and has a universal cover. Let $0 \in M$ be the identity element of the additive group structure of *M*, and *N* a submodule of the *R*-module $\pi_1(M, 0)$. In this paper we prove that if *R* is discrete, then there exists a covering morphism $p: (\widetilde{M}_N, \widetilde{0}) \to (M, 0)$ of topological *R*-modules with characteristic group *N* and such that the structure of *R*-module on *M* lifts to \widetilde{M}_N . In particular, if *N* is a singleton group, then this cover becomes a universal cover.

Introduction

The theory of covering spaces is one of the most interesting theories in algebraic topology. It is well known that the group structure of a topological group *X* lifts to its simply connected covering space, i.e., if *X* is an additive topological group, $p: \widetilde{X} \to X$ is a simply connected covering map, $0 \in X$ is the identity element and $\widetilde{0} \in \widetilde{X}$ is such that $p(\widetilde{0}) = 0$, then \widetilde{X} becomes a topological group with identity $\widetilde{0}$ such that *p* is a morphism of topological groups (see for example [4]). Related to this a monodromy principle for topological ring is proved in [7] and for topological *R*-modules in [8].

Let *X* be a topological space which has a universal cover, $x_0 \in X$ and *G* a subgroup of the fundamental group $\pi_1(X, x_0)$ of *X* at the point x_0 . We know from [9, Theorem 10.42] that there is a covering map $p: (\tilde{X}_G, \tilde{x}_0) \to (X, x_0)$ of pointed spaces. Here note that if *G* is singleton this becomes the universal covering map. Further, if *X* is a topological group, then \tilde{X}_G becomes a topological group such that *p* is a morphism of topological groups.

In this paper we apply this method to topological *R*-modules in the case where the topological ring *R* is discrete and obtain a more general result than the one for the topological group case. So this generalized result guarantees that the *R*-module structure of a topological *R*-module lifts to the universal cover. Recently, in [1], some results on the covering morphisms of *R*-module objects in the category of groupoids have been given (see also [5]). The problem of universal covers of non-connected topological groups was first studied in [10], where it is proved that a topological group *X* determines an obstruction class k_X in $H^3(\pi_0(X), \pi_1(X, e))$, and that the vanishing of k_X is a necessary and sufficient condition for the lifting of the group structure to a universal cover. In [6] an analogous algebraic result is given in terms of crossed modules and group objects in the category of groupoids (see also [3] for a revised version, which generalizes these results and shows the relation with the theory of obstructions to extension for groups).

²⁰¹⁰ Mathematics Subject Classification. Primary 22A05; Secondary 13J99, 57M10

Keywords. Universal cover, topological module

Received: 03 January 2013; Revised: 27 February 2013; Accepted: 03 March 2013

Communicated by Ljubiša D.R. Kočinac

Email addresses: nakari@erciyes.edu.tr (Nazmiye Alemdar), mucuk@erciyes.edu.tr (Osman Mucuk)

1. Preliminaries on covering spaces

We assume the usual theory of covering maps. All spaces X are assumed to be locally path connected and semi-locally 1-connected, so that each path component of X admits a simply connected cover.

Recall that a covering map $p: \widetilde{X} \to X$ of connected spaces is called *universal* if it covers every cover of X in the sense that if $q: \widetilde{Y} \to X$ is another cover of X then there exists a map $r: \widetilde{X} \to \widetilde{Y}$ such that p = qr (hence r becomes a cover). A covering map $p: \widetilde{X} \to X$ is called *simply connected* if \widetilde{X} is simply connected. Note that a simply connected cover is a universal cover.

We call a subset *V* of *X liftable* if it is open, path connected and *V* lifts to each cover of *X*, that is, if $p: \widetilde{X} \to X$ is a covering map, $\iota: V \to X$ is the inclusion map, and $\widetilde{x} \in \widetilde{X}$ satisfies $p(\widetilde{x}) = x \in V$, then there exists a map (necessarily unique) $\widehat{i}: V \to \widetilde{X}$ such that $p\widehat{i} = \iota$ and $\widehat{i}(x) = \widetilde{x}$.

It is easy to see that *V* is liftable if and only if it is open, path connected and for all $x \in V$, $\iota_{\star} \pi_1(V, x) = \{e\}$, where $\pi_1(V, x)$ is the fundamental group of *V* at the base point *x*, ι_{\star} is the map induced by the inclusion map $\iota: V \to X$ and *e* is the identity element of the fundamental group $\pi_1(X, x)$. Remark that if *X* is a semi-locally simply connected topological space, then each point $x \in X$ has a liftable neighbourhood.

