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An iterative method to compute Moore-Penrose inverse
based on gradient maximal convergence rate
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Abstract. In this paper, we present an iterative method based on gradient maximal convergence rate to
compute Moore-Penrose inverse A† of a given matrix A. By this iterative method, when taken the initial
matrix X0 = A∗, the M-P inverse A† can be obtained with maximal convergence rate in absence of roundoff
errors. In the end, a numerical example is given to illustrate the effectiveness, accuracy and its computation
time, which are all superior than the other methods for the large singular matrix.

1. Introduction

In 1920, Moore generalized the notion of inverse of a matrix including all the matrices, rectangular as
well as singular [1].

For an m×n matrix A over field C of complex number, in 1955, Penrose [2] gave an equivalent definition
of Moore-Penrose inverse A†, which is the unique solution to the following four equations

AXA = A (1) XAX = X (2)
(AX)∗ = AX (3) (XA)∗ = XA (4)

where (·)∗ denotes the conjugate transpose of a complex matrix. In general, let ϕ , η{1, 2, 3, 4}. If X satisfies
all conditions of η, then X is called a η inverse of A, denoted by A{η}.

There have been many approaches available for the determination M-P inverse and weighted M-P
inverse, such as singular value decomposition (SVD), full-rank decomposition[3∼ 5], and so on. In 1960,
Greville first gave a finite iterative method for computing M-P inverse A† by computing A†k with n iterations,
where Ak is the submatrix of A consisting of the first k columns in [6]. In 1999, Udwadia and Kalaba gave
a unified approach for the recursive determination of generalized inverse in [7]. In 2005, Pian improved
Udwadia and Kalaba’s method in [8]. In the later Wei in [9,10] gave different methods to compute the
weighted M-P inverse. In the recent work [24-27], some papers propose iterative methods to compute the
M-P inverse for large and spare matrix. In this paper we will design an iterative method based on gradient
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to solve the matrix equation AXA = A, when the initial matrix X0 = A∗ is taken, the M-P inverse A† can be
got in maximal convergence rate. We must point that the coefficient matrix of A is not needed full column
rank. In the end we give a numerical example to show this iteration is quite efficient.

2. Notations and Preliminaries

In the past decades, research on solutions to linear matrix equations has been very plentiful. For example,
by using the well-known Kronecker product, the linear matrix equation can be converted into the standard
linear system Ax = b which can readily be solved by some classical methods or the recently developed
methods such as SOR-type iteration in [11], AOR-type iterations in [12], preconditioned conjugate gradient
method in [13] and multiple search direction conjugate gradient method in [14].

Recently, many papers discuss the iterative algorithms based on gradient to solve linear system. For
instance, Ding and Zhou made a great deal of research on this problem in papers [15-22]: papers [15,16]
presented gradient-based iterative algorithms for some matrix equations, in [17-19], least squares solutions
were obtained, and by using the hierarchical identification principle, Ding et al. [21] introduced a gradient-
based iterative algorithms of the generalized Sylvester-matrix equation. Zhou et al. [22] obtained the
maximal convergence rate iterative method based on gradient to linear matrix equations with a little
knowledge of discrete-time linear system theory. All the algorithms given by Ding and Zhou can work well
only on the condition that the matrix equations considered should have the unique solution, which needs
that the coefficient matrix is full column-rank.

In space Cm×n, we define inner product as (A,B) = traceB∗A for all A,B ∈ Cm×n. Then the norm of a
matrix A generated by this inner product is, obviously, Frobenius norm and denoted by ∥ A ∥. Throughout
this paper the following notations are used: the set of all m × n complex matrices of rank r is denoted by
Cm×n

r . For A ∈ Cm×n, R(A) and N(A) denote the range and null space of A, A∗ and A† denote conjugate
transpose and M-P inverse of A. σmax(A) =∥ A ∥2, σmin(A) are the maximal singular value, the minimal
nonzero singular value of A. PL denotes the orthogonal projection on L. The symbol of In represents an
identity matrix of order n.

In this paper the following Lemmas are needed in what follows:
Lemma 2.1[4] Let A ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r and S be a subspace

of Cm of dimension m − s. Then A has a {2} inverse X such that R(X) = T and N(X) = S, if and only if

AT ⊕ S = Cm

In which case X is unique and this X is denoted by A(2)
T,S.

Lemma 2.2[4] Let A ∈ Cm×n be of rank r, any two of the following three statements imply the third:

X ∈ A{1},
X ∈ A{2},

rankA = rankX.

