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Abstract. We deduce coincidence and fixed point theorems under generalized weakly contractive condi-
tions in G-metric spaces equipped with partial order. We furnish examples to demonstrate the usage of the
results and to distinguish them from the known ones.

1. Introduction

In 2004, Mustafa in collaboration with Sims introduced a new notion of generalized metric space called
G-metric space [1, 2]. This is a generalization of metric spaces in which to every triplet of elements a
non-negative real number is assigned. Analysis of the structure of these spaces was done in details in
[2]. Fixed point theory in such spaces was studied in [3]–[5]. Particularly, Banach contraction mapping
principle was established in these works. After that several fixed point results were proved in these spaces
(see, e.g., [6]–[11]).

Recently, fixed point theory has developed rapidly in partially ordered metric spaces, that is, metric
spaces endowed with a partial ordering. The first result in this direction was given by Ran and Reurings [12,
Theorem 2.1] who presented its applications to matrix equation. Subsequently, Nieto and Rodrı́guez-López
[13] extended this result for nondecreasing mappings and applied it to obtain a unique solution for a first
order ordinary differential equation with periodic boundary conditions. Further results were obtained, e.g.,
in [14]–[19].

Fixed point results in partially ordered G-metric spaces were obtained by, e.g., Saadati et al. [20],
Shatanawi [21], and Abbas et al. [22].

In this article we deduce coincidence and fixed point theorems under generalized weakly contractive
conditions in ordered G-metric spaces. Our results are extensions of the results of, e.g., Harjani and
Sadarangani [15, 16], as well as Aydi et al. [9], Shatanawi [11] and other related papers, in the sense that
the considered contractive condition is more general, and the problem is treated in the frame of ordered
generalized metric spaces. We furnish examples to demonstrate the validity of the results and that these
extensions are proper.

2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25
Keywords. G-metric space, weakly contractive condition, altering distance function, partially ordered set.
Received: 28 September 2012; Accepted: 15 February 2013
Communicated by Dejan B. Ilić
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2. Preliminaries

For more details on the following definitions and results, we refer the reader to [2].

Definition 2.1. [2] Let X be a nonempty set and let G : X × X × X → R+ be a function satisfying the following
properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y) for all x, y ∈ X with x , y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z , y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X,G) is called a G-metric space.

Definition 2.2. [2] Let (X,G) be a G-metric space and let {xn} be a sequence of points in X.

1. A point x ∈ X is said to be the limit of sequence {xn} if limn,m→∞G(x, xn, xm) = 0, and one says that the sequence
{xn} is G-convergent to x.

2. The sequence {xn} is said to be a G-Cauchy sequence if, for every ε > 0, there is a positive integer N such that
G(xn, xm, xl) < ε, for all n,m, l ≥ N; that is, if G(xn, xm, xl)→ 0, as n,m, l→∞.

3. (X,G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in (X,G) is G-
convergent in X.

Thus, if xn → x in a G-metric space (X,G), then for any ε > 0, there exists a positive integer N such that
G(x, xn, xm) < ε, for all n,m ≥ N. It was shown in [2] that the G-metric induces a Hausdorff topology and
that the convergence, as described in the above definition, is relative to this topology. The topology being
Hausdorff, a sequence can converge to at most one point.

Lemma 2.3. [2] Let (X,G) be a G-metric space, {xn} a sequence in X and x ∈ X. Then the following are equivalent:

(1) {xn} is G-convergent to x.
(2) G(xn, xn, x)→ 0, as n→∞.
(3) G(xn, x, x)→ 0, as n→∞.

Lemma 2.4. [2] If (X,G) is a G-metric space, then the following are equivalent:

(1) The sequence {xn} is G-Cauchy.
(2) For every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε, for all n,m ≥ N.

Lemma 2.5. [2] Let (X,G), (X′,G′) be two G-metric spaces. Then a function f : X→ X′ is G-continuous at a point
x ∈ X if and only if it is G-sequentially continuous at x, that is, if { f xn} is G′-convergent to f x whenever {xn} is
G-convergent to x.