For a covering map $p: (\overline{X}, \tilde{x}_0) \to (X, x_0)$, the subgroup $p_{\star}(\pi_1(\overline{X}, \tilde{x}_0))$ of $\pi_1(X, x_0)$ is called *characteristic group* of p, where p_{\star} is the morphism induced by p. Two covering maps $p: (\widetilde{X}, \tilde{x}_0) \to (X, x_0)$ and $q: (\widetilde{Y}, \tilde{y}_0) \to (X, x_0)$ are called *equivalent* if there is a homeomorphism $f: (\widetilde{X}, \tilde{x}_0) \to (\widetilde{Y}, \tilde{y}_0)$ such that qf = p.

Let *X* be a topological space which has a universal cover and $x_0 \in X$ and *G* a subgroup of the fundamental group $\pi_1(X, x_0)$ of *X* at the point x_0 . We recall a construction from [9, p.295] as follows: Let $P(X, x_0)$ be the set of all paths of α in *X* with $\alpha(0) = x_0$. Define a relation on $P(X, x_0)$ by $\alpha \simeq \beta$ if and only if $\alpha(1) = \beta(1)$ and $[\alpha\beta^{-1}] \in G$. The relation defined in this way is an equivalence relation. Denote the equivalence relation of α by $\langle \alpha \rangle_G$ and define \widetilde{X}_G as the set of all such equivalence classes. Define a function $p: \widetilde{X}_G \to X$ by $p(\langle \alpha \rangle_G) = \alpha(1)$. Let α_0 be the constant path at x_0 and $\widetilde{x}_0 = \langle \alpha_0 \rangle_G \in \widetilde{X}_G$. If $\alpha \in P(X, x_0)$ and *U* is an open neighbourhood of $\alpha(1)$, then a path of the form $\alpha\lambda$, where λ is a path in *U* with $\lambda(0) = \alpha(1)$, is called a *continuation* of α . For an $\langle \alpha \rangle_G \in \widetilde{X}_G$ and an open neighbourhood *U* of $\alpha(1)$, let

$$(\langle \alpha \rangle_G, U) = \{ \langle \alpha \lambda \rangle_G \colon \lambda(I) \subseteq U \}.$$

Then the subsets $(\langle \alpha \rangle_G, U)$ form a basis for a topology on \widetilde{X}_G such that the map $p: (\widetilde{X}_G, \widetilde{x}_0) \to (X, x_0)$ is continuous.

Theorem 1.1. ([9, Theorem 10.34]) Let (X, x_0) be a pointed topological space and G a subgroup of $\pi_1(X, x_0)$. If X is connected, locally path connected and semi-locally simply connected, then $p: (\widetilde{X}_G, \widetilde{x}_0) \to (X, x_0)$ is a covering map with characteristic group G.

Remark 1.2. Let *X* be a connected, locally path connected and semi-locally simply connected topological space and $q: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ a covering map. Let *G* be the characteristic group of *q*. Then the covering map *q* is equivalent to the covering map $p: (\tilde{X}_G, \tilde{x}_0) \to (X, x_0)$ corresponding to *G*.

So from Theorem 1.1 the following result is obtained.

Theorem 1.3. ([9, Theorem 10.42]) Suppose that X is a connected, locally path connected and semi-locally simply connected topological group. Let $e \in X$ be the identity element and $q: (\tilde{X}, \tilde{e}) \to (X, e)$ a covering map. Then the group structure of X lifts to \tilde{X} , *i.e.* \tilde{X} becomes a topological group such that \tilde{e} is identity and $q: (\tilde{X}, \tilde{e}) \to (X, e)$ is a morphism of topological groups.

2. Existence of covering topological modules

In this section we apply the preliminaries of Section 1 to topological *R*-modules and obtain covering *R*-modules of some topological *R*-modules.

A *topological ring* is a ring *R* with a topology on the underlying set such that the structure maps $(x, y) \mapsto x + y, x \mapsto -x$ and $(x, y) \mapsto xy$ are all continuous. A topological ring *R* is called *discrete* if the underlying space of *R* is discrete.

Definition 2.1. Let *R* be a topological ring with identity 1_R . A *topological (left) R-module* is an additive abelian topological group *M* together with a continuous function δ : $R \times M \rightarrow M$, $(r, a) \mapsto ra$ called *scalar multiplication* of *R* on *M* such that for $r, s \in R$ and $a, b \in M$

- (i) r(a + b) = ra + rb;
- (ii) (r + s)a = ra + sa;
- (iii) (rs)a = r(sa);
- (iv) $1_R a = a$.