Lemma 2.3[4] Let A ∈ Cm×n, then for the M-P inverse A†, one has A† = A(2)
R(A∗),N(A∗).

Lemma 2.4[4] Let Cn = L ⊕M and A ∈ Cm×n be of rank r, then
(1) PL,MA = A if and only if R(A) ⊂ L.
(2) APL,M = A if and only if M ⊂ N(A).
Lemma 2.5 Let A ∈ Cm×n, then the set of solution to AXA = A is equivalent to that of A∗AXAA∗ = A∗AA∗.
Proof Let A{1} be the set of the solution to AXA = A, then for any X0 ∈ A{1}, we have AX0A = A. This

implies A∗AX0AA∗ = A∗AA∗.
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Conversely, if X is solution to A∗AXAA∗ = A∗AA∗, then postmultiplying and premultiplying it by (A†)∗,
which gives

(A†)∗A∗AXAA∗(A†)∗ = (A†)∗A∗AA∗(A†)∗

(AA†)∗AXA(A†A)∗ = (AA†)∗A(A†A)∗

AA†AXAA†A = AA†AA†A
AXA = A

Lemma 2.6 Let A ∈ Cm×n and X ∈ Cn×m satisfy AXA = 0, if R(X) ⊂ R(A∗) and N(X) ⊃ N(A∗) then X = 0.
Proof Postmultiplying and premultiplying AXA = 0 by A†, which gives A†AXAA† = 0. This shows

PR(A∗)XPR(A) = 0, then from the conditions and the Lemma 2.4, we have X = 0.
In order to study the properties of iterative method for computing A†, we need the following two

Lemmas.
Lemma 2.7[22] For any iterative process

xk = Axk−1, (2.1)

where A ∈ Cn×n and xk ∈ Cn. Then the iteration (2.1) converges for arbitrary initial condition x0 if and only
if

β = ρ(A) := max
1≤i≤n

| λi(A) | < 1, (2.2)

Moreover, if A is a real symmetric matrix, then the 2-convergence rate of iteration (2.1) is 1/β, and

∥ xk ∥≤ βk ∥ x0 ∥ .

Lemma 2.8[22] Assume that mi (i = 1, 2, . . . , n) are some given positive scalars. Denote mmax = max
1≤i≤n
{mi}

and mmin = min
1≤i≤n
{mi}. Then

min
0<µ<2/mmax

max
1≤i≤n

|1 − µmi| =
mmax −mmin

mmax +mmin
. (2.3)

Moreover, the unique µopt can be obtained by the following equality

µopt =
2

mmax +mmin
.

3. Iterative method for computing A†

In this section we study gradient-based numerical solution to the M-P inverse A†. A gradient-based
algorithm for solving the unique minimum Frobenius norm solution of AXA = A is constructed, if the
initial matrix X0 is taken by A∗, then A† is obtained by using the algorithm. The basic idea of gradient-based
algorithm is to search minimum Frobenius norm X such that the following objective function

J(X) =
1
2
∥ A − AXA ∥2

is minimized. It is easy to compute that

∂J(X)
∂X

= −A∗(A − AXA)A∗.

Then the gradient-based algorithm can be constructed as follows:

Xk = Xk−1 − µ
∂J(X)
∂X

= Xk−1 + µA∗(A − AXk−1A)A∗, (3.1)
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where µ is called the convergence factor that will be specified later.
About formula (3.1), we have the following basic properties:
Theorem 3.1 Let A ∈ Cm×n, taking the initial matrix X0 = A∗, then the sequences {Xi}, generated by

formula (3.1), satisfies
R(Xi) ⊂ R(A∗) and N(Xi) ⊃ N(A∗) (i = 0, 1, 2, · · · ). (3.2)

Further, if the sequences {Xi} converges, then it converges to A†.
Proof We prove the conclusion by induction.
When i = 1, we have

X1 = X0 + µA∗(A − AX0A)A∗

= A∗[Im + µ(A − AX0A)A∗]
= [In + µA∗(A − AX0A)]A∗.

This shows when i = 1, the conclusion is right.
Assume that conclusion holds for all 0 ≤ i ≤ s(0 < s < k). Then there exists matrices U and V such that

Xs = A∗U = VA∗.

Further, we have

Xs+1 = Xs + µA∗(A − AXkA)A∗

= A∗[U + µ(A − AXkA)A∗]
= [V + µA∗(A − AXkA)]A∗.

