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Semisymmetric cubic graphs of orders 36p, 36p2
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Abstract. A cubic graph is said to be semisymmetric if its full automorphism group acts transitively on its
edge set but not on its vertex set . The semisymmetric cubic graphs of orders 6p and 6p2 were classified in
(Com. in Algebra, 28 (6) (2000) 2685-2715) and (Science in China Ser. A Mathematics, 47 (2004) No.1 1-17),
respectively. In this paper we first classify all connected cubic semisymmetric graphs of order 36p for each
prime p and also classify all connected cubic semisymmetric graphs of order 36p2, where p , 5 and 7 is a
prime.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the
group-theoretic concepts and notations not defined here we refer the reader to [22, 25].

A regular graph is said to be semisymmetric if its full automorphism group acts transitively on its edge
set but not on its vertex set.

Covering techniques have long been known as a powerful tool in topology and graph theory. Regular
covering of a graph is currently an active topic in algebraic graph theory. The class of semisymmetric
graphs was introduced by Folkman [10]. He constructed several infinite families of such graphs and posed
eight open problems. Afterwards, Bouwer [4], Titov [23], Klin [15], A.A. Ivanov and M.E. Iofinova [11], A.V.
Ivanov [12], Du and Xu [9] and others did much work on semisymmetric graphs. They gave new construc-
tions of such graphs by combinatorial and group-theoretical methods. A census of all semisymmetric cubic
graphs up to 768 vertices has been obtained by Conder et al. [5]. By now, the answers to most of Folkman’s
open problems are known. By using the covering technique, semisymmetric cubic graphs of order 8p, 6p2,
8p2, 16p2 and 2p3 were classified in [1, 2, 3, 16, 20]. Some general methods of elementary abelian coverings
were developed in [8, 17, 18, 19, 21]. In this paper we first classify all connected cubic semisymmetric
graphs of order 36p for each prime p. Also classify all connected cubic semisymmetric graphs of order 36p2,
where p , 5 and 7 is a prime.

2. Preliminaries

Given a graph X, we let V(X), E(X), A(X) and Aut(X) be the vertex set, the edge set, the arc set and the
full automorphism group of X, respectively. For u, v ∈ V(X), we denote by uv the edge incident to u and
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v in X If a subgroup G of Aut(X) acts transitively on V(X) or E(X), we say that X is G-vertex-transitive or
G-edge-transitive, respectively. In the special case when G =Aut(X) we say that X is vertex-transitive or
edge-transitive, respectively. If G acts transitively on both V(X) and E(X) we say that X is Symmetric. It can
be shown that a G-edge-transitive but not G-vertex-transitive graph X is necessarily bipartite, where the
two parts of the bipartition are orbits of G ≤Aut(X). Moreover, if X is regular then these two parts have
the same cardinality. A regular G-edge-transitive but not G-vertex-transitive graph will be referred to as a
G-semisymmetric graph. In particular, if G =Aut(X) the graph is said to be semisymmetric.

A permutation group G on a set Ω is said to be semiregular if for each α ∈ Ω, the stabilizer Gα of α in G
is the identity group, and regular if it is semiregular and transitive.

An epimorphism ℘ : X→ Y of connected graphs is a regular covering projection if it arises essentially as a
factorization X → X/N � Y, where the action of N ≤Aut(X) is semiregular (that is, fixed point free) on both
vertices and edges of X . Note that the graph Y may not be simple even if X is. The graph X is called the
covering graph and Y is the base graph. The preimage ℘−1(v), v ∈ V(Y), corresponds to an orbit of N on V(X)
and is called the (vertex)-fibre over v. Similarly, edge-fibres correspond to orbits of N on E(X).

Let X be a graph and let K be a finite group. By a−1 we mean the reverse arc to an arc a. A voltage
assignment (or, K-voltage assignment) of X is a function ϕ : A(X) → K with the property that ϕ(a−1) = ϕ(a)−1

for each arc a ∈ A(X). The values of ϕ are called voltages, and K is the voltage group. The graph X ×ϕ K
derived from a voltage assignment ϕ : A(X)→ K has vertex set V(X)×K and edge set E(X)×ϕ K, so that an
edge (e, 1) of X ×ϕ K joins a vertex (u, 1) to (v, ϕ(a)1) for a = (u, v) ∈ A(X) and 1 ∈ K, where e = uv. Clearly,
the derived graph X ×ϕ K is a covering of X with the first coordinate projection ℘ : X ×ϕ K → X, which is
called the natural projection. By defining (u, 1′)1 = (u, 1′1) for any 1 ∈ K and (u, 1′) ∈ V(X ×ϕ K), K becomes
a subgroup of Aut(X ×ϕ K) which acts semiregularly on V(X ×ϕ K). Therefore, X ×ϕ K can be viewed as
a K-covering. Conversely, each regular covering X̃ of X with a covering transformation group K can be
derived from a K-voltage assignment.

