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Abstract. We show, modifying very slightly the proofs of the recent results of R. Buzyakova [5] about
topological groups, that all assertions in [5] are valid in the more general class of rectifiable spaces.

Recall that a topological group G is a group G with a (Hausdorff) topology such that the product maps
of G × G into G is jointly continuous and the inverse map of G onto itself associating x−1 with arbitrary
x ∈ G is continuous. A paratopological group G is a group G with a topology such that the product maps of
G×G into G is jointly continuous. A topological space G is said to be a rectifiable space provided that there
exists a homeomorphism φ : G×G→ G×G and an element e ∈ G such that π1 ◦φ = π1 and for every x ∈ G
we have φ(x, x) = (x, e), where π1 : G × G → G is the projection to the first coordinate. If G is a rectifiable
space, then φ is called a rectification on G. It is well known that rectifiable spaces are good generalization of
topological groups. In fact, for a topological group with the neutral element e, then it is easy to see that the
map φ(x, y) = (x, x−1y) is a rectification on G. However, there exists a paratopological group which is not
a rectifiable space. The Sorgenfrey line ([6, Example 1.2.2] ) is such an example. Also, the 7-dimensional
sphere S7 is a rectifiable space but not a topological group [12]. Further, it is easy to see that paratopological
groups and rectifiable spaces are all homogeneous. A series of results on rectifiable spaces have recently
been obtained in [1, 2, 8–11].

Theorem 1. ([9]) A topological space G is a rectifiable space if and only if there exist e ∈ G and two continuous maps
p : G × G→ G, q : G × G→ G such that for any x ∈ G, y ∈ G the next identities hold:

p(x, q(x, y)) = q(x, p(x, y)) = y and q(x, x) = e.

In fact, we can assume that p = π2 ◦ φ−1 and q = π2 ◦ φ in Theorem 1. Fixing a point x ∈ G, we get that the
maps fx, 1x : G→ G defined by fx(y) = p(x, y) and 1x(y) = q(x, y) for each y ∈ G, are homeomorphisms.

The above map p : G × G→ G will be called multiplication on G. Let G be a rectifiable space, and let p
be the multiplication on G. We will write x · y instead of p(x, y) and A · B instead of p(A,B) for any A,B ⊂ G.
Therefore, q(x, y) is an element such that x · q(x, y) = y. Since x · e = x · q(x, x) = x and x · q(x, e) = e, it follows
that e is a right neutral element for G and q(x, e) is a right inverse for x.
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A space has a Gδ-diagonal if the diagonal△ = {(1, 1) : 1 ∈ G} is the intersection of a countable family of its
open neighborhoods in G×G. The diagonal number △(G) is the minimal cardinality of a family of open sets
of G × G such that the intersection of its elements is the diagonal △ = {(1, 1) ∈ G × G : 1 ∈ G}. A non-trivial
convergent sequence means a subspace which is homeomorphic to the reals {0} ∪ {1/n : n = 1, 2, 3, . . .}. All
spaces are assumed to be T1. The letter e will always denote the right neutral element of a rectifiable space,
ψ(G) will denote the pseudocharacter of a space G.

Now, we recall an important result which is due to A.S. Gul’ko [7].

Theorem 2. ([7]) Let G be a rectifiable space. Then ψ(G) = ∆(G).

Using Theorems 1 and 2, one can easily modify the proofs of all assertions from [6] for extending them
to the class of rectifiable spaces.

Theorem 3. A hereditarily normal rectifiable space with a non-trivial convergent sequence has a Gδ-diagonal.

Corollary 4. Every countably compact subspace of a hereditarily normal rectifiable space G that contains a non-trivial
convergent sequence is metrizable.

Corollary 5. Every countably compact hereditarily normal rectifiable space that contains a non-trivial convergent
sequence is metrizable.

Corollary 6. Assume the Proper Forcing Axiom. Then every countably compact hereditarily normal rectifiable space
G is metrizable.

Lemma 7. Let G be a hereditarily normal rectifiable space and let S and T be compact subspaces of G. Suppose that S
is separable, s is a limit point of S, e ∈ T and e has uncountable character in T. Then there exists a compactum C ⊂ T
such that e ∈ G, e has uncountable character in C and s · C ⊂ S.

Theorem 8. Every compact subset of a hereditarily normal rectifiable space is metrizable.

Theorem 9. Let G be a hereditarily normal rectifiable space. Then either G has a non-trivial convergent sequence
and a Gδ-diagonal, or G has no non-trivial convergent sequences and every compact subset of G is finite. In either
case, every compact subset of G is metrizable.

Since a monotonically normal space is hereditarily normal and a generalized order space (GO-space) is
monotonically normal, we have the following two corollaries.

Corollary 10. Let G be a monotonically normal rectifiable space. Then every compact subset of G is metrizable.

Corollary 11. Let G be a rectifiable space which is a GO-space. Then every compact subset of G is metrizable.

Since the Sorgenfrey line is a hereditarily normal paratopological group and every compact subset is
metrizable, we have the following open question.

Question 12. Let G be a hereditarily normal(or even monotonically normal) paratopological group. Is every compact
subset of G metrizable?

A space X is called to be a rotoid space if there is a special point e ∈ X and a homeomorphism H from X2

onto itself with the following properties:
(1) for each x ∈ X, H(x, x) = (x, e), and;
(2) for each x ∈ X, H(e, x) = (e, x).
Obviously, each rectifiable space is rotoid. Moreover, the Sorgenfrey line is a rotoid [5]. Therefore, we

have the following question.

Question 13. Let G be a hereditarily normal (or even monotonically normal) rotoid space. Is every compact subset
of G metrizable?
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A space X is called to be a Choban space if there is a special point e ∈ X and a continuous function H
from X2 to X with the following properties:

(1) for each x ∈ X, H(x, x) = e, and;
(2) for each x ∈ X, the function H maps the subspace Vert(x)={x} × X of X2 onto X in a one-to-one way.
Obviously, each rectifiable space is also a Choban space. Moreover, the Sorgenfrey line is a Choban space

[4]. Therefore, we have the following question.

Question 14. Let G be a hereditarily normal (or even monotonically normal) Choban space. Is every compact subset
of G metrizable?
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