Filomat 27:6 (2013), 971–976 DOI 10.2298/FIL1306971D Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On β **-paracompact spaces**

Izzettin Demir^a, Oya Bedre Ozbakir^b

^aDepartment of Mathematics, Ege University, 35100, Izmir, Turkey ^bDepartment of Mathematics, Ege University, 35100, Izmir, Turkey

Abstract. In this paper, as a weak form of paracompact and expandable spaces, β -paracompact spaces and β -expandable spaces are defined, respectively. Some fundamental properties of these spaces are given. Also, it is proved that every β -paracompact space is a β -expandable space and the relations between these spaces and some previously studied spaces are investigated.

1. Introduction

In 2006, Al-Zoubi [5] used semi-open sets to define *S*-paracompact spaces which are a generalization of paracompact spaces. In 2008, Li and Song [13] introduced and studied *S*-expandable spaces which are a weaker form than *S*-paracompact spaces. *S*-expandable spaces are also defined in terms of semi-open sets.

In this paper, we introduce and study some new classes of spaces. In Section 3, we define and investigate β -locally finite collections by using β -open sets defined by Abd El-Monsef, El-Deeb and Mahmoud [1]. In Section 4, we introduce β -paracompact spaces and investigate their properties and their relations with other types of spaces. We obtain some examples and counterexamples. Also, we examine some functions on β -paracompact spaces. In Section 5, we introduce β -expandable spaces by using β -open sets and β -locally finiteness. In particular, we explore the relationship between β -paracompact spaces and β -expandable spaces.

2. Preliminaries

In the course of this work a space means always a topological space, and no separation axioms are assumed unless clearly indicated. Let (X, τ) and (Y, σ) (or X and Y) be spaces and A a subset of X. The closure of A, the interior of A and the relative topology on A in (X, τ) will be denoted by cl(A), int(A) and τ_A , respectively. Let ω denote the first infinite cardinal. A subset A is called semi-open [12] if there exists an open set U of X such that $U \subseteq A \subseteq cl(U)$. This is equivalent to say that $A \subseteq cl(int(A))$. A is called regular open [18] (resp. regular closed [18], preopen [15]) if A = int(cl(A)) (resp. A = cl(int(A)), $A \subseteq int(cl(A))$). The family of all subsets of a space (X, τ) which are semi-open (resp. regular open, regular closed, preopen) is denoted by $SO(X, \tau)$ (resp. $RO(X, \tau)$, $RC(X, \tau)$, $PO(X, \tau)$). The collection $RO(X, \tau)$ is a base for a topology τ_s on X and $\tau_s \subseteq \tau$. The space (X, τ_s) is called semiregular [18]. A subset A is called semi-preopen [7] if there exists a preopen set U of X such that $U \subseteq A \subseteq cl(U)$. A subset A of X is semi-preopen if and only

²⁰¹⁰ Mathematics Subject Classification. Primary 54D20; Secondary 54A10, 54C10, 54G05

Keywords. β -locally finite collection, β -paracompact space, β -expandable space

Received: 25 June 2012; Revised: 26 September 2012; Accepted: 27 September 2012

Communicated by Ljubiša D.R. Kočinac

Email addresses: demirizzettin@gmail.com (Izzettin Demir), oya.ozbakir@ege.edu.tr (Oya Bedre Ozbakir)

if $A \subseteq cl(int(cl(A)))$ [7]. Abd El-Monsef et al. [1] have introduced a weak form of open sets called β -open sets. The notion of β -open sets is equivalent to that of semi-preopen sets. A subset *A* of *X* is called β -open set [1] if $A \subseteq cl(int(cl(A)))$. The family of all β -open (or semi-preopen) sets of *X* is denoted by $\beta O(X, \tau)$ (or $SPO(X, \tau)$). In this paper, we will use the term " β -open ". The complement of a β -open (or semi-preopen) set is said to be β -closed [1] (or semi-preclosed [7]). The β -closure [3] (or semi-preclosure [7]) of a subset *A* of *X*, denoted by $\beta cl(A)$ (or spcl(*A*)), is the intersection of all the β -closed (or semi-preclosed) subsets of *X* containing *A*. A space (*X*, τ) is said to be β -compact [2] if every cover of (*X*, τ) by β -open sets has a finite subcover.

