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On controllability for Sturm-Liouville type differential inclusions
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Abstract. We consider a second-order differential inclusion and we obtain sufficient conditions for h-local
controllability along a reference trajectory.

1. Introduction

In this paper we are concerned with the following second-order differential inclusion

(p(t)x′(t))′ ∈ F(t, x(t)) a.e. ([0,T]), x(0) ∈ X0, x′(0) ∈ X1, (1.1)

where F : [0,T] × Rn → P(Rn) is a set-valued map, X0,X1 ⊂ Rn are closed sets and p(.) : [0,T] → (0,∞)
is continuous. Let SF be the set of all solutions of (1.1) and let RF(T) be the reachable set of (1.1). For a
solution z(.) ∈ SF and for a locally Lipschitz function h : Rn → Rm we say that the differential inclusion (1.1)
is h-locally controllable around z(.) if h(z(T)) ∈ int(h(RF(T))). In particular, if h is the identity mapping the
above definitions reduces to the usual concept of local controllability of systems around a solution.

The aim of the present paper is to obtain a sufficient condition for h-local controllability of inclusion
(1.1). This result is derived using a technique developed by Tuan for differential inclusions ([11]). More
exactly, we show that inclusion (1.1) is h-locally controlable around the solution z(.) if a certain linearized
inclusion is λ-locally controlable around the null solution for every λ ∈ ∂h(z(T)), where ∂h(.) denotes
Clarke’s generalized Jacobian of the locally Lipschitz function h. The key tools in the proof of our result
is a continuous version of Filippov’s theorem for solutions of problem (1.1) obtained in [2] and a certain
generalization of the classical open mapping principle in [12].

Our result may be interpreted as an extension of the controllability results in [7] to h-controllability.
We note that existence results and qualitative properties of the solutions of problem (1.1) may be found

in [2-8] etc.
The paper is organized as follows: in Section 2 we present some preliminary results to be used in the

sequel and in Section 3 we present our main results.

2. Preliminaries

Let us denote by I the interval [0,T] and let X be a real separable Banach space with the norm ||.|| and
with the corresponding metric d(., .). Denote by L(I) the σ-algebra of all Lebesgue measurable subsets of I,
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by P(X) the family of all nonempty subsets of X and byB(X) the family of all Borel subsets of X. Recall that
the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
As usual, we denote by C(I,X) the Banach space of all continuous functions x(.) : I → X endowed

with the norm ||x(.)||C = supt∈I ||x(t)|| and by L1(I,X) the Banach space of all (Bochner) integrable functions
x(.) : I→ X endowed with the norm ||x(.)||1 =

∫
I ||x(t)||dt.

Consider F : I × X → P(X) a set-valued map, x0, x1 ∈ X and p(.) : I → (0,∞) a continuous mapping that
defines the Cauchy problem

(p(t)x′(t))′ ∈ F(t, x(t)) a.e. ([0,T]), x(0) = x0, x′(0) = x1, (2.1)

A continuous mapping x(.) ∈ C(I,X) is called a solution of problem (2.1) if there exists a (Bochner)
integrable function f (.) ∈ L1(I,X) such that:

f (t) ∈ F(t, x(t)) a.e. (I), (2.2)

x(t) = x0 + p(0)x1

∫ t

0

1
p(s)

ds +
∫ t

0

1
p(s)

∫ s

0
f (u)duds ∀t ∈ I. (2.3)

Note that, if we denote S(t,u) :=
∫ t

u
1

p(s) , t ∈ I, then (2.3) may be rewrite as

x(t) = x0 + p(0)x1S(t, 0) +
∫ t

0
S(t,u) f (u)du ∀t ∈ I, (2.4)

We shall call (x(.), f (.)) a trajectory-selection pair of (2.1) if (2.2) and (2.3) are satisfied.

Hypothesis 2.1. i) F(., .) : I × X→ P(X) has nonempty closed values and is L(I) ⊗ B(X) measurable.
ii) There exists L(.) ∈ L1(I,R+) such that, for any t ∈ I,F(t, .) is L(t)-Lipschitz in the sense that

dH(F(t, x1),F(t, x2)) ≤ L(t)||x1 − x2|| ∀ x1, x2 ∈ X.

Hypothesis 2.2. Let S be a separable metric space, X0,X1 ⊂ X are closed sets, a0(.) : S → X0, a1(.) : S → X1
and c(.) : S→ (0,∞) are given continuous mappings.

The continuous mappings 1(.) : S→ L1(I,X), y(.) : S→ C(I,X) are given such that

(p(t)(y(s))′(t))′ = 1(s)(t), y(s)(0) ∈ X0, (y(s))′(0) ∈ X1.

There exists a continuous function q(.) : S→ L1(I,R+) such that

d(1(s)(t),F(t, y(s)(t))) ≤ q(s)(t) a.e. (I), ∀ s ∈ S.