Definition 2.6. [2] A G-metric space (X,G) is said to be symmetric if

G(x, x, y) = G(x, y, y)

holds for arbitrary x, y ∈ X. If this is not the case, the space is called asymmetric.

To every G-metric on the set X a standard metric can be associated by

dG(x, y) = G(x, x, y) + G(x, y, y).

If G is symmetric, then obviously dG(x, y) = 2G(x, y, y), but in the case of an asymmetric G-metric, only

3
2

G(x, y, y) ≤ dG(x, y) ≤ 3G(x, y, y)

holds for all x, y, z ∈ X.
The following are some easy examples of G-metric spaces.
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Example 2.7. (1) Let (X, d) be an ordinary metric space. Define Gs by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ X. Then it is clear that (X,Gs) is a (symmetric) G-metric space.
(2) Let X = {a, b}. Define

G(a, a, a) = G(b, b, b) = 0, G(a, a, b) = 1, G(a, b, b) = 2,

and extend G to X×X×X by using the symmetry in the variables. Then it is clear that (X,G) is an asymmetric
G-metric space.

Assertions similar to the following lemma were used in the frame of metric spaces in the course of
proofs of several fixed point results in various papers (see, e.g., [23, Lemma 2.1]).

Lemma 2.8. Let (X,G) be a G-metric space and let {yn} be a sequence in X such that {G(yn, yn+1, yn+1)} is non-
increasing and

lim
n→∞

G(yn, yn+1, yn+1) = 0.

If {yn} is not a Cauchy sequence in (X,G), then there exist ε > 0 and two sequences {mk} and {nk} of positive integers
such that nk > mk > k and the following four sequences tend to ε when k→∞:

G(y2mk , y2nk , y2nk ), G(y2mk , y2nk−1, y2nk−1), G(y2mk+1, y2nk , y2nk ), G(y2nk−1, y2mk+1, y2mk+1).

Proof. Suppose that {y2n} is not a Cauchy sequence in (X,G). Then there exists ε > 0 and sequences {mk} and
{nk} of positive integers such that nk > mk > k and G(y2mk , y2nk , y2nk ) ≥ ε, and they can be chosen so that nk is
always the smallest possible, i.e., G(y2mk , y2nk−2, y2nk−2) < ε. Now, applying (G5) we get that

ε ≤ G(y2mk , y2nk , y2nk ) ≤ G(y2mk , y2nk−2, y2nk−2) + G(y2nk−2, y2nk−1, y2nk−1) + G(y2nk−1, y2nk , y2nk )
< ε + G(y2nk−2, y2nk−1, y2nk−1) + G(y2nk−1, y2nk , y2nk ).

Passing to the limit as k→∞ we get that limk→∞G(y2mk , y2nk , y2nk ) = ε.
Now, again by (G5), we have that

G(y2mk , y2nk , y2nk ) ≤ G(y2mk , y2nk−1, y2nk−1) + G(y2nk−1, y2nk , y2nk ),
G(y2mk , y2nk−1, y2nk−1) ≤ G(y2mk , y2nk , y2nk ) + G(y2nk , y2nk−1, y2nk−1).

Passing to the limit as k→∞ we get that limk→∞G(y2mk , y2nk−1, y2nk−1) = ε
The proof for the remaining two sequences is similar.

Definition 2.9. Let X be a nonempty set. Then (X,G,≼) is called an ordered G-metric space if:

(i) (X,G) is a G-metric space, and

(ii) (X,≼) is a partially ordered set.

Let (X,≼) be a partially ordered set. Recall that x, y ∈ X are called comparable if x ≼ y or y ≼ x holds.
If S,T : X → X are such that, for x, y ∈ X, Sx ≼ Sy implies Tx ≼ Ty, then T is said to be S-non-decreasing.
Similarly, an S-non-increasing mapping is defined.

