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On hereditarily normal rectifiable spaces
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Abstract. We show, modifying very slightly the proofs of the recent results of R. Buzyakova [5] about
topological groups, that all assertions in [5] are valid in the more general class of rectifiable spaces.

Recall that a topological group G is a group G with a (Hausdorff) topology such that the product maps
of G X G into G is jointly continuous and the inverse map of G onto itself associating x! with arbitrary
x € G is continuous. A paratopological group G is a group G with a topology such that the product maps of
G x G into G is jointly continuous. A topological space G is said to be a rectifiable space provided that there
exists a homeomorphism ¢ : GXG — G X G and an element e € G such that 1y o ¢ = m; and for every x € G
we have ¢(x,x) = (x,¢), where 111 : G X G — G is the projection to the first coordinate. If G is a rectifiable
space, then ¢ is called a rectification on G. It is well known that rectifiable spaces are good generalization of
topological groups. In fact, for a topological group with the neutral element ¢, then it is easy to see that the
map ¢(x,y) = (x,x"'y) is a rectification on G. However, there exists a paratopological group which is not
a rectifiable space. The Sorgenfrey line ([6, Example 1.2.2] ) is such an example. Also, the 7-dimensional
sphere Sy is a rectifiable space but not a topological group [12]. Further, it is easy to see that paratopological
groups and rectifiable spaces are all homogeneous. A series of results on rectifiable spaces have recently
been obtained in [1, 2, 8-11].

Theorem 1. ([9]) A topological space G is a rectifiable space if and only if there exist e € G and two continuous maps
p:GxG— G,q:GxG — Gsuch that for any x € G, y € G the next identities hold:

p(x, q(x, y) = q(x,p(x, y)) =y and q(x,x) =e.

In fact, we can assume that p = 7 0 ¢! and g = 7, o ¢ in Theorem 1. Fixing a point x € G, we get that the
maps fy,gx : G = G defined by f.(y) = p(x, v) and g«(y) = q(x, y) for each y € G, are homeomorphisms.

The above map p : G X G — G will be called multiplication on G. Let G be a rectifiable space, and let p
be the multiplication on G. We will write x - y instead of p(x, y) and A - B instead of p(A, B) forany A, B C G.
Therefore, q(x, y) is an element such that x - g(x, y) = y. Since x - e = x - g(x, x) = x and x - g(x, e) = ¢, it follows
that e is a right neutral element for G and g(x, e) is a right inverse for x.
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A space has a Gs-diagonal if the diagonal A = {(g, g) : g € G} is the intersection of a countable family of its
open neighborhoods in G X G. The diagonal number A(G) is the minimal cardinality of a family of open sets
of G X G such that the intersection of its elements is the diagonal A = {(g,9) € G X G : g € G}. A non-trivial
convergent sequence means a subspace which is homeomorphic to the reals {0} U {1/n:n =1,2,3,...}. All
spaces are assumed to be T7. The letter ¢ will always denote the right neutral element of a rectifiable space,
(G) will denote the pseudocharacter of a space G.

Now, we recall an important result which is due to A.S. Gul’ko [7].

Theorem 2. ([7]) Let G be a rectifiable space. Then Y(G) = A(G).

Using Theorems 1 and 2, one can easily modify the proofs of all assertions from [6] for extending them
to the class of rectifiable spaces.

Theorem 3. A hereditarily normal rectifiable space with a non-trivial convergent sequence has a Gs-diagonal.

Corollary 4. Every countably compact subspace of a hereditarily normal rectifiable space G that contains a non-trivial
convergent sequence is metrizable.

Corollary 5. Every countably compact hereditarily normal rectifiable space that contains a non-trivial convergent
sequence is metrizable.

Corollary 6. Assume the Proper Forcing Axiom. Then every countably compact hereditarily normal rectifiable space
G is metrizable.

Lemma 7. Let G be a hereditarily normal rectifiable space and let S and T be compact subspaces of G. Suppose that S
is separable, s is a limit point of S, e € T and e has uncountable character in T. Then there exists a compactum C C T
such that e € G, e has uncountable character in Cands-C C S.

Theorem 8. Every compact subset of a hereditarily normal rectifiable space is metrizable.

Theorem 9. Let G be a hereditarily normal rectifiable space. Then either G has a non-trivial convergent sequence
and a Gs-diagonal, or G has no non-trivial convergent sequences and every compact subset of G is finite. In either
case, every compact subset of G is metrizable.

Since a monotonically normal space is hereditarily normal and a generalized order space (GO-space) is
monotonically normal, we have the following two corollaries.

Corollary 10. Let G be a monotonically normal rectifiable space. Then every compact subset of G is metrizable.
Corollary 11. Let G be a rectifiable space which is a GO-space. Then every compact subset of G is metrizable.

Since the Sorgenfrey line is a hereditarily normal paratopological group and every compact subset is
metrizable, we have the following open question.

Question 12. Let G be a hereditarily normal(or even monotonically normal) paratopological group. Is every compact
subset of G metrizable?

A space X is called to be a rotoid space if there is a special point e € X and a homeomorphism H from X?
onto itself with the following properties:

(1) for each x € X, H(x, x) = (x,¢), and;

(2) for each x € X, H(e, x) = (e, x).

Obviously, each rectifiable space is rotoid. Moreover, the Sorgenfrey line is a rotoid [5]. Therefore, we
have the following question.

Question 13. Let G be a hereditarily normal (or even monotonically normal) rotoid space. Is every compact subset
of G metrizable?
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A space X is called to be a Choban space if there is a special point ¢ € X and a continuous function H

from X? to X with the following properties:

(1) for each x € X, H(x, x) = ¢, and;
(2) for each x € X, the function H maps the subspace Vert(x)={x} x X of X* onto X in a one-to-one way.
Obviously, each rectifiable space is also a Choban space. Moreover, the Sorgenfrey line is a Choban space

[4]. Therefore, we have the following question.

Question 14. Let G be a hereditarily normal (or even monotonically normal) Choban space. Is every compact subset

of G metrizable?
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