Theorem 2.3 ([2]). Assume that Hypotheses 2.1 and 2.2 are satisfied.
Then there exist M > 0 and the continuous functions x(.) : S → L1(I,X), h(.) : S → C(I,X) such that for any

s ∈ S (x(s)(.), h(s)(.)) is a trajectory-selection of (1.1) satisfying for any (t, s) ∈ I × S

x(s)(0) = a0(s), (x(s))′(0) = a1(s),

||x(s)(t) − y(s)(t)|| ≤M[c(s) + ||a0(s) − y(s)(0)|| + ||a1(s) − (y(s))′(0)|| +
∫ t

0
q(s)(u)du]. (2.5)

The proof of Theorem 2.3 may be found in [2].
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In what follows we assume that X = Rn.
A closed convex cone C ⊂ Rn is said to be regular tangent cone to the set X at x ∈ X ([10]) if there exists

continuous mappings qλ : C ∩ B→ Rn, ∀λ > 0 satisfying

lim
λ→0+

max
v∈C∩B

||qλ(v)||
λ

= 0,

x + λv + qλ(v) ∈ X ∀λ > 0, v ∈ C ∩ B,

where B is the closed unit ball in Rn.
From the multitude of the intrinsic tangent cones in the literature (e.g. [1]) the contingent, the quasitangent

and Clarke’s tangent cones, defines, respectively, by

KxX = {v ∈ Rn; ∃ sm → 0+, xm ∈ X : xm−x
sm
→ v}

QxX = {v ∈ Rn; ∀ sm → 0+,∃xm ∈ X : xm−x
sm
→ v}

CxX = {v ∈ Rn;∀ (xm, sm)→ (x, 0+), xm ∈ X, ∃ ym ∈ X : ym−xm

sm
→ v}

seem to be among the most oftenly used in the study of various problems involving nonsmooth sets and
mappings. We recall that, in contrast with KxX,QxX, the cone CxX is convex and one has CxX ⊂ QxX ⊂ KxX.

The results in the next section will be expressed, in the case when the mapping 1(.) : X ⊂ Rn → Rm is
locally Lipschitz at x, in terms of the Clarke generalized Jacobian, defined by ([9])

∂1(x) = co{lim
i→∞
1′(xi); xi → x, xi ∈ X\Ω1},

where Ω1 is the set of points at which 1 is not differentiable.
Corresponding to each type of tangent cone, say τxX one may introduce (e.g. [1]) a set-valued directional

derivative of a multifunction G(.) : X ⊂ Rn → P(Rn) (in particular of a single-valued mapping) at a point
(x, y) ∈ graph(G) as follows

τyG(x; v) = {w ∈ Rn; (v,w) ∈ τ(x,y)graph(G)}, ∈ τxX.

We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a convex (respectively, closed convex)
process if graph(A(.)) ⊂ Rn × Rn is a convex (respectively, closed convex) cone. For the basic properties of
convex processes we refer to [1], but we shall use here only the above definition.

Hypothesis 2.4. i) Hypothesis 2.1 is satisfied and X0,X1 ⊂ Rn are closed sets.
ii) (z(.), f (.)) ∈ C(I,Rn) × L1(I,Rn) is a trajectory-selection pair of (1.1) and a family P(t, .) : Rn → P(Rn), t ∈ I

of convex processes satisfying the condition

P(t,u) ⊂ Q f (t)F(t, .)(z(t); u) ∀ u ∈ dom(P(t, .)), a.e. t ∈ I (2.6)

is assumed to be given and defines the variational inclusion

(p(t)v′(t))′ ∈ P(t, v(t)). (2.7)

Remark 2.5. We note that for any set-valued map F(., .), one may find an infinite number of families of
convex processes P(t, .), t ∈ I, satisfying condition (2.6); in fact any family of closed convex subcones of the
quasitangent cones, P(t) ⊂ Q(z(t), f (t))1raph(F(t, .)), defines the family of closed convex processes

P(t,u) = {v ∈ Rn; (u, v) ∈ P(t)}, u, v ∈ Rn, t ∈ I

that satisfy condition (2.6). One is tempted, of course, to take as an ”intrinsic” family of such closed convex
process, for example Clarke’s convex-valued directional derivatives C f (t)F(t, .)(z(t); .).
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We recall (e.g. [1]) that, since F(t, .) is assumed to be Lipschitz a.e. on I, the quasitangent directional
derivative is given by

Q f (t)F(t, .)((z(t); u)) = {w ∈ Rn; lim
θ→0+

1
θ

d( f (t) + θw,F(t, z(t) + θu)) = 0}. (2.8)

In what follows B or BRn denotes the closed unit ball in Rn and 0n denotes the null element in Rn.
Consider h : Rn → Rm an arbitrary given function.