The next proposition is a special case of [24, proposition 2.5].
Proposition 2.1. Let X be a G-semisymmetric cubic graph with bipartition sets U(X) and W(X). Moreover, suppose
that N is a normal subgroup of G. Then,
(1) If N is intransitive on the bipartition sets, then N acts semiregularly on both U(X) and W(X), and X is a regular
N-covering of the G/N-semisymmetric graph XN.
(2) If 3 does not divide |Aut(X)/N|, then N is semisymmetric on X.

Proposition 2.2 [20, Proposition 2.4]. The vertex stabilizers of a connected G-semisymmetric cubic graph X
have order 2r · 3, where 0 ≤ r ≤ 7. Moreover, if u and v are two adjacent vertices, then the edge stabilizer Gu ∩ Gv is
a common Sylow 2-subgroup of Gu and Gv.

Note that the structure of the pair (Gu,Gv), where u and v are two adjacent vertices of the G-semisymmetric
cubic graph X was completely determined in [13].

The following result can be obtained from [14, pp. 12-14] and [7].
Proposition 2.3. Let p be a prime and G be a non-abelian simple group whose order divides 2r+1 · 33 · p2 for some
non-negative integer r ≤ 7. Then, G is isomorphic to A5,A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), or PSU(3, 3)
of orders 22 · 3 · 5, 23 · 32 · 5, 23 · 3 · 7, 23 · 32 · 7, 24 · 32 · 17, 24 · 33 · 13, 25 · 33 · 7, respectively.

3. Main Results

The following theorem, which is one of the main results of this paper, shows that every edge-transitive
cubic graph of order 36p is a symmetric graph, where p is a prime.
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Theorem 3.1. There is no semisymmetric cubic graph of order 36p, where p is a prime.

Proof. If p < 23, by [5] there is no semisymmetric cubic graph of order 36p. We can assume that p ≥ 23. By
way of contradiction, let X be a semisymmetric cubic graph of order 36p. Set A :=Aut(X). By Proposition
2.2, |Av| = 2r · 3, where 0 ≤ r ≤ 7, and hence |A| = 2r+1 · 33 · p. Let Q := Op(A) be the maximal normal
p-subgroup of A. We show that |Q| = p as follows.

Let N be a minimal normal subgroup of A. Thus, N � T × T × · · · × T = Tk, where T is a simple group.
Let N be unsolvable. Therefore, T is isomorphic to one of the simple groups mentioned in Proposition 2.3,
contrary to the fact that p ≥ 23. Therefore, N is solvable and so elementary abelian. It follows that N acts
intransitively on bipartition sets of X and hence it is semiregular on each partition. Thus, |N| | 18p.

Suppose first that Q = 1. It implies three cases: N � Z2, Z3 or Z3 × Z3. We get a contradiction in each
case as follows.
case (I): N � Z2.
By Proposition 2.1, XN is a A/N-semisymmetric cubic graph of order 18p. Let M/N be a minimal normal
subgroup of A/N. By a similar argument as above M/N is solvable and so elementary abelian. Therefore,
M/N acts intransitively on bipartition sets of XN and by Proposition 2.1, it is semiregular on each partition,
which force |M/N| | 9p.

If |M/N| = p, then |M| = 2p and so the Sylow p-subgroup of M is characteristic and consequently normal
in A. It contradicts our assumption that Q = 1. If |M/N| = 3, |M| = 6. Thus, XM is a A/M-semisymmetric
cubic graph of order 6p. Let K/M be a minimal normal subgroup of A/M. Again, K/M is solvable and so
elementary abelian. Hence, K/M is semiregular on each partition of XM and so |K/M| | 3p. If |K/M| = p,
|K| = 6p. It follows that the Sylow p-subgroup of K is normal in A, a contradiction. So, |K/M| = 3 and hence
|K| = 18 . So, XK is a A/K-semisymmetric cubic graph of order 2p. Let H/K be a minimal normal subgroup of
A/K. Again, H/K is solvable and so elementary abelian. If H/K acts transitively on one partition set of XK,
then by [25, Proposition 4.4], H/K is regular. It implies that |H| = 18p. Since p ≥ 23, the Sylow p-subgroup
of H is characteristic and consequently normal in A, a contradiction. Thus, H/K acts intransitively on the
two partition sets of XK and so it is semiregular, forcing |H| = 18p, a contradiction as above. Therefore,
|M/N| = 9 and so |M| = 18. We get a contradiction as |K| = 18.
case (II): N � Z3.
Therefore, XN is a A/N-semisymmetric cubic graph of order 12p. Let L/N be a minimal normal subgroup
of A/N. It is easy to see that L/N is solvable and so elementary abelian. Therefore, it is semiregular on each
partition of XN, which force |L/N| | 6p. Since Q = 1, |L/N| = 2 or 3. One can see that the case |L/N| = 2 is
impossible as in case (I). Hence, |L/N| = 3 and so |L| = 9. Then, XL is a A/L-semisymmetric cubic graph of
order 4p. Again, we consider a minimal normal subgroup R/L of A/L and by a similar argument as case (I),
one can show that |R| = 18 or 18p. This leads to a contradiction as in case (I).
case (III): N � Z3 × Z3.
So, XN is a A/N-semisymmetric cubic graph of order 4p. This case was rejected in case (II).

