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Abstract. The Sylvester equation has numerous applications in control and system theory, power system,
linear algebra, model reduction and signal processing. In the present paper, a global transpose-free quasi-
minimal residual method for the Sylvester equations is proposed. The resulting method, with short-
term recurrences, does not involve the multiplication with the transpose of the coefficient matrices, and
often exhibits smoother convergence behavior than some other existing global methods. Finally, several
numerical examples are reported by comparing the proposed method with some global methods.

1. Introduction

Consider the Sylvester equations of the form

AX + XB = C, (1)

where A ∈ Rm×m, B ∈ Rn×n and C ∈ Rm×n are given matrices. Throughout this paper, we assume that (1) has
a unique solution, i.e., matrices A and −B have no eigenvalue in common [4, 8].

The Sylvester equation (1) arises in many problems concerning control and system theory, signal pro-
cessing and power systems. Conventionally, Eq.(1) can be solved equivalently by converting it into a linear
system in the Kronecker product form, that is, Ax = b, where A = I ⊗ A + BT ⊗ I, x and b are augmented
vectors by stacking the columns of X and C respectively, with⊗ the Kronecker product and BT the transpose
of B. This approach, however, can be encountered with the problems concerning computational cost and
stability.

Benchmark methods for the Sylvester equation (1) are the Bartels-Stewart and the Hessenberg-Schur
methods [2, 9]. Such methods are usually classified as direct methods and often implemented for solving
systems of reasonable small size. When the system (1) becomes large and sparse, however, the iterative
methods may be preferred. These iterative methods include, to name just a few of them, the ADI method
[3, 14, 16], the Smith’s method [11, 18], the matrix sign function method [13], the HSS method [1] and the

2010 Mathematics Subject Classification. 65F10; 65F30; 15A24
Keywords. Sylvester equation; Quasi-minimal residual; CGS; Krylov subspaces; Global methods
Received: 20 January 2013; Accepted: 11 May 2013
Communicated by Professor Dragana Cvetkovic Ilic.
Research supported by Shanghai Natural Science Foundation (10ZR1410900), Key Disciplines of Shanghai Municipality (S30104)

and Innovation Program of Shanghai Municipal Education Commission(13ZZ068).
Corresponding author: Chuanqing Gu
Email addresses: xznuzk123@126.com (Ke Zhang), cqgu@shu.edu.cn (Chuanqing Gu)



Ke Zhang, Chuanqing Gu (Corresponding author) / Filomat 27:8 (2013), 1437–1446 1438

gradient-based methods [6, 10]. For more about numerical methods for the Sylvester equation (1), we refer
to Datta’s monograph [4].

Recently, by using the global oblique and orthogonal projections of the initial matrix residual onto
a matrix Krylov subspace, Jbilou etc. proposed the global version methods for matrix equations [12].
Datta etc. presented a global Arnoldi method and corresponding theory for solving multi-input Sylvester-
observer equations from the construction of the Luenberger observer in control theory [5]. Using the
global techniques, some new methods for matrix equations, for instance, the global conjugate squared
method (Gl-CGS) and its generalization [20], and the global bi-conjugate residual method (Gl-BCR) [21],
have been proposed following [12]. Though some of these methods were originally contrived for linear
systems with multiple right-hand sides, they can also be applied for the Sylvester equation in a similar
way. One possible drawback of Gl-CGS is that its convergence curves are sometimes rather erratic. To
circumvent this difficulty, we generate in this paper a smooth global method with an approach analogous
to the derivation of the TFQMR method [7] from the conjugate gradient squared (CGS) method [19] for
general linear systems. The resulting method does not involve the matrix multiplication with the transpose
of A or B in (1) and often yields a much smoother convergence than Gl-CGS.

This paper is organized as follows. In Section 2, we sketch out the conjugate gradient squared method
and its global variant. In Section 3, we present our idea by rewriting the relations of residuals and
the corresponding auxiliary matrices in the Gl-CGS method, which results in a new iterative method by
minimizing the norm of the quasi-residual. In Section 4, some numerical examples are used to validate the
effectiveness of the proposed method. Finally, some concluding remarks are given in Section 5.