Definition 2.6. Inclusion (1.1) is said to be h-locally controllable around z(.) if h(z(T)) ∈ int(h(RF(T))).
Inclusion (1.1) is said to be locally controllable around the solution z(.) if z(T) ∈ int(RF(T)).

Finally a key tool in the proof of our results is the following generalization of the classical open mapping
principle due to Warga ([12]).

For k ∈ N we define

Σk := {γ = (γ1, ..., γk);
k∑

i=1

γi ≤ 1, γi ≥ 0, i = 1, 2, ..., k}.

Lemma 2.7. ([12]) Let δ ≤ 1, let 1(.) : Rn → Rm be a mapping that is C1 in a neighborhood of 0n containing δBRn .
Assume that there exists β > 0 such that for every θ ∈ δΣn, βBRm ⊂ 1′(θ)Σn. Then, for any continuous mapping
ψ : δΣn → Rm that satisfies supθ∈δΣn

||1(θ) − ψ(θ)|| ≤ δβ
32 we have ψ(0n) + δβ

16 BRm ⊂ ψ(δΣn).

3. The main result

In what follows we assume that Hypothesis 2.4 is satisfied, C0 is a regular tangent cone to X0 at z(0), C1
is a regular tangent cone to X1 at z′(0), denote by SP the set of all solutions of the differential inclusion

(p(t)v′(t))′ ∈ P(t, v(t)), v(0) ∈ C0, v′(0) ∈ C1

and by RP(T) = {x(T); x(.) ∈ SP} its reachable set at time T.

Theorem 3.1 Assume that Hypothesis 2.4 is satisfied and let h : Rn → Rm be a Lipschitz function with Lipschitz
constant l > 0.

Then inclusion (1.1) is h-locally controllable around the solution z(.) if

0m ∈ int(λRP(T)) ∀λ ∈ ∂h(z(T)). (3.1)

Proof. By (3.1), since λRP(T) is a convex cone, it follows that λRP(T) = Rm ∀λ ∈ ∂h(z(T)). Therefore
using the compactness of ∂h(z(T)) (e.g. [9]), we have that for every β > 0 there exist k ∈ N and u j ∈ RP(T)
j = 1, 2, ..., k such that

βBRm ⊂ λ(u(Σk)) ∀λ ∈ ∂h(z(T)), (3.2)

where

u(Σk) = {u(γ) :=
k∑

j=1

γ ju j, γ = (γ1, ..., γk) ∈ Σk}.

Using an usual separation theorem we deduce the existence of β1, ρ1 > 0 such that for all λ ∈ L(Rn,Rm)
with d(λ, ∂h(z(T))) ≤ ρ1 we have

β1BRm ⊂ λ(u(Σk)). (3.3)

Since u j ∈ RP(T), j = 1, ..., k, there exist (w j(.), 1 j(.)), j = 1, ..., k trajectory-selection pairs of (2.7) such that
u j = w j(T), j = 1, ..., k. We note that β > 0 can be taken small enough to provide ||w j(0)|| ≤ 1, j = 1, ..., k.
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Define

w(t, s) =
k∑

j=1

s jw j(t), 1(t, s) =
k∑

j=1

s j1 j(t), ∀s = (s1, ..., sk) ∈ Rk.

Obviously, w(., s) ∈ SP, ∀s ∈ Σk.
Taking into account the definition of C0 and C1 we conclude that for every ε > 0 there exists a continuous

mapping oε : Σk → Rn such that

z(0) + εw(0, s) + oε(s) ∈ X0, z′(0) + ε
∂w
∂t

(0, s) + oε(s) ∈ X1 (3.4)

lim
ε→0+

max
s∈Σk

||oε(s)||
ε

= 0. (3.5)

We recall that (z(.), f (.)) is a trajectory-selection pair of (1.1). Define

pε(s)(t) :=
1
ε

d(1(t, s),F(t, z(t) + εw(t, s)) − f (t)),

q(t) :=
k∑

j=1

[||1 j(t)|| + L(t)||w j(t)||], t ∈ I.