Let *R* be a topological ring with identity 1_R and *M*, *M*' be topological *R*-modules. A *morphism* of topological *R*-modules is a continuous group morphism $f: M' \to M$ such that f(ra) = rf(a) for $a \in M'$ and $r \in R$. A morphism $f: M' \to M$ of topological *R*-modules is called *cover* if *f* is a covering map on the underlying topological spaces.

In [2, Theorem 3.1] the following theorem is proved.

Theorem 2.2. *If R is a countable, Noetherian ring and M is any R-module, then the underlying abelian group of M is isomorphic to the fundamental group* $\pi_1(T(M))$ *for some path connected topological R-module T*(*M*).

This result enables us to find examples of topological *R*-modules which are not simply connected and so they have non-trivial covering spaces.

As a consequence of Theorem 2.2, taking $R = \mathbb{Z}$ the following corollary holds.

Corollary 2.3. Every abelian group is isomorphic to the fundamental group of some topological group.

We now generalize Theorem 1.1 to the topological *R*-modules. Let *M* be a topological *R*-module with a continuous scalar multiplication δ : $R \times M \rightarrow M$ and $0 \in M$ the identity element of the additive group. Then the scalar multiplication δ induces a map

$$\tilde{\delta}: R \times \pi_1(M, 0) \to \pi_1(M, 0), (r, [\alpha]) \mapsto r[\alpha] = [r\alpha]$$

which makes $\pi_1(M, 0)$ an *R*-module. Let *N* be a submodule of $\pi_1(M, 0)$, i.e., *N* is a subgroup of the additive group *M* and $rn \in N$ whenever $r \in R$ and $n \in N$. Hence by Theorem 1.1 we have a covering map $p: (\widetilde{M}_N, \widetilde{0}) \to (M, 0)$ corresponding to *N* as a subgroup of the additive group $\pi_1(M, 0)$.

We now prove a general result for topological *R*-modules. If the topological ring *R* is chosen as the ring \mathbb{Z} of integers endowed with the discrete topology, then this theorem reduces to Theorem 1.1.

Theorem 2.4. Let M be a topological R-module such that R is a discrete topological ring. Let $0 \in M$ be the identity element of the additive group and let N be a submodule of $\pi_1(M, 0)$. Suppose that the underlying space of M is connected, locally path connected and semi-locally simply connected. Let $p: (\widetilde{M}_N, \widetilde{0}) \to (M, 0)$ be the covering map corresponding to N as a subgroup of the additive group $\pi_1(M, 0)$ as in Theorem 1.1. Then the R-module structure of M lifts to \widetilde{M}_N , i.e., \widetilde{M}_N is a topological R-module and $p: \widetilde{M}_N \to M$ is a morphism of topological R-modules.

Proof. As in the proof of Theorem 1.1 let P(M, 0) be the set of all paths α in M with initial point 0 and M_N the set of equivalence classes defined via N as in Section 1. The addition defined on P(M, 0) by

$$(\alpha + \beta)(t) = \alpha(t) + \beta(t)$$

for $\alpha, \beta \in P(M, 0)$ and $0 \le t \le 1$ induces an addition on \widetilde{M}_N defined by

$$\langle \alpha \rangle_N + \langle \beta \rangle_N = \langle \alpha + \beta \rangle_N.$$

By Theorem 1.1 this addition is well-defined, \widetilde{M}_N is a topological group with this addition and $p: (\widetilde{M}_N, \widetilde{0}) \rightarrow (M, 0), \langle \alpha \rangle_N \mapsto p(1)$ is a morphism of topological groups.

In addition to this we define a scalar multiplication on M_N by

$$\widetilde{\delta} \colon R \times \widetilde{M}_N \to \widetilde{M}_N, (r, \langle \alpha \rangle_N) \mapsto r \langle \alpha \rangle_N = \langle r \alpha \rangle_N$$

where the path $r\alpha$ is defined by $(r\alpha)(t) = r(\alpha(t))$ for $t \in [0, 1]$. Here note that if $r \in R$ and $\langle \alpha \rangle_N \in \widetilde{M}_N$, then the initial point of the path $r\alpha$ is 0 and so $\langle r\alpha \rangle_N \in \widetilde{M}_N$. For $\beta \in P(M, 0)$ and $r \in R$ we have that

$$(r\beta)^{-1}(t) = (r\beta)(1-t) = r\beta(1-t) = r\beta^{-1}(t)$$

and

$$(r\beta^{-1})(r\alpha) = r(\beta^{-1}\alpha).$$

So if $\alpha \simeq_N \beta$ and $r \in R$, then $[\alpha \beta^{-1}] \in N$ and