Lemma 2.1. (see [3] and [7]) For a subset A of a topological space (X, τ) , the following conditions hold:

(a) $\beta cl(A) = A \cup int(cl(int(A))),$

(b) $x \in \beta cl(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in \beta O(X, \tau)$ containing x,

(c) A is β -closed if and only if $A = \beta cl(A)$.

Definition 2.2. A space (X, τ) is called:

(a) *extremally disconnected* (briefly e.d.) [18] if the closure of every open set in (X, τ) is open.
(b) *submaximal* [8] if each dense subset of X is open in X.

Lemma 2.3. ([17]) (X, τ) is submaximal if and only if every preopen set is open.

Lemma 2.4. ([10]) In a submaximal, extremally disconnected space (X, τ) all semi-open sets are open.

Lemma 2.5. ([7]) If V is open and A is semi-preopen (or β -open) then $V \cap A$ is semi-preopen (or β -open).

3. β -locally finite collections

Recall that a collection $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ of subsets of a space (X, τ) is said to be *locally finite* [18] if for each $x \in X$, there exists an open set U in (X, τ) containing x and U intersects F_{α} at most for finitely many α .

Definition 3.1. A collection $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ of subsets of a space (X, τ) is said to be β -*locally finite* if for each $x \in X$, there exists a β -open set U in (X, τ) containing x and U intersects F_{α} at most for finitely many α .

It is clear that every locally finite collection of subsets of a space (X, τ) is β -locally finite but the converse is not true in general.

Example 3.2. Consider the real numbers \mathbb{R} with the usual topology τ_u . Let be $\mathcal{F} = \{ [\frac{1}{n+1}, \frac{1}{n}] : n = 1, 2, ... \}$. Then \mathcal{F} is β -locally finite in (\mathbb{R}, τ_u) since $(-1, 0] \in \beta O(\mathbb{R}, \tau_u)$ but \mathcal{F} is not locally finite. Hence, locally finiteness is not provided at the point 0.

Theorem 3.3. Let (X, τ) be an e.d. submaximal space. Then every β -locally finite collection $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ of subsets of X is locally finite.

Proof. It is clear from Lemma 2.3 and Lemma 2.4.

Lemma 3.4. Let $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ be a collection of subsets of a space (X, τ) . Then, the following conditions hold: (a) If $\mathcal{F} = \{F_{\alpha} : \alpha \in I\}$ is a β -locally finite collection of subsets of X and $G_{\alpha} \subseteq F_{\alpha}$, for each $\alpha \in I$, then $\mathcal{G} = \{G_{\alpha} : \alpha \in I\}$ is also β -locally finite.

(*b*) \mathcal{F} is β-locally finite if and only if {βcl(F_α) : $\alpha \in I$ } is β-locally finite.

Proof. Obvious. \Box

4. β -paracompact spaces

Recall that a space (X, τ) is said to be *S*-paracompact [5] if every open cover of X has a locally finite semi-open refinement.

Definition 4.1. A space (X, τ) is said to be β -paracompact if every open cover of X has a β -locally finite β -open refinement.

It is clear that every compact space is β -paracompact space but the converse is not true in general.

Example 4.2. For any infinite set *X*, (*X*, τ_{dis}) is a β -paracompact space. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be an open cover of *X*. Then \mathcal{U} has a β -locally finite β -open refinement, say $\mathcal{V} = \{x\} : x \in X\}$ but every open cover hasn't a finite subcover since *X* is infinite set. So, *X* is not compact space.

It is clear that every S-paracompact space is β -paracompact but the following example shows that the converse is not true in general.

Example 4.3. Let the space (X, τ) be as in Application 3.2 of [6]. Namely, let $X = N \cup N^-$ with the topology $\tau = \{U \subseteq X : N \subseteq U\} \cup \{\emptyset\}$ such that N is the set of all positive integers and N^- is the set of all negative integers. Then (X, τ) is a β -paracompact space since $\beta O(X, \tau) = \{A \subseteq X : A \cap N \neq \emptyset\}$ and every open cover of X has a β -locally finite β -open refinement, say $\{\{x\} : x \in N\} \cup \{\{x, -x\} : x \in N^-\}$. On the other hand, (X, τ) is not S-paracompact space since $SO(X, \tau) = \tau$ and $\{N \cup \{x\} : x \in N^-\}$ is an open cover of X which admits no locally finite semi-open refinement.