Then, for every s ∈ Σk one has

pε(s)(t) ≤ ||1(t, s)|| + 1
εdH(0n,F(t, z(t) + εw(t, s)) − f (t)) ≤ ||1(t, s)||+

1
εdH(F(t, z(t)),F(t, z(t) + εw(t, s))) ≤ ||1(t, s)|| + L(t)||w(t, s)|| ≤ q(t). (3.6)

Next, if s1, s2 ∈ Σk one has

|pε(s1)(t) − pε(s2)(t)| ≤ ||1(t, s1) − 1(t, s2)|| + 1
εdH(F(t, z(t) + εw(t, s1)),

F(t, z(t) + εw(t, s2))) ≤ ||s1 − s2||.max j=1,k[||1 j(t)|| + L(t)||w j(t)||],

thus pε(.)(t) is Lipschitz with a Lipschitz constant not depending on ε.
On the other hand, from (2.8) it follows that

lim
ε→0

pε(s)(t) = 0 a.e. (I), ∀s ∈ Σk

and hence
lim
ε→0+

max
s∈Σk

pε(s)(t) = 0 a.e. (I). (3.7)

Therefore, from (3.6), (3.7) and the Lebesgue dominated convergence theorem we obtain

lim
ε→0+

∫ T

0
max
s∈Σk

pε(s)(t)dt = 0. (3.8)

By (3.4), (3.5), (3.8) and the upper semicontinuity of the Clarke generalized Jacobian we can find ε0, e0 > 0
such that

max
s∈Σk

||oε0 (s)||
ε0

+

∫ T

0
max
s∈Σk

pε0 (s)(t)dt ≤
β1

28l2
, (3.9)

ε0w(T, s) ≤ e0

2
∀s ∈ Σk. (3.10)

If we define
y(s)(t) := z(t) + ε0w(t, s), 1(s)(t) := f (t) + ε01(t, s) s ∈ Rk,
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a0(s) := z(0) + ε0w(0, s) + oε0 (s), a1(s) := z′(0) + ε0
∂w
∂t

(0, s) + oε0 (s), s ∈ Rk,

then we apply Theorem 2.3 and we find that there exists a continuous function x(.) : Σk → C(I,Rn) such that
for any s ∈ Σk the function x(s)(.) is a solution of the differential inclusion (p(t)x′(t))′ ∈ F(t, x(t)), x(s)(0) =
a0(s), (x(s))′(0) = a1(s) ∀s ∈ Σk and one has

||x(s)(T) − y(s)(T)|| ≤
ε0β1

26l
∀s ∈ Σk. (3.11)

We define

h0(x) :=
∫

Rn
h(x − by)χ(y)dy, x ∈ Rn,

ϕ(s) := h0(z(T) + ε0w(T, s)),

where χ(.) : Rn → [0, 1] is a C∞ function with the support contained in BRn that satisfies
∫

Rn χ(y)dy = 1 and

b = min{ e0
2 ,

ε0β1

26l }.
Therefore h0(.) is of class C∞ and verifies

||h(x) − h0(x)|| ≤ lb, (3.12)

h′0(x) =
∫

Rn
h′(x − by)χ(y)dy. (3.13)

In particular,
h′0(x) ∈ co{h′(u); ||u − x|| ≤ b, h′(u) exists},
ϕ′(s)µ = h′0(z(T) + ε0w(T, s))ε0w(T, µ) ∀µ ∈ Σk.

Let us denote
λ(s) := h′0(z(T) + ε0w(T, s)).

Therefore, ϕ′(s)µ = λ(s)ε0w(T, µ) ∀µ ∈ Σk.
Using again the upper semicontinuity of the Clarke generalized Jacobian we obtain

d(λ(s), ∂h(z(T))) = d(h′0(z(T) + ε0w(T, s)), ∂h(z(T))) ≤ sup{d(h′0(u), ∂h(z(T)));
||u − z(t)|| ≤ ||u − (z(T) + ε0w(T, s))|| + ||ε0w(t, s)|| ≤ e0, h′(u) exists} < ρ1.

The last inequality with (3.3) gives
β1BRm ⊂ λ(s)u(Σk).

and thus
ε0β1BRm ⊂ λ(s)ε0u(Σk) = λ(s)ε0w(T, µ) = ϕ′(s)µ, ∀µ ∈ Σk,

i.e.,
ε0β1BRm ⊂ ϕ′(s)Σk.

Finally, for s ∈ Σk, we put ψ(s) = h(x(s)(T)).
Obviously, ψ(.) is continuous and from (3.11), (3.12), (3.13) one has

||ψ(s) − ϕ(s)|| = ||h(x(s)(T)) − h0(y(s)(T))|| ≤ ||h(x(s)(T)) − h(y(s)(T))|| + ||h(y(s)(T)) − h0(y(s)(T))||
≤ l||x(s)(T) − y(s)(T)|| + lb ≤

ε0β1

64
+
ε0β1

64
=
ε0β1

32
.

We apply Lemma 2.7 and we find that

h(x(0k)(T)) +
ε0β1

16
BRm ⊂ ψ(Σk) ⊂ h(RF(T)).

On the other hand, ||h(z(T))−h(x(0k)(T))|| ≤ ε0β1

64 , so we have h(z(T)) ∈ int(h(RF(T))) and the proof is complete.

Remark 3.2. If m = n and h(x) ≡ x, Theorem 3.1 yields Theorem 3.4 in [7].
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