2. Preliminaries and notation

In this section, we introduce some preliminary results about the conjugate gradient squared method
(CGS), its global variant and notation used in the global methods, the results of which will be employed
in the next section to derive the new algorithm of this paper. The CGS method was originally proposed
by Sonneveld [19] to solve the general nonsymmetric linear systems. Further, Zhang etc. have extended
the CGS algorithm to solve linear systems with multiple right-hand sides, i.e., MX = N, which yields the
global CGS algorithm (Gl-CGS) [20]. To clarify the derivation of our new algorithm in Section 3, we give
the Gl-CGS algorithm below. For more detailed description of Gl-CGS, we refer to [20].

Algorithm 1 Gl-CGS algorithm.

1: Choose an initial guess X0 and R̃0, R0 = N −MX0, P0 =W0 = R0.
2: for j = 0, 1, · · · until convergence do

3: α j =
<R j,R̃0>F

<MP j,R̃0>F
;

4: Q j =W j − α jMP j;
5: X j+1 = X j + α j(W j +Q j);
6: R j+1 = R j − α jM(W j +Q j);

7: β j =
<R j+1,R̃0>F

<R j,R̃0>F
;

8: W j+1 = R j+1 + β jQ j;
9: P j+1 =W j+1 + β j(Q j + β jP j);

10: end for

Next we introduce some notation which has been used in the derivation of the global Krylov subspace
methods [12]. The matrix Frobenius norm and 2-norm are denoted by ∥ · ∥F and ∥ · ∥2 respectively. For
matrices X and Y with conforming dimensions, we define the inner product < X,Y >F= tr(XTY), where
tr(·) represents the trace of a square matrix. Additionally, X is said to be F-orthogonal to Y if < X,Y >F= 0.
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Denote byKs(A,R0) the matrix Krylov subspace

Ks(A,R0) =

 s−1∑
i=0

αiAi(R0);αi ∈ R
 ,

where the operator A is defined as: A : X → AX + XB with X ∈ Rm×n, and R0 = C − A(X0) is the initial
residual. With the operator A, Algorithm 1 can also be extended to solve the Sylvester equation (1) by
replacing the matrix M withA.

Let Us = [U0,U1, · · ·Us−1] ∈ Rm×ns, where Ui ∈ Rm×n, i = 0, 1, · · · , s − 1. For b = [b0, b1, · · · , bs−1]T ∈ Rs, as
in [12], the notation ∗ denotes the product

Us ∗ b =
s−1∑
i=0

biUi. (2)

Further, for matrix G ∈ Rs×s we define

Us ∗ G = [Us ∗ G.,1,Us ∗ G.,2, · · · ,Us ∗ G.,s], (3)

where G., j stands for the jth column of the matrix G. It can be easily verified that

Us ∗ (a + b) = (Us ∗ a) + (Us ∗ b), (Us ∗ G) ∗ a = Us ∗ (Ga), (4)

where a,b ∈ Rs, and Us is defined in (2).

3. A global transpose-free quasi-minimal residual method

It is known that the CGS method [19] for the general linear systems may exhibit erratic convergence
behavior. Unfortunately, the disadvantage can also be carried over to the Gl-CGS method [20]. In this
section, we give a global transpose-free quasi-minimal residual method (Gl-TFQMR) for the Sylvester equation
(1). Like the Gl-CGS method, Gl-TFQMR involves no matrix multiplication with the transpose of the
coefficient matrices A and B, but often yields much smoother convergence behavior.

In the Gl-CGS method, the iterates Xs can be updated in two half-steps, namely, Xs+1/2 = Xs + αsWs and
Xs+1 = Xs+1/2 + αsQs. For convenience, we double the subscripts to avoid indices that are multiple of 1/2. It
follows that X2s+2 = X2s + α2s(W2s +Q2s). Correspondingly, the two half-steps are now updated by

X2s+1 = X2s + α2sW2s and X2s+2 = X2s+1 + α2sQ2s. (5)

With an approach analogous to [7, 17], we define Ws and αs for odd s by W2 j+1 = Q2 j and α2 j+1 = α2 j.
This results in a unified form of (5) for either even or odd values of s, i.e., Xs = Xs−1 + αs−1Ws−1. Let
ys = [α0, α1, · · · , αs−1]T ∈ Rs, and Ws = [W0,W1, · · · ,Ws−1] ∈ Rm×ns, then the approximate solutions Xs can
be updated by