Theorem 4.4. Let (X, τ) be an e.d. submaximal space. If (X, τ) is a β -paracompact space then (X, τ) is paracompact space.

Proof. This follows directly from the fact that if (X, τ) is an e.d. submaximal space, then $\tau = \tau^{\alpha} = SO(X, \tau) = PO(X, \tau) = \beta O(X, \tau)$.

Recall that a subset *A* of a space (X, τ) is called an α -set if $A \subseteq int(cl(int(A)))$ [16]. The family of all α -sets of a space (X, τ) is denoted by τ^{α} and it is a topology on *X* such that $\tau \subseteq \tau^{\alpha}$ [16]. Also, $SPO(X, \tau) = SPO(X, \tau^{\alpha})$ (or $\beta O(X, \tau) = \beta O(X, \tau^{\alpha})$) [7].

Theorem 4.5. If (X, τ^{α}) is β -paracompact, then (X, τ) is β -paracompact.

Proof. The proof follows immediately from $\tau \subseteq \tau^{\alpha}$ and $\beta O(X, \tau) = \beta O(X, \tau^{\alpha})$. \Box

The following example shows that the converse of the Theorem 4.5 is not true in general.

Example 4.6. Let (X, τ) be as in Example 2.11 of [5]. Namely, let $X = \mathbb{R}$ be the set of the real numbers with the topology $\tau = \{\emptyset, X, \{1\}\}$. Then (X, τ) is β -paracompact but (X, τ^{α}) is not β -paracompact since $\tau^{\alpha} = \beta O(X, \tau^{\alpha}) = \{\emptyset\} \cup \{U \subseteq X : 1 \in U\}$ and the collection $\{\{1, x\} : x \in X\}$ is an open cover of (X, τ^{α}) which admits no β -locally finite β -open refinement in (X, τ^{α}) .

Recall that a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is said to be *pre* β -*open* [14] (resp. *pre* β -*closed* [14]) if for every β -open (resp. β -closed) set B of (X, τ) , f(B) is β -open (resp. β -closed) in (Y, σ) , and $f : (X, \tau) \longrightarrow (Y, \sigma)$ is said to be β -*irresolute* [14] if for every β -open set A of (Y, σ) , $f^{-1}(A)$ is β -open in (X, τ) . It is clear that if $f : (X, \tau) \longrightarrow (Y, \sigma)$ is continuous and open, then f is β -irresolute and pre β -open.

Lemma 4.7. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a surjective function. Then f is pre β -closed if and only if for every $y \in Y$ and every β -open set U in (X, τ) which contains $f^{-1}(y)$, there exists a $V \in \beta O(Y, \sigma)$ such that $y \in V$ and $f^{-1}(V) \subset U$.

Proof. To prove necessity, let $y \in Y$ and U be a β -open set in (X, τ) such that $f^{-1}(y) \subset U$. Set V = Y - f(X - U). Then by hypothesis, $V \in \beta O(Y, \sigma)$ such that $y \in V$ and $f^{-1}(V) \subset U$.

To prove sufficiency, let *K* be a β -closed subset of (X, τ) and $y \in Y - f(K)$. Then, $f^{-1}(y) \subset X - K$. By hypothesis, there exists a $V_y \in \beta O(Y, \sigma)$ containing *y* such that $f^{-1}(V_y) \subset X - K$. Therefore, $y \in V_y \subset Y - f(K)$. Hence, $Y - f(K) = \bigcup \{V_y : y \in Y - f(K)\}$. Thus, $Y - f(K) \in \beta O(Y, \sigma)$ and so f(K) is β -closed in (Y, σ) . \Box