Definition 2.10. Let (X,G,≼) be a partially ordered G-metric space. We say that (X,G,≼) is regular if the following
hypotheses hold:

(i) if a non-decreasing sequence {xn} is such that xn → x as n→∞, then xn ≼ x for all n ∈N,
(ii) if a non-increasing sequence {yn} is such that yn → y as n→∞, then yn ≽ y for all n ∈N.
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Definition 2.11. [24]. A function ψ : [0,+∞) → [0,+∞) is called an altering distance function if the following
properties are satisfied:

(i) ψ is continuous and non-decreasing,
(ii) ψ(t) = 0 if and only if t = 0.

Recall also the following notions. Let X be a non-empty set and S,T : X → X be given self-maps on X.
If w = Sx = Tx for some x ∈ X, then x is called a coincidence point of S and T, and w is called a point of
coincidence of S and T. The pair {S,T} is said to be weakly compatible if STx = TSx, whenever Tx = Sx for
some x in X. We will use the following version of compatibility of these maps in a G-metric space.

Definition 2.12. Mappings S,T : X→ X are said to be compatible in a G-metric space (X,G) if

G(TSxn,STxn, STxn)→ 0 as n→∞,

whenever {xn} is a sequence in X such that limn→∞ Txn = limn→∞ Sxn in (X,G).

It is easy to see that S and T are compatible in (X,G) if and only if they are compatible in the associated
metric space (X, dG).

3. Results

Our first main result is the following theorem.

Theorem 3.1. Let (X,G,≼) be a complete ordered G-metric space. Let φ : [0,+∞) → [0,+∞) be a continuous
function with φ(t) = 0 if and only if t = 0 and let ψ be an altering distance function. Suppose that S,T : X→ X are
such that T is S-non-decreasing, TX ⊂ SX and one of these two subsets of X is closed. Let

ψ(G(Tx,Ty,Tz)) ≤ ψ(Θ(x, y, z)) − φ(θ(x, y, z)), (1)

where

Θ(x, y, z) = max
{
G(Sx,Sy,Sz),G(Sx,Tx,Tx),G(Sy,Ty,Ty),G(Sz,Tz,Tz),

1
2

[G(Sx,Ty,Ty) + G(Sy,Tx,Tx)],
1
2

[G(Sy,Tz,Tz) + G(Sz,Ty,Ty)],

1
2

[G(Sx,Tz,Tz) + G(Sz,Tx,Tx)],

1
3

[G(Sx,Ty,Ty) + G(Sy,Tz,Tz) + G(Sz,Tx,Tx)]
}

(2)

and

θ(x, y, z) = max{G(Sx, Sy,Sz),G(Sx,Tx,Tx),G(Sy,Ty,Ty),G(Sz,Tz,Tz)} (3)

for all x, y, z ∈ X with Sz ≼ Sy ≼ Sx. In addition, we assume that

(i) S and T are continuous and compatible in the sense of Definition 2.12, or

(ii) X is regular.

If there exists an x0 ∈ X such that Sx0 ≼ Tx0, then T and S have a coincidence point; that is, there exists z ∈ X such
that Sz = Tz.

Remark 3.2. The result of this theorem remains valid if the function φ is only lower semi-continuous. For the sake
of simplicity, we stay with the given assumptions.
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Proof. Let x0 ∈ X be such that Sx0 ≼ Tx0. Using that TX ⊂ SX, choose an x1 ∈ X such that Sx0 ≺ Tx0 = Sx1.
Since T is an S-non-decreasing mapping, we have Sx0 ≺ Sx1 = Tx0 ≼ Tx1. Continuing this process, we can
construct a sequence {xn} in X such that Sxn+1 = Txn with

Sx0 ≺ Sx1 ≼ Sx2 ≼ · · · ≼ Sxn ≼ Sxn+1 ≼ · · · .
If Sxn0 = Sxn0+1 = Txn0 for some n0 ∈ {0, 1, 2, . . . }, then xn0 is a coincidence point of S and T and the proof is
completed. Thus we shall assume that

