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Abstract. We give three general bounds on the diameter, degree and order of triangle-free regular graphs
with bounded second largest eigenvalue. Next, we consider bipartite regular graphs and present another
four inequalities that bound the order of such graphs in terms of their degree and their second largest
eigenvalue. We also prove some consequences and indicate graphs for which the corresponding bounds
are attained.

1. Introduction

Let G be a simple graph on n vertices. The characteristic polynomial (of the adjacency matrix) of G will
be denoted by PG, while the corresponding roots,

λ1 (= λ1(G)) ≥ λ2 (= λ2(G)) ≥ · · · ≥ λn (= λn(G)),

are just the eigenvalues of G. The collection of eigenvalues (with repetition) is called the spectrum of G. The
diameter diam(G) is the maximum distance between any two vertices of G. If G is regular then its degree
will be denoted by r (= rG) (in this case we shall say that G is r-regular). A graph consisting of k disjoint
copies of an arbitrary graph G will be denoted by kG, while the complement of G will be denoted by G. A
path and a cycle on n vertices will be denoted by Pn and Cn, respectively. A complete bipartite graph with
parts of size n1 and n2 is denoted by Kn1,n2 .

For the remaining terminology and notation we refer to [2] and [3].

In this paper we consider two classes of regular graphs: triangle-free, and (specially) bipartite regular
graphs. We obtain a sequence of spectral inequalities on these graphs and give some of their consequences.
Most of the bounds obtained are sharp, as is illustrated in the last section, where we list many graphs for
which the corresponding bounds are attained.

The paper is organized as follows. In Section 2 we give some general bounds on the diameter, degree
and order of triangle-free regular graphs with bounded second largest eigenvalue (Theorem 2.1 - Theorem
2.3), and we also give some simple implications ( Corollary 2.1, Corollary 2.2, and Theorem 2.4). In Section
3 we consider bipartite regular graphs and present some inequalities that bound the order of such graphs
in terms of its degree and its second largest eigenvalue (Theorem 3.1 - Theorem 3.3). Again, we obtain a
several consequences (Corollary 3.1, and Theorem 3.4 - Theorem 3.7). Some comments are given in Section
4.

2010 Mathematics Subject Classification. 05C50.
Keywords. adjacency matrix, second largest eigenvalue, regular graphs, triangle-free graphs, bipartite graphs.
Received: 31 July 2012; Revised: 14 June 2013; Accepted: 02 August 2013
Communicated by Dragan Stevanović
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2. Triangle-free regular graphs

First we prove a simple, yet useful, fact.

Theorem 2.1. Let G be a connected triangle-free r-regular graph satisfying λ2 ≤
√

r. Then diam(G) ≤ 4, where the
equality can be attained only if λ2 =

√
r.

Proof Assume first that diam(G) = k ≥ 6, and let v1, . . . , vk+1 be the diametral path. Both endvertices of
the diametral path must have r − 1 additional neighbours, and since G is triangle-free, r − 2 of neighbours
of v1 can be eventually adjacent to v3, and r − 2 of neighbours of vk+1 can be eventually adjacent to vk−1.
Consider the subgraph, say H, of G determined by the vertices of the diametral path and the neighbours of
its endvertices. By deleting v4, . . . , vk−2 we obtain two graphs, both proper supergraphs of K1,r, thus their
indices being greater than

√
r. Using the Interlacing Theorem ([3], Corollary 1.3.12), we get λ2(H) >

√
r,

and therefore λ2(H) >
√

r.
Ifλ2(G) <

√
r then diam(G) < 4 (otherwise, G contains 2K1,r as an induced subgraph causingλ2(G) ≥

√
r).

Finally, let λ2(G) =
√

r, and diam(G) = 5. Consider the subgraph H of G determined by the vertices of
the diametral path and the neighbours of its endvertices. Since H is the induced subgraph of G, λ2(H) ≤

√
r,

and since H contains 2K1,r as an induced subgraph we have λ2(H) ≥
√

r. Thus, in this case λ2(H) =
√

r must
hold, which means that PH(

√
r) = 0. Let v1, . . . , v6 be the diametral path, let H1 (resp. H2) be the subgraph of

H determined by v1, v2, v3 and the r−1 neighbours of v1 (resp. v4, v5, v6 and the r−1 neighbours of v6). Both
graphs H1 and H2 are obtained by identifying the vertex of degree r − ki in K1,r−ki with a vertex of degree ki
in K2,ki , where 1 ≤ ki ≤ r − 1, i = 1, 2. Using [3, Theorem 2.2.3] we compute PHi (

√
r) = −k2

i

√
rr−2 < 0, and

then the value of the characteristic polynomial of H in the same point is computed by [3, Theorem 2.2.4]:
PH(
√

r) = PH1 (
√

r)PH2 (
√

r) > 0, a contradiction. Thus, diam(G) ≤ 4, and the proof is complete.