This means when i = s + 1, the conclusion is also right.
By the principle of induction, the conclusion R(Xi) ⊂ R(A∗) and N(Xi) ⊃ N(A∗) hold for all i = 0, 1, 2, · · · .
If the sequences {Xi} is convergent, then taking limit on both sides of (3.1), we have

X∞ = X∞ + µA∗(A − AX∞A)A∗.

From the above equality, we can easy get

A∗AA∗ = A∗AX∞AA∗.

By Lemma 2.5, we have AX∞A = A. Further by (3.2), Lemma 2.3 and Lemma 2.4, we know X∞ = A†. �
In the next Theorem, the sufficient and necessary condition of the iterative convergence is studied and

the maximal convergence rate is obtained when taken µopt =
2

σ4
max(A) + σ4

min(A)
.

Theorem 3.2 Assume the sequences {Xk} (k = 1, 2, . . .) are generalized by formula (3.1). Then the
formula (3.1) yields lim

k→∞
Xk = A† for the special initial matrix X0 = A∗ if and only if

0 < µ <
2

σ4
max(A)

. (3.3)

Moreover, the F-convergence rate of the method is maximized when

µ = µopt =
2

σ4
max(A) + σ4

min(A)
. (3.4)

In this case, the F-convergence rate is γmax = 1/β(µopt) with

β(µopt) =
cond4(A) − 1
cond4(A) + 1

. (3.5)
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i.e. the iteration error matrix X̃k = Xk − A† satisfies

∥ X̃k ∥≤ βk(µopt) ∥ X̃0 ∥, k ≥ 0. (3.6)

Proof Minusing A† on both sides of (3.1), then we rewrite (3.1) as

X̃k = X̃k−1 − µA∗AX̃k−1AA∗. (3.7)

Using Kronecker product on formula (3.7), we have

vec(X̃k) = vec(X̃k−1) − µAA∗vec(X̃k−1) = (I − µAA∗)vec(X̃k−1), (3.8)

whereA = A ⊗ A∗.
From the initial matrix X0 = A∗ and Theorem 3.1, we know

R(X̃k) = R(Xk − A†) ⊂ R(A∗) and N(X̃k) = N(Xk − A†) ⊃ N(A∗). (3.9)

This implies that there exists a matrix W such that

X̃k = A∗WA∗.

So all X̃k satisfy

vec(X̃k) = Avec(W) ⊂ R(A) = R(AA∗). (3.10)

There exists some matrices Ỹk such that

vec(X̃k) = AATỸk. (3.11)

SinceAA∗ is Hermite, we have

AA∗ = P−1dia1(λ1, λ2, . . . , λs, 0, . . . , 0)P, (3.12)

where P is an unitary matrix, dia1(a1, a2, . . . , at) represents a diagonal matrix with diagonal elements
a1, a2, . . . , at, λi(i = 1, 2, . . . , s) are the nonzero eigenvalues of AA∗ with λ1 ≥ λ2 ≥ . . . ≥ λs > 0, it is
obvious that λi = σ4

i (A).
From (3.10) and (3.12), we have

X̃k = (I − µAA∗)vec(X̃k−1)
= (I − µAA∗)AA∗Ỹk−1
= P−1dia1(1 − µλ1, 1 − µλ2, . . . , 1 − µλs, 1, . . . , 1)P

P−1dia1(λ1, λ2, . . . , λs, 0, . . . , 0)PỸk−1

= P−1dia1((1 − µλ1)λ1, (1 − µλ2)λ2, . . . , (1 − µλs)λs, 0, . . . , 0)PỸk−1
= P−1dia1(1 − µλ1, 1 − µλ2, . . . , 1 − µλs, 0, . . . , 0)PX̃k−1.

(3.13)

The equation (3.13) is a linear matrix equation with coefficient matrixΦ = P−1dia1(1−µλ1, 1−µλ2, . . . , 1−
µλs, 0, . . . , 0)P. Therefore, the gradient-based algorithm converges for the special arbitrary initial condition
X0 = A∗ if and only if

ρ(Φ) = max
1≤i≤s

{
|λi(Φ)|

}
= max

1≤i≤s

{
|1 − µλi|

}
< 1,

which is equivalent to inequality (3.3).
Since Φ∗ = Φ, 2-convergence rate of the iterative process (3.8) is γ(µ) = 1/β(µ) from Lemma 2.7, where

β(µ) = max
1≤i≤s

{
|1 − µλi(AA∗)|

}
= max

1≤i≤s

{
|1 − µσ4

i (A)|
}
. (3.14)
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According to Lemma 2.8, we get that β(µ) is minimized, i.e. γ(µ) is maximized, when

µ = µopt =
2

σ4
max(A) + σ4

min(A)
.