G(Sxn+1,Sxn+2,Sxn+2) > 0 (4)

for all n ≥ 1.
We first prove that limn→∞G(Sxn+1,Sxn+2,Sxn+2) = 0.
Since Sxn ≼ Sxn+1 ≼ Sxn+1, we can use (1) for the points xn, xn+1, xn+1. We have, for n ≥ 1

Θ(xn, xn+1, xn+1)
= max{G(Sxn, Sxn+1,Sxn+1),G(Sxn,Txn,Txn),G(Sxn+1,Txn+1,Txn+1),G(Sxn+1,Txn+1,Txn+1),

1
2

[G(Sxn,Txn+1,Txn+1) + G(Sxn+1,Txn,Txn)],

1
2

[G(Sxn+1,Txn+1,Txn+1) + G(Sxn+1,Txn+1,Txn+1)],

1
2

[G(Sxn,Txn+1,Txn+1) + G(Sxn+1,Txn,Txn)],

1
3

[G(Sxn,Txn+1,Txn+1) + G(Sxn+1,Txn+1,Txn+1) + G(Sxn+1,Txn,Txn)]}

= max{G(Sxn, Sxn+1,Sxn+1),G(Sxn+1,Sxn+2,Sxn+2),
1
2

G(Sxn,Sxn+2,Sxn+2),

1
3

[G(Sxn,Sxn+2,Sxn+2) + G(Sxn+1,Sxn+2,Sxn+2)]}.

By (G5) we have

G(Sxn,Sxn+2,Sxn+2) ≤ G(Sxn, Sxn+1, Sxn+1) + G(Sxn+1,Sxn+2,Sxn+2).

Thus

Θ(xn, xn+1, xn+1) = θ(xn, xn+1, xn+1)
= max{G(Sxn, Sxn+1, Sxn+1),G(Sxn+1,Sxn+2,Sxn+2)}.

From (1) we have

ψ(G(Sxn+1,Sxn+2,Sxn+2)) = ψ(G(Txn,Txn+1,Txn+1))
≤ ψ(Θ(xn, xn+1, xn+1)) − φ(θ(xn, xn+1, xn+1))
= ψ(max{G(Sxn,Sxn+1, xn+1),G(Sxn+1, Sxn+2, Sxn+2)})
− φ(max{G(Sxn,Sxn+1,Sxn+1),G(Sxn+1,Sxn+2,Sxn+2)}). (5)

We claim that

G(Sxn+1,Sxn+2,Sxn+2) ≤ G(Sxn,Sxn+1,Sxn+1) (6)

for all n ≥ 1. Suppose this is not true, that is, there exists an n0 ≥ 1 such that G(Sxn0+1,Sxn0+2,Sxn0+2) >
G(Sxn0 ,Sxn0+1,Sxn0+1). Now since Sxn0 ≼ Sxn0+1 ≼ Sxn0+1, we can use inequality (5) for these elements, and
we have

ψ(G(Sxn0+1,Sxn0+2,Sxn0+2)) ≤ ψ(max{G(Sxn0 ,Sxn0+1,Sxn0+1),G(Sxn0+1,Sxn0+2, Sxn0+2)})
− φ(max{G(Sxn0 ,Sxn0+1,Sxn0+1),G(Sxn0+1,Sxn0+2,Sxn0+2)})
= ψ(G(Sxn0+1,Sxn0+2,Sxn0+2)) − φ(G(Sxn0+1,Sxn0+2,Sxn0+2)).
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This implies thatφ(G(Sxn0+1,Sxn0+2,Sxn0+2)) = 0 and by the property ofφ, we have G(Sxn0+1,Sxn0+2,Sxn0+2) =
0, which contradicts to the condition (4). Therefore, (6) is true and so the sequence {G(Sxn,Sxn+1,Sxn+1)} is
non-increasing and bounded below. Thus there exists ρ ≥ 0 such that

lim
n→∞

G(Sxn,Sxn+1,Sxn+1) = ρ. (7)

Now suppose that ρ > 0. Taking n→∞ in (5), then using (7) and the continuity of ψ and φ, we obtain

ψ(ρ) ≤ ψ(ρ) − φ(ρ).