The next theorem will provide an upper bound on r, but first we prove a lemma. In both proofs we deal
with the graph Hk obtained by attaching k pendant edges to each of endvertices of P2. It is not difficult to
see that λ2(Hk) = −1+

√
1+4k

2 .

Lemma 2.1. Let G be a connected non-bipartite triangle-free r-regular graph satisfying λ2 ≤ c. If r > 2c2 + c + 1,
then G contains C5 as an induced subgraph.

Proof Assume to the contrary (i.e. C5 is not an induced subgraph of G). Due to Theorem 2.1, we have
diam(G) ≤ 3. Since G is not bipartite it must contain C7 as an induced subgraph. Let v1, . . . , v7 be the
vertices of C7 (given in natural order). Both vertices v4 and v5 can have at most ⌊c2⌋ neighbours at distance
3 from v1 (otherwise, G contains 2K1,⌊c2⌋+1), and so both v4 and v5 must have at least ⌈c2 + c⌉ + 1 neighbours
at distance 2 from v1. There must be two adjacent vertices among the neighbours of v4 and the neighbours
of v5 (at distance 2 from v1), otherwise G contains H⌈c2+c⌉+1 causing λ2(G) > c. These two adjacent vertices,
their neighbours adjacent to v1, and v1 form C5 in G. A contradiction!

Theorem 2.2. Let G be a connected non-bipartite triangle-free r-regular graph satisfying λ2 ≤ c (c > 0). Then,
r ≤ c4 + 2c3 + 4c2 + 2c + 3.

Proof Let r > c4 + 2c3 + 4c2 + 2c + 3. Assume that there are two vertices of G at distance 2, u and v, that
have at most ⌊c2 + c⌋ common neighbours. Then there are at least ⌈c4 + 2c3 + 3c2 + c+ 3⌉ neighbours of u not
adjacent to v, and so there are more than ⌊c2+ c⌋+1 groups of ⌈c2⌉ neighbours of u not adjacent to v. Vertices
in each of these groups must be adjacent to more than ⌈c4 + 2c3 + 2c2 + c + 1⌉ neighbours of v (otherwise, G
contains P3 with ⌈c2⌉ vertices attached to one of its endvertices, and ⌈c2⌉ + 1 to another causing λ2(G) > c).

So in every group there is at least one vertex adjacent to at least ⌊c2 + c⌋ + 1 neighbours of v. Fix exactly
⌊c2 + c⌋ + 1 of such vertices, and let w denote one common neighbour of u and v. Any of fixed vertices can
have at most ⌊c2 + c⌋ common neighbours with w (otherwise, G contains a graph H⌊c2+c⌋+1), but then there
are more than ⌊c2 + c⌋+ 1 neighbours of w which are not adjacent to any of those ⌊c2 + c⌋+ 1 vertices. Thus,
G contains H⌊c2+c⌋+1 as an induced subgraph, and consequently if r > c4 + 2c3 + 4c2 + 2c+ 3 holds, every two
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vertices at distance 2 must have at least ⌊c2 + c⌋ + 1 common neighbours. By Lemma 2.1, G contains C5 as
an induced subgraph. Considering two adjacent vertices of C5 and their neighbours we get that G must
contain H⌊c2+c⌋+1 as an induced subgraph, which implies λ2(G) > c, and the proof is complete.

We can now formulate two simple consequences of Lemma 2.1 and Theorem 2.2, that provide spectral
condition for bipartiteness in the class of triangle-free (triangle-free and pentagon-free) regular graphs. In
both cases second largest eigenvalue is used to check whether a given triangle-free or triangle-free and
pentagon-free regular graph is bipartite.

Corollary 2.1. Let G be a connected triangle-free and pentagon-free r-regular graph satisfying r > 2λ2
2 + λ2 + 1.

Then G is bipartite.

Corollary 2.2. Let G be a connected triangle-free r-regular graph satisfying r > λ4
2 + 2λ3

2 + 4λ2
2 + 2λ2 + 3. Then G

is bipartite.

An upper bound on n is given in the next theorem.