Theorem 4.8. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a continuous, open and pre β -closed surjection function such that $f^{-1}(y)$ is β -compact for each $y \in Y$. If (X, τ) is β -paracompact, then (Y, σ) is β -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be an open cover of (Y, σ) . Then, $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is an open cover of the β -paracompact space (X, τ) and so it has a β -locally finite β -open refinement, say $\mathcal{V} = \{V_{\beta} : \beta \in B\}$. Since f is pre β -open, the collection $f(\mathcal{V}) = \{f(V_{\beta}) : \beta \in B\}$ is a β -open refinement of \mathcal{U} . Finally, we shall show that the collection $f(\mathcal{V})$ is β -locally finite in (Y, σ) . Let $y \in Y$. For each $x \in f^{-1}(y)$ there exists a β -open set U_x containing x such that U_x intersects at most finitely many members of \mathcal{V} . The collection $\{U_x : x \in f^{-1}(y)\}$ is a β -open cover of $f^{-1}(y)$ and therefore there exists a finite subset K of $f^{-1}(y)$ such that $f^{-1}(y) \subset \bigcup_{x \in K} U_x$. Because f is pre β -closed, by Lemma 4.7, there exists a β -open set P_y containing y in (Y, σ) such that $f^{-1}(P_y) \subset \bigcup_{x \in K} U_x$. Then, $f^{-1}(P_y)$ intersects at most finitely many members of \mathcal{V} . Therefore P_y intersects at most finitely many members of $f(\mathcal{V})$. Thus, $f(\mathcal{V})$ is β -locally finite in (Y, σ) . \Box

Theorem 4.9. Let $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a β -irresolute, closed surjection function such that $f^{-1}(y)$ is compact for each $y \in Y$. If (Y, σ) is β -paracompact, then (X, τ) is β -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be an open cover of (X, τ) . Since $f^{-1}(y)$ is compact for each $y \in Y$, there exists a finite subset I(y) of I such that $f^{-1}(y) \subseteq \bigcup_{\alpha \in I(y)} U_{\alpha}$. Because f is closed, there exists an open set V_y containing y such that $f^{-1}(V_y) \subseteq \bigcup_{\alpha \in I(y)} U_{\alpha}$. Therefore, $\{V_y : y \in Y\}$ is an open cover of the β -paracompact space (Y, σ) and it has a β -locally finite β -open refinement $\mathcal{W} = \{W_{\beta} : \beta \in B\}$. Since f is β -irresolute, $\{f^{-1}(W_{\beta}) : \beta \in B\}$ is a β -locally finite β -open cover of (X, τ) . For each $\beta \in B$, there exists a $y(\beta) \in Y$ such that $W_{\beta} \subseteq V_{y(\beta)}$. Therefore, $f^{-1}(W_{\beta}) \subseteq f^{-1}(V_{y(\beta)}) \subseteq \bigcup_{\alpha \in I(y(\beta))} U_{\alpha} = F_{y(\beta)}$. Put $\mathcal{F} = \{f^{-1}(W_{\beta}) \land F_{y(\beta)} : \beta \in B \text{ and } y(\beta) \in Y\}$, where $f^{-1}(W_{\beta}) \land F_{y(\beta)} = \{f^{-1}(W_{\beta}) \cap U_{\alpha} : \beta \in B \text{ and } \alpha \in I(y(\beta))\}$. By Lemma 2.5, each set of \mathcal{F} is a β -open subset of X. Then, the family \mathcal{F} is a β -locally finite β -open refinement of \mathcal{U} . Thus (X, τ) is β -paracompact. \Box

Theorem 4.10. Let (X, τ) be a compact space and let (Y, σ) be an β -paracompact space. Then, $(X, \tau) \times (Y, \sigma)$ is β -paracompact.

Proof. Let $f : (X, \tau) \times (Y, \sigma) \longrightarrow (Y, \sigma)$ be the projection. It is known that f is open, surjective and continuous. Then f is β -irresolute. Also, f is the closed function since X is compact. For each $y \in Y$, $f^{-1}(y) = X \times \{y\}$ is a compact subset of $X \times Y$ because $X \times \{y\}$ is homeomorphic to X. Since (Y, σ) is β -paracompact, by Theorem 4.9, $(X, \tau) \times (Y, \sigma)$ is β -paracompact. \Box

5. β -expandable spaces

Recall that a space *X* is said to be *expandable* [11] (resp. *s-expandable* [4]) if for every locally finite (resp. s-locally finite) collection $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ of subsets of *X* there exists a locally finite collection $\mathcal{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ of open subsets of *X* such that $F_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in \Lambda$. A space *X* is said to be *S-expandable* [13] if for every locally finite collection $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ of subsets of *X* there exists a locally finite collection $\mathcal{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ of semi-open subsets of *X* such that $F_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in \Lambda$.

Definition 5.1. A space *X* is said to be β -expandable (resp. ω - β -expandable) if for every locally finite collection $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ (resp. $|\Lambda| \leq \omega$) of subsets of *X* there exists a β -locally finite collection $\mathcal{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ of β -open subsets of *X* such that $F_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in \Lambda$.