Therefore ψ(ρ) = 0 and hence ρ = 0. Thus

lim
n→∞

G(Sxn,Sxn+1,Sxn+1) = 0.

We will prove now that {Sxn} is a G-Cauchy sequence in X. Suppose this is not the case. Then, by Lemma
2.8, there exist ε > 0 and two sequences {mk} and {nk} of positive integers such that the sequences

G(Sx2mk ,Sx2nk ,Sx2nk ), G(Sx2mk ,Sx2nk−1,Sx2nk−1), G(Sx2mk+1,Sx2nk ,Sx2nk ), G(Sx2nk−1,Sx2mk+1,Sx2mk+1).

tend to ε when k → ∞. Now, from the definitions of Θ(x, y, z) and θ(x, y, z), and from the obtained limits,
we have

lim
k→∞
Θ(x2mk , x2nk−1, x2nk−1) = lim

k→∞
θ(x2mk , x2nk−1, x2nk−1) = ε. (8)

Putting x = x2mk , y = x2nk−1, z = x2nk−1 in (1) (which can be done since the sequence {Sxn} is monotone) we
have

ψ(G(Sx2mk+1,Sx2nk ,Sx2nk )) = ψ(G(Tx2mk ,Tx2nk−1,Tx2nk−1))
≤ ψ(Θ(x2mk , x2nk−1, x2nk−1)) − φ(θ(x2mk , x2nk−1, x2nk−1)).

Letting k→∞, utilizing (8) and the obtained limits, we get

ψ(ε) ≤ ψ(ε) − φ(ε),

which is a contradiction if ε > 0. We have proved that {Sxn} is a Cauchy sequence in (X,G). Suppose, e.g.,
that SX is complete (if TX is complete, the proof is similar). Then there exists an Sz ∈ SX such that

lim
n→∞

Sxn = Sz. (9)

Suppose that (i) holds. We have that Sxn+1 = Txn is a sequence, G-convergent to Sz. Hence, G(Txn,Sz, Sz)→
0 and G(Sxn,Sz,Sz)→as n→∞. Compatibility of S and T (Definition 2.12) implies that G(TSxn,STxn,STxn)→
0 as n→∞. It follows (using (G5) and continuity of S and T) that

G(TSz,SSz,SSz) ≤ G(TSz,TSxn,TSxn) + G(TSxn,SSz,SSz)
≤ G(TSz,TSxn,TSxn) + G(TSxn,STxn,STxn) + G(STxn,SSz,SSz)
→ 0, as n→∞.

Thus, TSz = SSz and Sz is a coincidence point of S and T.
Suppose that (ii) holds. Since {Sxn} is a non-decreasing sequence such that Sxn → Sz and X is regular, it

follows that Sxn ≼ Sz ≼ Sz for all n ∈N. Therefore, we can apply (1) to get

ψ(G(Sxn+1,Tz,Tz)) = ψ(G(Txn,Tz,Tz)) ≤ ψ(Θ(xn, z, z)) − φ(θ(xn, z, z)), (10)
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where