Theorem 2.3. Given a triangle–free r–regular graph G on n vertices. Then

n ≤
r2(λ2 + 2) − rλ2(λ2 + 1) − λ2

2

r − λ2
2

, (1)

whenever the right hand side is positive.

Proof We partition the vertices of G into three parts: (i) an arbitrary vertex v, (ii) the vertices adjacent to v and
(iii) the remaining vertices, and consider the corresponding blocking A = (Ai j), 1 ≤ i, j ≤ 3 of its adjacency
matrix. If d denotes the average vertex degree of the subgraph induced by the vertices non–adjacent to v,
then the matrix whose entries are the average row sums in Ai j has the form

B =

 0 r 0
1 0 r − 1
0 r − d d

 ,
where B22 and B23 are computed using the condition that G is triangle–free, i.e. the subgraph induced by
the vertices adjacent to v is totaly disconnected. By [5, Corollary 2.3], the eigenvalues of B interlace those of
A. Since the characteristic polynomial of B is (x − r)(x2 − (d − r)x − d), we get that x2 − (d − r)x − d must be
positive in λ2, i.e. we have

λ2
2 − (d − r)λ2 − d ≥ 0.

Or equivalently,

d ≤ λ2(λ2 + r)
λ2 + 1

.

Since there are exactly r2 edges between the set of vertices adjacent to v and the set of the remaining vertices
of G, we get

d =
r(n − 2r)
n − r − 1

.

(Since G is triangle–free, we have n − 2r ≥ 0.) Substituting this into the previous inequality we get

r(n − 2r)(λ2 + 1) ≤ (n − r − 1)λ2(λ2 + r). (2)

After simplifying we obtain the result.
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Remark 2.1. The inequality (2) holds for any graph described in the previous theorem, while there is a possibility
that the right hand side of (1) is negative – the smallest example is a 3-regular graph of order 10 whose second largest
eigenvalue is equal to 2 (it can be found in [3, Table A5] under the identification number 018).

Finally, we can formulate the following direct consequence.

Theorem 2.4. For every fixedλ2, the set of all connected non-bipartite triangle-free regular graphs satisfyingλ2 <
√

r
is finite.

Proof By Theorem 2.2, the degree r is bounded. Then, by Theorem 2.3, the order n is bounded, and the
proof follows.

3. Bipartite regular graphs

We shall need the following definition. The bipartite complement of connected bipartite graph G with two

colour classes U and W is bipartite graph G with the same colour classes having the edge between U and
W exactly where G does not.

If G is a connected bipartite r-regular graph on 2n vertices, then G is bipartite (n− r)-regular graph. Their
adjacency matrices are

A(G) =
(

0 B
BT 0

)
, and A(G) =

(
0 J − B

J − BT 0

)
,

respectively (J denotes all-1 matrix). It is easy to check that the characteristic polynomials of G and G satisfy

PG(x)
x2 − r2 =

P
G

(x)

x2 − (n − r)2 . (3)

(compare [10, Theorem 4.1]). Considering the above equality we get that, apart from the eigenvalues ±r of

G and ±(n − r) of G, the spectra of G and G are the same. Note that if G is disconnected bipartite regular
graph then its bipartite complement is not uniquely determined, but even then the above formula remains
unchanged.

We give an upper bound on λ2.

Theorem 3.1. Let G be a connected bipartite r-regular graph on n vertices. Then λ2 ≤ n
2 − r.

Proof The bipartite complement of G is a bipartite ( n
2 − r)-regular graph, and thus its second largest

eigenvalue can be at most n
2 − r. Since the second largest eigenvalues of bipartite regular graph and its

bipartite complement are the same, the proof follows.

It is known from [4] that if G is a regular graph of order n and degree r, then the sum of its two largest
eigenvalues r and λ2 is at most n − 2. Moreover, r + λ2 = n − 2 if and only if the complement of G has
a connected component which is bipartite. A direct consequence of the previous theorem is a similar
characterization if G is bipartite and r-regular.

Corollary 3.1. Given a bipartite r-regular graph of order n, then the sum of its two largest eigenvalues r and λ2 is
at most n

2 . Moreover, r + λ2 =
n
2 if and only if its bipartite complement is disconnected.

The next theorem bounds the order of a bipartite r-regular graph whose diameter is equal to 3.