$$[(r\alpha)(r\beta)^{-1})] = [(r\alpha)(r\beta^{-1})] = [r(\alpha\beta^{-1})]$$

Since *N* is an *R*-submodule of $\pi_1(M, 0)$, we have that $[r(\alpha\beta^{-1})] \in N$ and so $\langle r\alpha \rangle_N = \langle r\beta \rangle_N$, i.e., $\tilde{\delta}$ is well-defined. For $\langle \alpha \rangle_N, \langle \beta \rangle_N \in \widetilde{M}_N$ and $r, s \in R$ we have the following

- (i) $(r+s)\langle \alpha \rangle_N = \langle (r+s)\alpha \rangle_N = r\langle \alpha \rangle_N + s\langle \alpha \rangle_N;$
- (ii) $r(\langle \alpha \rangle_N + \langle \beta \rangle_N) = r \langle \alpha \rangle_N + r \langle \beta \rangle_N;$
- (iii) $(rs)\langle \alpha \rangle_N = \langle (rs)\alpha \rangle_N = r(s\langle \alpha \rangle_N);$
- (iv) $1\langle \alpha \rangle_N = \langle 1\alpha \rangle_N = \langle \alpha \rangle_N$.

So \widetilde{M}_N becomes an *R*-module. We now prove that the scalar multiplication

$$\widetilde{\delta} \colon R \times \widetilde{M}_N \to \widetilde{M}_N, (r, \langle \alpha \rangle_N) \mapsto r \langle \alpha \rangle_N = \langle r \alpha \rangle_N$$

is continuous. Let $(\langle r\alpha \rangle_N, W)$ be a basic open neighbourhood of $\langle r\alpha \rangle_N$. So *W* is an open neighbourhood of $(r\alpha)(1) = r\alpha(1)$. Since the map $\delta : R \times M \to M$ is continuous there are open neighbourhoods *V* and *U* of *r* and $\alpha(1)$ respectively in *R* and *M* such that $\delta(V \times U) = VU \subseteq W$. Since *R* is discrete $\{r\} \times (\langle \alpha \rangle_N, U)$ is an open neighbourhood of $(r, \langle \alpha \rangle_N)$ in $R \times \widetilde{M}_N$ and

$$\tilde{\delta}(\{r\} \times (\langle \alpha \rangle_N, U)) = r(\langle \alpha \rangle_N, U) = (\langle r \alpha \rangle_N, r U) \subseteq (\langle r \alpha \rangle_N, W)$$

since $VU \subseteq W$ and therefore δ is continuous.

Further, by the definition of $p: M_N \to M$, for $\langle \alpha \rangle_N$ and $r \in R$ we have that

$$p(r\langle \alpha \rangle_N) = p(\langle r\alpha \rangle_N) = r\alpha(1) = rp(\langle \alpha \rangle_N).$$

In Theorem 2.4 if the *R*-submodule *N* is chosen to be the singleton, then the following result is obtained.

Corollary 2.5. Let *R* be a discrete topological ring and *M* a topological *R*-module such that the underlying space of *M* is connected, locally path connected and semi-locally simply connected. Let $0 \in M$ be the identity element of the additive group. Suppose that $p: (\widetilde{M}, \widetilde{0}) \rightarrow (M, 0)$ is a universal covering map. Then the *R*-module structure of *M* lifts to \widetilde{M} .

We now give a result which generalizes Theorem 1.3 in the case $R = \mathbb{Z}$.

Theorem 2.6. Let *R* be a discrete topological ring with identity. Suppose that *M* is a topological *R*-module whose underlying space is connected, locally path connected and semi-locally simply connected. Let $0 \in M$ be the identity element and $p: (\widetilde{M}, \widetilde{0}) \rightarrow (M, 0)$ a covering map in which \widetilde{M} is path connected and the characteristic group $p_{\star}(\pi_1(\widetilde{M}, \widetilde{0})) = N$ of *p* is an *R*-submodule of $\pi_1(M, 0)$. Then the *R*-module structure of *M* lifts to \widetilde{M} .