Θ(xn, z, z) = max{G(Sxn,Sz,Sz),G(Sxn,Txn,Txn),G(Sz,Tz,Tz),G(Sz,Tz,Tz),
1
2

[G(Sxn,Tz,Tz) + G(Sz,Txn,Txn)],
1
2

[G(Sz,Tz,Tz) + G(Sz,Tz,Tz)],

1
2

[G(Sz,Txn,Txn) + G(Sxn,Tz,Tz)],

1
3

[G(Sxn,Tz,Tz) + G(Sz,Tz,Tz) + G(Sz,Txn,Txn)]}

= max{G(Sxn,Sz,Sz),G(Sxn,Sxn+1, Sxn+1),G(Sz,Tz,Tz),
1
2

[G(Sxn,Tz,Tz) + G(Sz,Sxn+1,Sxn+1)],

1
3

[G(Sxn,Tz,Tz) + G(Sz,Tz,Tz) + G(Sz,Sxn+1,Sxn+1)]}, (11)

and

θ(xn, z, z) = max{G(Sxn,Sz,Sz),G(Sxn,Sxn+1,Sxn+1),G(Sz,Tz,Tz)}. (12)

Letting n → ∞ in inequality (10) and using (9), (11), (12) and the fact that G is continuous in its variables,
we obtain

ψ(G(Sz,Tz,Tz)) ≤ ψ(G(Sz,Tz,Tz)) − φ(G(Sz,Tz,Tz)).

This implies that φ(G(Sz,Tz,Tz)) = 0 and hence Sz = Tz. Thus z is a coincidence point of S and T.

Remark 3.3. Theorem 3.1 is also true if Θ(x, y, z) and θ(x, y, z) are replaced, respectively, by

Θ1(x, y, z) = max{G(Sx,Sy,Sz),G(Sx,Sx,Tx),G(Sy,Sy,Ty),G(Sz,Sz,Tz),
1
2

[G(x, y,Ty) + G(y, x,Tx)],
1
2

[G(y, z,Tz) + G(z, y,Ty)],
1
2

[G(x, z,Tz) + G(z, x,Tx)],

1
3

[G(x, y,Ty) + G(y, z,Tz) + G(z, x,Tx)]}

and

θ1(x, y, z) = max{G(Sx,Sy,Sz),G(Sx,Sx,Tx),G(Sy,Sy,Ty),G(Sz,Sz,Tz)},

and condition (1) by

ψ(G(Tx,Ty,Tz)) ≤ ψ(Θ1(x, y, z)) − φ(θ1(x, y, z))).

We demonstrate the usage of Theorem 3.1 by the following

Example 3.4. Let X = {0, 1, 2} and G : X3 → R+ be given as

G(x, y, z) =


0, if x = y = z,
1, if (x, y, z) ∈ {(0, 0, 1), (0, 1, 1), (0, 2, 2), (1, 2, 2)},
2, if (x, y, z) ∈ {(0, 0, 2), (1, 1, 2), (0, 1, 2)},

and extended by symmetry. Then it is easy to check that X is a G-metric space which is asymmetric since,
e.g., G(0, 0, 2) , G(0, 2, 2). Define an order relation ≼ by x ≼ y ⇔ x ≤ y and mappings S,T : X → X and
functions ψ,φ : [0,+∞)→ [0,∞) by

S :
(
0 1 2
0 1 2

)
, T :

(
0 1 2
0 0 1

)
, ψ(t) = 2t, φ(t) =

t
2
.
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Then T is S-non-decreasing, TX ⊂ SX, and the space (X,G,≼) is regular. In order to check the contractive
condition (1), consider the following possible cases.

1. If x = y = z or x, y, z ∈ {0, 1}, then G(Tx,Ty,Tz) = 0 and inequality (1) is trivial.
In all other cases G(Tx,Ty,Tz) = 1 and ψ(G(Tx,Ty,Tz)) = 2.
2. If (x, y, z) ∈ {(0, 2, 2), (1, 2, 2), . . . } (. . . stays for permutations), then at least one of x, y, z is equal to 2.

Let, e.g., y = 2. Then G(Sy,Ty,Ty) = G(2, 1, 1) = 2 and hence Θ(x, y, z) = θ(x, y, z) = 2. Thus, the right-hand
side of (1) reduces to ψ(2) − φ(2) = 4 − 1 = 3 and the inequality holds.