Theorem 3.2. Let G be a connected bipartite r-regular graph on n vertices satisfying diam(G) = 3. Then n ≤
2

r2−λ2
2(G)

r−λ2
2(G) , whenever the right hand side is positive.
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Proof Consider the distance partition (compare [5, p. 13]) of the set of vertices of G. It is an equitable
partition with the quotient matrix

A =


0 r 0 0
1 0 r − 1 0
0 2r(r−1)

n−2 0 r(n−2r)
n−2

0 0 r 0

 .
By [5, Corollary 2.3], the eigenvalues of A interlace those of G. Thus, we have λ2(G) ≥ λ2(A) =

√
r(n−2r)

n−2 ,
which, after simplifying, leads to the result, and the proof is complete.

The right hand side of the inequality above can be negative (an example is a graph from Remark 2.1).
An immediate consequence of the previous theorem and Theorem 2.1 is that the order n of every bipartite

r-regular graph whose second largest eigenvalue satisfies λ2 <
√

r, satisfies n ≤ 2
r2−λ2

2

r−λ2
2

.

We now prove the following result.

Theorem 3.3. Let G be a connected bipartite r-regular graph on n vertices whose second largest eigenvalue satisfies
λ4

2 < r. Then 2(r + λ2) ≤ n ≤ 2(r + λ2
2). If n = 2(r + λ2

2), then r ≤ λ2
2(λ2

2 − 1)2.

Proof The left hand inequality is the consequence of Theorem 3.1. For the right hand inequality, we have

n ≤ 2
r2−λ2

2

r−λ2
2
= 2

(
r + λ2

2 +
λ4

2−λ2
2

r−λ2
2

)
, and so r > λ4

2 implies n ≤ 2(r + λ2
2).

Suppose n = 2(r + λ2
2), and fix one vertex v of G. One colour class of G, say V, consists of r vertices

adjacent to v, and the remaining λ2
2 vertices which are at distance 3 from v, and the other colour class, say

U, consists of v and the remaining r + λ2
2 − 1 vertices. Denote by C the subset of the vertices of U that are

adjacent to all of the vertices in V which are not adjacent to v. We have

rλ2
2 ≤ λ2

2|C| + (λ2
2 − 1)(r + λ2

2 − 1 − |C|),
implying |C| ≥ r − (λ2

2 − 1)2.

Now consider G: it is a connected bipartite λ2
2-regular graph whose second largest eigenvalue is also

equal to λ2, and due to Theorem 2.1, diam(G) ≤ 4. So, every vertex adjacent to v in G, can be adjacent to at

most λ2
2 − 1 vertices of |C| in G. Thus

|C|(r − λ2
2) ≥ r

(
|C| − (λ2

2 − 1)
)
,

which implies |C| ≤ λ
2
2−1
λ2

2
r.

Further, we get

r − (λ2
2 − 1)2 ≤ |C| ≤

λ2
2 − 1

λ2
2

r,

which implies r ≤ λ2
2(λ2

2 − 1)2, and the proof follows.

Remark 3.1. We have seen that non-bipartite triangle-free regular graphs with bounded second largest eigenvalue
have bounded degree (Theorem 2.2). This is not the case with bipartite regular graphs. Moreover, many examples can
be constructed, say λ2(Kn,n) = 0 and rKn,n = r hold for any n ≥ 2. In the next theorem we provide another family.

Theorem 3.4. For every k ∈ N, and every r > k, r ∈ N, there is a connected bipartite r-regular graph of diameter 3
whose second largest eigenvalue is equal to k.
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Proof Consider a disconnected graph whose one component is a complete bipartite graph Kk,k, and the
other is any bipartite k-regular graph on 2r vertices (such a graph can always be obtained by removing of
r− k appropriate perfect matchings from Kr,r). It is now easy to see that its bipartite complement is bipartite
r-regular graph, whose diameter is equal to 3, and whose second largest eigenvalue is equal to k.

Note that the proof of the previous theorem also gives the construction of the described graphs. Using it,
it is not difficult to construct many of them, in particular those with λ2 = k ≤ 2

√
r − 1. Such graphs are often

(good) expanders, i.e. sparse graphs with high connectivity properties [6]. Recall that a connected regular
graphs whose second largest eigenvalue in modulus does not exceed 2

√
r − 1 are widely investigated

Ramanujan graphs [3, Chapter 3.5.2].

In what remains, we consider the intervals for λ2 that do not contain integers.

Lemma 3.1. If G is a connected bipartite r-regular graph satisfying diam(G) ≥ 5, then diam(G) = 3.

Proof Since diam(G) ≥ 5 we have n ≥ 4r + 2 [1], so every two vertices from the same colour class of G
must have at least one common non-neighbour. This implies that every two vertices from the same colour

class have at least one common neighbour in G. Consequently, G is connected and diam(G) ≤ 3. Finally, if

diam(G) < 3 then G must be disconnected.