Proof. Let $p_{\star}: \pi_1(\widetilde{M}, \widetilde{0}) \to \pi_1(M, 0)$ be the morphism induced by $p: \widetilde{M} \to M$. By assumption $N = p_{\star}(\pi_1(\widetilde{M}, \widetilde{0}))$ is an *R*-submodule of $\pi_1(M, 0)$. By Remark 1.2, we can assume that $\widetilde{M} = \widetilde{M}_N$ and, by Theorem 2.4, the module structure lifts to \widetilde{M} , as required. \Box

Theorem 2.7. Let *R* be a simply connected topological ring and *M* a topological *R*-module such that the underlying space of *M* is path connected. Let $0 \in M$ be the identity element of additive group and $p: (\widetilde{M}, \widetilde{0}) \rightarrow (M, 0)$ a covering map in which \widetilde{M} is path connected. Then the characteristic group *N* of *p* is an *R*-submodule of $\pi_1(M, 0)$.

Proof. Let *M* be a path connected topological *R*-module given by a scalar multiplication δ : $R \times M \rightarrow M$ and 0 the identity element of the additive group of *M*. Consider the map of pointed topological spaces

$$f: R \times \widetilde{M}, (1_R, \widetilde{0}) \to (M, 0)$$

defined by $f(r, \tilde{x}) = rp(\tilde{x})$. Since $f = \delta(1 \times p)$ as a composite of the continuous maps is continuous and since R is simply connected, we have that

$$f_{\star}(\pi_1(R \times \widetilde{M}, (1_R, \widetilde{0})) \subseteq p_{\star}(\pi_1(\widetilde{M}, \widetilde{0}))),$$

because for a path \tilde{a} at $\tilde{0}$ in \tilde{M} and a path ρ in R at 1_R , we have

$$f_*([\rho, \tilde{a}]) = \delta_*(1 \times p)_*([\rho, \tilde{a}])$$

$$= \delta_*([\rho, p(\tilde{a})])$$

$$= [\rho p(\tilde{a})]$$

$$= [\rho][p(\tilde{a})]$$

and since *R* is simply connected, $[\rho] = [1]$ and so that

$$f_*([\rho, \tilde{a}]) = [p(\tilde{a})] \in p_*(\pi_1(M, \tilde{0})).$$

Hence there exists a unique continuous map

$$\tilde{\delta}: R \times \widetilde{M}, (1_R, \tilde{0}) \to (\widetilde{M}, \tilde{0})$$

such that $p\tilde{\delta} = f$. So the map $\tilde{\delta}$ defines an induced map $R \times \pi_1(\widetilde{M}, \widetilde{0}) \to \pi_1(\widetilde{M}, \widetilde{0})$. Let $p_\star : \pi_1(\widetilde{M}, \widetilde{0}) \to \pi_1(M, 0)$ be the morphism induced by $p: \widetilde{M} \to M$. We now prove that the characteristic group $p_\star(\pi_1(\widetilde{M}, \widetilde{0})) = N$ of pis an R-submodule of $\pi_1(M, 0)$. For if $r \in R$ and $[\alpha] \in N$, then $p_\star([\alpha_1]) = [\alpha]$ for some $[\alpha_1] \in \pi_1(\widetilde{M}, \widetilde{0})$. Hence $[r\alpha_1] \in \pi_1(\widetilde{M}, \widetilde{0})$ and $p_\star([r\alpha_1]) = [p(r\alpha_1)] = [rp(\alpha_1)] = [r\alpha] \in N$. \Box

Acknowledgement. We would like to thank to the referee for careful review and helpful comments which improve the presentation of the paper.

References

- N. Alemdar, O. Mucuk, The liftings of *R*-modules to covering groupoids, Hacettepe Journal of Mathematics and Statistics 41 (6) (2012) 813–822.
- [2] A. Bateson , Fundamental groups of topological R-modules, Trans. Amer. Math. Soc. V.270 No.2 (1982) 525–536.

- [3] R. Brown, O. Mucuk, Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc. 115 (1994) 97–110.
- [4] C. Chevalley, Theory of Lie groups, Princeton University Press, 1946.
- [5] O. Mucuk, Coverings and ring-groupoids, Geor. Math. J. 5 (1998) 475–482.
- [6] O. Mucuk, Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.
- [7] O. Mucuk, M. Özdemir, A monodromy principle for the universal covers of topological rings, Ind. Jour. Pure and App. Math 31 (12) (2000) 1531–1535.
- [8] O. Mucuk, M. Özdemir, A monodromy principle for the universal coverings of topological modules, Tamkang J. Math. 34 (2003) 299–307.
- [9] J.J. Rotman, An Introduction to Algebraic Topology, Graduate Texts in Mathematics; 119, Springer-Verlag, New York, 1988.
- [10] R.L. Taylor, Covering groups of non-connected topological groups, Proc. Amer. Math. Soc. 5 (1954) 753–768.