3. If (x, y, z) ∈ {(0, 0, 2), (1, 1, 2), (0, 1, 2), . . . }, then G(Sx,Sy,Sz) = 2, and again Θ(x, y, z) = θ(x, y, z) = 2.
Thus, (1) is again satisfied.

All the assumptions of Theorem 3.1 are fulfilled and S and T have a coincidence point (equal to 0).

Putting S = iX (the identity map) in Theorem 3.1, we obtain the following corollary.

Corollary 3.5. Let (X,G,≼) be a complete ordered G-metric space. Let φ : [0,+∞) → [0,+∞) be a continuous
function with φ(t) = 0 if and only if t = 0 and let ψ be an altering distance function. Suppose that T : X → X is a
non-decreasing map, such that

ψ(G(Tx,Ty,Tz)) ≤ ψ(Θ(x, y, z)) − φ(θ(x, y, z)), (13)

where

Θ(x, y, z) = max
{
G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),

1
2

[G(x,Ty,Ty) + G(y,Tx,Tx)],
1
2

[G(y,Tz,Tz) + G(z,Ty,Ty)],
1
2

[G(x,Tz,Tz) + G(z,Tx,Tx)],

1
3

[G(x,Ty,Ty) + G(y,Tz,Tz) + G(z,Tx,Tx)]
}
,

and

θ(x, y, z) = max{G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz)}

for all x, y, z ∈ X with z ≼ y ≼ x. In addition, we assume that

(i) T is continuous, or

(ii) X is regular.

If there exists x0 ∈ X such that x0 ≼ Tx0, then T has a fixed point; that is, there exists z ∈ X such that Tz = z.

We furnish the following example to demonstrate the validity of the hypotheses of Corollary 3.5. It also
shows that using the order can be crucial.

Example 3.6. Let X = {2, 3, 4} and G : X × X × X→ R+ be defined as follows:

G(x, y, z) =


x + y + z, if x, y, z are all distinct
x + z, if x = y , z
0, if x = y = z.

Then (X,G) is a complete G-metric space. Let a partial order ≼ on X be defined as follows:

≼:= {(2, 2), (3, 3), (4, 4), (4, 2)}.

The topology of (X,G) is discrete, hence all convergent sequences in (X,G) are eventually constant. Thus,
the space (X,≼,G) is regular.
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Consider the mapping T : X→ X defined by

T =
(
2 3 4
2 4 2

)
,

and define functions ψ,φ : [0,+∞)→ [0,+∞) by

ψ(t) = t and φ(t) =
t
2
, for all t ≥ 0.

Clearlyψ andφ are altering distance functions. The only nontrivial cases when z ≼ y ≼ x are z = 4, x = y = 2
and z = y = 4, x = 2. In both cases the left-hand side of (13) is equal to 0 and the condition is satisfied.
Moreover, for x0 = 4, x0 ≼ Tx0 holds true. Hence, Corollary 3.5 can be applied to conclude that T has a fixed
point (which is z = 2).

On the other hand, if we consider the same example in the G-metric space (X,G) without order, then
the respective conclusion may not be obtained. Indeed, take x = 2, y = 3, z = 4. Then G(Tx,Ty,Tz) =
G(2, 4, 2) = 6 and Θ(2, 3, 4) = θ(2, 3, 4) = 9, but

ψ(6) = 6 > 9 − 9
2
= ψ(9) − φ(9),

and the condition (13) is not satisfied.

In a special case when the order in (X,G,≼) is total (which is equivalent to the case when there is no
order and the contractive condition holds for all elements of the space), conclusions of Theorem 3.1 can be
improved.

Theorem 3.7. Under the hypotheses of Theorem 3.1 (case (ii)), and assuming that the order ≼ is total, the mappings
T and S have a unique point of coincidence, that is, there exists a unique w ∈ X such that Sz = Tz = w for some
z ∈ X. In particular, if T is injective, they have also a unique coincidence point. If, moreover, T and S are weakly
compatible, then T and S have a unique common fixed point.