Let further R denote the set of all connected bipartite regular graphs.

Theorem 3.5. Let k be any non-integer greater than 1. The set S = {G ∈ R : λ2 ∈ (⌊k⌋, k], r > λ2
2} is finite if and

only if the set T = {G ∈ R : λ2 ∈ (⌊k⌋, k], r ≤ λ2
2} is finite.

Proof Consider the following sets: X = {G ∈ R : λ2 ∈ (⌊k⌋, k], λ2
2 < r ≤ λ4

2},Y = {G ∈ R : λ2 ∈ (⌊k⌋, k], r > λ4
2},

Z = {G ∈ R : λ2 ∈ (⌊k⌋, k], r ≤ λ2
2}.

Graphs belonging to X have bounded degree: ⌊k⌋2 < r ≤ k4, their diameter is equal to 3 (by Theorem
2.1), and thus their order is bounded (by Theorem 3.2). Therefore, the set X is finite.

Graphs belonging to Y have bounded order (by Theorem 3.3): n ≤ 2(r + λ2
2). Hence, the bipartite

complement of any graph G ∈ Y has degree at most λ2
2 which means that bipartite complements of graphs

belonging toY belong toZ, and ifZ is finite so isY. Thus, if T is finite then S is finite.

Due to Lemma 3.1, the set Z can be divided into four disjunct sets: Z1 = {G ∈ Z : diam(G) ≤ 4},
Z2 = {G ∈ Z : diam(G) ≥ 5,G ∈ X}, Z3 = {G ∈ Z : diam(G) ≥ 5,G ∈ Z1}, and Z4 = {G ∈ Z : diam(G) ≥
5,G ∈ Y}. The set Z1 is finite because graphs in Z1 have degree bounded by k2 and their diameter is 4 or
3. The setsZ2 andZ3 are finite, too (because they contain graphs whose bipartite complements belong to
finite sets X orZ1). Thus, if Y is finite thenZ4 is finite, and so isZ. Consequently, if S is finite then T is
finite.

We get an immediate consequence of the previous theorem.

Theorem 3.6. Let k be any non-integer greater than 1. The set {G ∈ R : λ2 ∈ (⌊k⌋, k]} is finite whenever one of sets
{G ∈ R : λ2 ∈ (⌊k⌋, k], r > λ2

2} or {G ∈ R : λ2 ∈ (⌊k⌋, k], r ≤ λ2
2} is finite.

For k < 2 we have the following result.

Theorem 3.7. Let k ∈ (1, 2). Then the set {G ∈ R : 1 < λ2 ≤ k} is finite.

Proof Let G ∈ R. If λ2(G) ≤ k we get λ2(Pdiam(G)+1) ≤ k, causing diam(G) ≤ 2π
arccos k

2
− 2. Now, the set

{G ∈ R : 1 < λ2 ≤ k, r ≤ λ2
2} is finite since r is bounded by k2, and the diameter of each belonging graph is

bounded by
⌊

2π
arccos k

2
− 2

⌋
. The application of Theorem 3.6 gives the result.
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4. Some comments

We list some graphs for which the bounds from the previous two sections are attained. Some of graphs
listed are well known by their name, and they can be found in the literature.

Theorem 2.1 – This bound is attained for C8, Möbius-Kantor graph, Pappus graph or Hadamard graphs
(see [7]).

Theorem 2.2 – It seems that there is no graph attaining this bound. On the other hand, it gives a good
estimation for r when λ2 is small (say, λ2 = 1; compare results of [8]). Its theoretical importance is pointed
in Remark 3.1.

Theorem 2.3 – This bound is attained for the Petersen graph or the complement of the Clebsch graph
(see [8] or [9]).

Theorem 3.1 – The equality holds for any complete bipartite regular graph on at least 4 vertices or

(r + 1)K2, r ≥ 1 (complete bipartite regular graphs with a perfect matching removed). It is also attained for

2G, where G is any bipartite regular graph.
Theorem 3.2 – The equality holds for the Heawood graph and its bipartite complement. It is also attained

for (r + 1)K2, r ≥ 1 or graphs H4,H4,H5, and H5 listed in [8, Table 2].

Theorem 3.3 – Both equalities hold for (r + 1)K2, r ≥ 1. The second equality also holds for the bipartite
complement of the Pappus graph or the bipartite complement of the Möbius-Kantor graph.
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