From equation (3.14) and Lemma 2.8, we get equation (3.5) and

∥ vec(X̃k) ∥≤ β(µopt) ∥ vec(X̃k−1) ∥ . (3.15)

By using the property that ||X|| = ||vec(X)||2, (3.6) can be obtained from (3.15).
When µ = µopt, the formula (3.1) gets maximal convergence rate, this iteration is called gradient-based

maximal convergence rate, abbreviated GBMC.
In the next theorem, we will use another way to prove the necessary condition of the convergence for

the formula (3.1) and clearly to see the decreasing for the residual norm of X̃k−1 = Xk−1 − A†.
Theorem 3.3 Let A ∈ Cm×n and X0 = A∗. If µ satisfied the inequality (3.3), then {Xk} generated by

the gradient-based formula (3.1) converges to A† and the residual norm of the error matrix X̃k = X̃k−1 − A†

Frobenius norm is decreasing.
Proof From (3.7), we have

∥ X̃k ∥2 = tr
[
X̃∗kX̃k

]
= ∥ X̃k−1 ∥2 +µ2 ∥ A∗AX̃k−1AA∗ ∥2 −µtr

[
X̃∗k−1A∗AX̃k−1AA∗ + AA∗X̃∗k−1AA∗X̃k−1

]
= ∥ X̃k−1 ∥2 +µ2 ∥ A∗AX̃k−1AA∗ ∥2 −2µ ∥ AX̃k−1A ∥2

≤ ∥ X̃k−1 ∥2 −µ
(
2 − µ ∥ A ∥42

)
||AX̃k−1A||2

≤ ∥ X̃0 ∥2 −µ
(
2 − µσ4

max(A)
) k∑

i=1

∥ AX̃i−1A ∥2

= ∥ A∗ − A† ∥2 −µ
(
2 − µσ4

max(A)
) k∑

i=1

∥ AX̃i−1A ∥2

If the condition (3.3) is satisfied then the Frobenius norm of X̃k is decreasing and

∞∑
k=1

∥ AX̃kA ∥2≤ ∥ A∗ − A† ∥2

µ
(
2 − µσ4

max(A)
) < ∞,

It follows that
lim
k→∞

AX̃kA = 0.

By Theorem 3.1 and Lemma 2.6, we can obtain

lim
k→∞

X̃k = 0,

which yields
lim
k→∞

Xk = A†.

4. Numerical examples

In this section, we will give a numerical example to illustrate our results. All the tests are performed by
Matlab 6.5.1 Service pack 1 version of software, which is used on a Pentium(R) Dual-Core processor system
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running at 2.6GHz with 1G of RAM memory using the windows XP professional 32 bit Operating System.
The singular test matrix A with size 200×200 is obtained from the Matrix Computation Toolbox (mctoolbox)
[23] (which includes test matrices from Matlab itself, i.e. A=matrix(8,200)) and the initial iterative matrices
are chosen as X0 = A∗. Because of the influence of the error of roundoff, we regard the matrix A as zero
matrix if ∥ A ∥< 1.0e − 10.

In the following Table, we will perform numerical experiments to compare Petković and Stanimirović’s
method [26] (PSI), Toutounian and Ataei’s method [27] (CGSI) with the proposed method GBMC.

Table 1: error and computational time Results
Method Time ∥ AA†A − A ∥2 ∥ A†AA† − A† ∥2 ∥ AA† − (AA†)∗ ∥2 ∥ A†A − (A†A)∗ ∥2

PSI 76.672 9.9884e-11 7.4645e-13 2.3170e-13 3.0985e-15
CGSI no result no result no result no result no result

GBMC 4.484 9.4827e-11 1.1711e-13 4.6409e-13 4.6091e-16

Note: The CGSI method was not able to produce numerical results for matrix(8,200), even after one day
running. From Table 1, the proposed method (GBMC) is superior to PSI and CGSI on convergence time
and accuracy.

5. Conclusion

In this paper, we presente an iterative formula to compute M-P inverse A† based on gradient maximal
convergence rate, where the matrix A is not full-rank. In the last section, a numerical example is given
to illustrate the effectiveness, accuracy and its computation time, which are all superior than the other
methods for the large singular matrix.
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