Proof. The existence of points z,w ∈ X satisfying Tz = Sz = w was proved in Theorem 3.1, case (ii). Suppose
that there exists another point w1 ∈ X, w1 , w such that Tz1 = Sz1 = w1 for some z1 ∈ X. Without loss of
generality, assume that G(w1,w,w) ≥ G(w,w1,w1). Then

Θ(z1, z, z) = max
{
G(Sz1,Sz, Sz),G(Sz1,Tz1,Tz1),G(Sz,Tz,Tz),G(Sz,Tz,Tz)

1
2

[G(Sz1,Tz,Tz) + G(Sz,Tz1,Tz1)],
1
2

[G(Sz,Tz,Tz) + G(Sz,Tz,Tz)]

1
2

[G(Sz,Tz1,Tz1) + G(Sz1,Tz,Tz)]

1
3

[G(Sz1,Tz,Tz) + G(Sz,Tz,Tz) + G(Sz,Tz1,Tz1)]
}

= max
{
G(w1,w,w),

1
2

[G(w1,w,w) + G(w,w1,w1)],
1
3

[G(w1,w,w) + G(w,w1,w1)]
}

= G(w1,w,w) = θ(z1, z, z).

Applying condition (1) to points z1, z, z, we get that

ψ(G(w1,w,w)) = ψ(G(Tz1,Tz,Tz)) ≤ ψ(G(w1,w,w)) − φ(G(w1,w,w)),

hence G(w1,w,w) = 0 and w1 = w, a contradiction. Thus, the point of coincidence w of S and T is unique. If
T is injective, then also z = z1 and the coincidence point is also unique.

If these two mappings are weakly compatible, it follows that they have a unique common fixed point
by a well known result of Jungck.
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We present a very simple example demonstrating some points of the previous theorem. A bit more
complicated example with similar properties can be constructed using [8, Example 2.2].

Example 3.8. Consider the (asymmetric) G-metric space given in Example 2.7(2).

(a) If S1,T1 : X → X are defined by S1 :
(
a b
a b

)
, T1 :

(
a b
a a

)
, then the contractive condition (1) is satisfied

(the left-hand side is always equal to 0) and S1 and T1 have a unique point of coincidence (a = S1a = T1a).
Moreover, S1 and T1 are weakly compatible (since S1T1a = T1S1a = a) and they have a uinque common
fixed point.

(b) Let now S2,T2 : X → X be defined by S2 :
(
a b
b a

)
, T2 :

(
a b
a a

)
. Then again condition (1) is satisfied

and S2 and T2 have a unique point of coincidence (a = S2b = T2b). However, these mappings are not weakly
compatible (T2S2b = a , b = S2T2b) and they have no common fixed points.

In the special case when S = iX, Theorem 3.7 reduces to

Corollary 3.9. Under the hypotheses of Corollary 3.5 (case (ii)), and assuming that the order ≼ is total, the mapping
T has a unique fixed point.

As an application, we state a corollary for mappings satisfying conditions of integral type.
Denote by M the set of functions µ : [0,+∞)→ [0,+∞) satisfying conditions:
(1) µ is Lebesgue-integrable on each compact subset of [0,+∞);
(2) for every ε > 0,

∫ ε
0 µ(t) dt > 0.

Corollary 3.10. Let (X,G,≼) be a complete ordered G-metric space, and let the mappings S,T : X → X satisfy all
the hypotheses of Theorem 3.1, except that the contractive condition (1) is substituted by∫ ψ(G(Sx,Sy,Sz))

0
µ1(t) dt ≤

∫ ψ(Θ(x,y,z))

0
µ1(t) dt −

∫ φ(θ(x,y,z))

0
µ2(t) dt,

for some functions µ1, µ2 ∈M, and all x, y, z ∈ X such that Sz ≼ Sy ≼ Sx. Then S and T have a coincidence point. In
the case that the order ≼ is total, the respective point of coincidence is unique and, if S and T are weakly compatible,
they have a unique common fixed point.
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