974

Theorem 5.2. *Let* X *be a space. Then the following conditions are equivalent:*

(a) X is β -expandable.

(b) Every locally finite collection $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ of closed subsets of X, there exists a β -locally finite collection $\mathcal{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ of β -open subsets of X such that $F_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in \Lambda$.

Proof. (*a*) \Rightarrow (*b*) It is clear from Definition 5.1.

 $(b) \Rightarrow (a)$ Let $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a locally finite collection. We know that $\{cl(F_{\alpha}) : \alpha \in \Lambda\}$ is also a locally finite collection. By the hypothesis, there exists a β-locally finite collection $\mathcal{G} = \{G_{\alpha} : \alpha \in \Lambda\}$ of β -open subsets of X such that $cl(F_{\alpha}) \subseteq G_{\alpha}$ for each $\alpha \in \Lambda$. Because of $F_{\alpha} \subseteq cl(F_{\alpha}) \subseteq G_{\alpha}$ for each $\alpha \in \Lambda$, X is β -expandable. □

Theorem 5.3. *Every* β *-paracompact space is* β *-expandable.*

Proof. Let *X* be a *β*-paracompact space and $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ be a locally finite collection of closed subsets of *X*. Let Γ be the collection of all finite subsets of Λ. For each $\gamma \in \Gamma$, let $V_{\gamma} = X \setminus \bigcup \{F_{\alpha} : \alpha \notin \gamma\}$. Because \mathcal{F} is the locally finite collection, V_{γ} is open. Also, V_{γ} meets only finitely many elements of \mathcal{F} . Let $\mathcal{V} = \{V_{\gamma} : \gamma \in \Gamma\}$. Then \mathcal{V} is an open cover of *X*. Since *X* is *β*-paracompact, \mathcal{V} has a *β*-locally finite *β*-open refinement, say $\mathcal{W} = \{W_{\delta} : \delta \in \Delta\}$. Set

$$U_{\alpha} = \bigcup \{ W_{\delta} \in \mathcal{W} : W_{\delta} \cap F_{\alpha} \neq \emptyset \} \quad for \ each \ \alpha \in \Lambda.$$

Because arbitrary unions of β -open sets are β -open set, U_{α} is β -open and $F_{\alpha} \subseteq U_{\alpha}$ for each $\alpha \in \Lambda$. Now, we shall try to show that $\{U_{\alpha} : \alpha \in \Lambda\}$ is β -locally finite. Since \mathcal{W} is β -locally finite, for each $x \in X$, there exists a β -open set U_x in (X, τ) containing x and U_x intersects at most finitely many members of \mathcal{W} . Also, by the definition of U_{α} , we say that

 $U_x \cap U_\alpha \neq \emptyset$ if and only if $U_x \cap W_\delta \neq \emptyset$ and $W_\delta \cap F_\alpha \neq \emptyset$ for some $\delta \in \Delta$.

Since \mathcal{W} is refinement of \mathcal{V} , there is an member V_{γ} of \mathcal{V} containing W_{δ} for each member W_{δ} of \mathcal{W} . Then, W_{δ} meets only finitely many F_{α} for each $\delta \in \Delta$. Thus, $\{U_{\alpha} : \alpha \in \Lambda\}$ is β -locally finite. \Box

It is clear that every *S*-expandable space is β -expandable but the following example shows that the converse is not true in general.

Example 5.4. Let (X, τ) be as in Example 4.3. By Theorem 5.3, (X, τ) is β -expandable space but (X, τ) is not *S*-expandable. Indeed, for the locally finite collection $\{x\} : x \in N^-\}$ of (X, τ) , there exists no locally finite collection $\{u_x : x \in N^-\}$ of semi-open subsets of *X* such that $x \in U_x$ for each $x \in N^-$.

Lemma 5.5. For an extremally disconnected submaximal space X, the following conditions are equivalent:

- (a) X is β -expandable,
- (b) X is S-expandable,
- (c) X is expandable,
- (d) X is s-expandable.

Proof. It is clear from Lemma 2.3, Lemma 2.4 and Theorem 3.3.

Theorem 5.6. Let X be a space. Then X is ω - β -expandable if and only if every countable open cover of X has a β -locally finite β -open refinement.

Proof. Sufficiency is similar to the proof of Theorem 5.3.