Therefore, |Q| = p. By Proposition 2.1, XQ is A/Q-semisymmetric cubic graph of order 36. But, by [5, 6]
there is no edge-transitive cubic graph of order 36, a contradiction. The result now follows. �

The graph S144 is the only cubic graph of order 144 whose diameter and girth are equal to 8, and
it is Z2

3-covering of Möbius-Kantor (symmetric) cubic graph F16. The second main result of this paper as
follows:

Theorem 3.2. The graph S144 is only semisymmetric cubic graph of order 36p2, where p , 5, 7 is a prime.

Proof. If p < 5, by [5] the graph S144 is the only semisymmetric cubic graph of order 36p2. Hence we can
assume that p ≥ 11. By way of contradiction, let X be a semisymmetric cubic graph of order 36p2. Set
A :=Aut(X). By Proposition 2.2, |A| = 2r+1 · 33 · p2, where 0 ≤ r ≤ 7. Let Q := Op(A) be the maximal normal
p-subgroup of A. We show that |Q| = p2 as follows.

Let N be a minimal normal subgroup of A. Thus, N � T×T×· · ·×T = Tk, where T is a simple group. Let
N be unsolvable. By Proposition 2.3, T is isomorphic either to PSL(2, 17) or to PSL(3, 3) of orders 24 · 32 · 17
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and 23 · 33 · 13. Hence k = 1. If N � PSL(3, 3) then 3 dose not divide |A/N|. By Proposition 2.1, N is
semisymmetric on X and so 18p2 | |N|, a contradiction. Also, if N � PSL(2, 17) then N acts intransitively on
the bipartition sets of X and by Proposition 2.1, it is semiregular on each partition, which forces |N| | 18p2, a
contradiction. Therefore, N is solvable and so elementary abelian. It follows that N is semiregular on each
partition of XN. Thus, |N| | 18p2.

Suppose first that Q = 1. It implies three cases: N � Z2, Z3 or Z3 × Z3. We get a contradiction in each
case as in the previous lemma.

We suppose now that |Q| = p. Let P be a Sylow p-subgroup of A and C := CA(Q) the centralizer of Q
in A. Clearly, Q < P and also P ≤ C because P is abelian. Thus, p2 | |C|. By [22, pp.236], p - |C′∩Z(C)|,
which implies that C′

∩
Q = 1. This forces p2 - |C′|, and so C′ acts intransitively on each partition set of

X. According to Proposition 2.1, C′ is semiregular on each partition set of X and hence |C′|18p2. Note that
PC′/C′ is a Sylow p-subgroup of C/C′, and C/C′ is abelian. Then PC′/C′ is characteristic in C/C′ and since
C/C′ E A/C′, we have PC′/C′ E A/C′. Hence PC′ ▹ A. Clearly |PC′| = tp2, where t | 18. If 2 does not divide
|C′|, then by Sylow theorem P is normal in PC′ because p > 7. Thus P is characteristic in PC′, implying P▹A,
contradicting |Q| = p. If 2 divides |C′|, then PC′ has a characteristic subgroup of index 2 which is normal in
A, and by the same argument as in the previous case a similar contradiction is obtained (replacing PC′ by
this normal subgroup).

Therefore, |Q| = p2. By Proposition 2.1, XQ is A/Q-semisymmetric cubic graph of order 36, a contradic-
tion. The result now follows. �

Remark. First author et al. have classified the cubic semisymmetric graphs of orders 12p, 12p2, 18p,
18p2. Also, cubic semisymmetric graphs of orders 6p, 6p2 were classified in [9, 16]. So, by the previous
theorems, the classification of cubic semisymmetric graphs of order 2i ·3 j ·pk (1 ≤ i, j, k ≤ 2) will be completed
if one can verify the existence of semisymmetric cubic graphs of orders 22 · 32 · 52 and 22 · 32 · 72.
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