To prove necessity, let $\mathcal{U} = \{U_i : i \in \mathbb{N}\}$ be a countable open cover of *X*. Put $A_i = \bigcup \{U_j : j \leq i\}$ for each $i \in \mathbb{N}$. Let $B_1 = A_1$ and $B_i = A_i \setminus A_{i-1}$ such that i = 2, 3, ... Therefore, $B_i \subseteq U_i$ for each $i \in \mathbb{N}$. For $x \in X$, let $i(x) = min\{i \in \mathbb{N} : x \in U_i\}$. Then, $x \in B_{i(x)}$. Let $\mathcal{A} = \{B_i : i \in \mathbb{N}\}$. Therefore, \mathcal{A} is a refinement of \mathcal{U} and \mathcal{A} is locally finite since $U_i \cap B_j = \emptyset$ for j > i. Because X is ω - β -expandable, there exists a β -locally finite collection

 $\{G_i : i \in \mathbb{N}\}\$ of β -open subsets of X such that $B_i \subseteq G_i$ for each $i \in \mathbb{N}$. Let $V_i = U_i \cap G_i$ for each $i \in \mathbb{N}$. By Lemma 2.5, $V_i \in \beta O(X, \tau)$ for each $i \in \mathbb{N}$. Let $\mathcal{V} = \{V_i : i \in \mathbb{N}\}\$. Since $\{G_i : i \in \mathbb{N}\}\$ is β -locally finite, by Lemma 3.4(a), \mathcal{V} is β -locally finite. Because \mathcal{A} is a cover of X, there exists some $i \in \mathbb{N}$ such that $x \in B_i$ for each $x \in X$. Since $B_i \subseteq V_i$, $x \in V_i$. Thus, \mathcal{V} is β -locally finite β -open refinement of \mathcal{U} . \Box

Theorem 5.7. If (X, τ^{α}) is β -expandable, then (X, τ) is β -expandable.

Proof. This follows immediately from $\tau \subseteq \tau^{\alpha}$ and $\beta O(X, \tau) = \beta O(X, \tau^{\alpha})$. \Box

Let *X* be a space and *U* a clopen subset of *X*. Then it is clear that every locally finite family of *U* is locally finite in *X*. Moreover, the intersection of a β -open subset and an open subset is β -open subset. Thus, we have the following theorem.

Theorem 5.8. Let (X, τ) be a β -expandable space. Then every clopen subset of (X, τ) is β -expandable.

Acknowledgement. The authors would like to thank the referees for their helpful suggestions.

References

- M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77–90.
- [2] M.E. Abd El-Monsef, A.M. Kozae, Some generalized forms of compactness and closedness, Delta J. Sci. 9 (1985) 257–269.
- [3] M.E. Abd El-Monsef, R.A. Mahmoud, E.R. Lashin, β-closure and β-interior, J. Fac. Ed. Ain Shams Univ. 10 (1986) 235–245.
- [4] K.Y. Al-Zoubi, s-expandable spaces, Acta Math. Hungar. 102 (2004) 203–212.
- [5] K.Y. Al-Zoubi, S-paracompact spaces, Acta Math. Hungar. 110 (2006) 165–174.
- [6] K. Al-Zoubi, S. Al-Ghour, On P₃-paracompact spaces, Intern. J. Math. Math. Sci. 2007 (2007) 1–16.
- [7] D. Andrijević, Semipreopen sets, Mat. Vesnik 38 (1986) 24–32.
- [8] N. Bourbaki, General Topology, Part I., Addison-Wesley, Reading, Mass., 1966.
- [9] J. Dontchev, Survey on preopen sets, Proc. Yatsushiro Top. Conf. (1998) 1–18.
- [10] D.S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985) 83–92.
- [11] L.L. Krajewski, On expanding locally finite collections, Canad. J. Math. 23 (1971) 58-68.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [13] P.Y. Li, Y.K. Song, Some remarks on S-paracompact spaces, Acta Math. Hungar. 118 (2008) 345–355.
- [14] R.A. Mahmoud, M.E. Abd El-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan Acad. Sci. 27 (1990) 285–296.
- [15] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 51 (1981) 47–53.
- [16] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965) 961–970.
- [17] I.L. Reilly, M.K. Vamanamurthy, On some questions concerning preopen sets, Kyungpook Math. J. 30 (1990) 87–93.
- [18] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.