Xs = Xs−1 + αs−1Ws−1 = X0 +Ws ∗ ys. (6)

It should be noted that the iterates Xs above for odd s do not exist in the Gl-CGS algorithm. With (1) and
(6), the residual matrices are given by

Rs = C −A(Xs) = C −A(X0 +Ws ∗ ys) = R0 −A(Ws ∗ ys)
= Rs−1 − αs−1A(Ws−1). (7)

The relation (7) yieldsA(Ws−1) = α−1
s−1(Rs−1 −Rs), where s = 0, 1, · · · . It can be interpreted in a compact form

[A(W0),A(W1), · · · ,A(Ws−1)]
= [α−1

0 (R0 − R1), α−1
1 (R1 − R2), · · · , α−1

s−1(Rs−1 − Rs)]

= [R0,R1, · · · ,Rs−1,Rs] ∗ Fs ≡ Rs+1 ∗ Fs, (8)
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where Rs+1 ∈ Rm×(s+1)n, and the matrix Fs ∈ R(s+1)×s has the form

Fs =



1 0 · · · · · · 0

−1 1
...

−1 1 · · ·
. . .

. . .
...

−1 1
−1


·


α−1

0
α−1

1
. . .

α−1
s−1

 . (9)

It follows from (7), (8) and (4) that

Rs = R0 −A(Ws ∗ ys) = R0 −A(
s−1∑
i=0

αiWi) = R0 −
s−1∑
i=0

αiA(Wi)

= R0 − [A(W0),A(W1), · · · ,A(Ws−1)] ∗ ys

= R0 − (Rs+1 ∗ Fs) ∗ ys = R0 − Rs+1 ∗ (Fsys)

= Rs+1 ∗ e(s+1)
1 − Rs+1 ∗ (Fsys) = Rs+1 ∗ (e(s+1)

1 − Fsys), (10)

where e(s+1)
1 stands for the first canonical basis vector in Rs+1.

Obviously, if Rs+1 in (10) is F-orthogonal, then to minimize ∥Rs∥F is equivalent to minimize ∥e(s+1)
1 −Fsys∥2,

as done in [12]. Generally, however, Rs+1 can be dense and not F-orthogonal. A compromise, therefore, is
to minimize ∥e(s+1)

1 − Fsys∥2, which turns to be a least squares problem. To improve the conditioning of Rs+1,
a scaling matrix can be chosen such that the F-norm of each Ri in Rs+1, say, will be reduced to one. Such
scaling can be achieved through defining an s + 1 by s + 1 diagonal matrix Σs+1 ≡ diag[σ0, σ1, · · · , σs] with
σi = ∥Ri∥F. By combining (3), (4) and (10), it follows that

Rs = Rs+1 ∗ e(s+1)
1 − Rs+1 ∗ (Fsys)

= (Rs+1 ∗ Σ−1
s+1) ∗ (σ0e(s+1)

1 ) − (Rs+1 ∗ Σ−1
s+1) ∗ (Σs+1Fsys)

≡ (Rs+1 ∗ Σ−1
s+1) ∗ (gs+1 −Hsys), (11)

where gs+1 ≡ σ0e(s+1)
1 and Hs ≡ Σs+1Fs ∈ R(s+1)×s. Based on the above discussion, therefore, we have to solve

the following least squares problem

τs = ∥gs+1 −Hsys∥2 = min
y∈Rs
∥gs+1 −Hsy∥2. (12)

From (9) and definitions of Σs+1 and Fs, we conclude that the matrix Hs has full rank and thus ys is uniquely
defined in (12). To contrive the implementation of Gl-TFQMR method, we need the auxiliary iterates

X̃s = X0 +Ws ∗ ỹs, (13)

where ỹs = H−1
s gs, the tildes are hereafter used to denote the Gl-CGS iterates, and Hs ∈ Rs×s is obtained

by deleting the last row of Hs. With the definition of Hs in (11), it holds that σs = ∥gs+1 − Hs ỹs∥2; see [7,
p.474-475] for a simple derivation of this relation.

Next we proceed to devise some recurrence relations in the Gl-TFQMR method. Firstly, we introduce
the following Lemma.

Lemma 1. Let the s + 1 by s upper Hessenberg matrix

Hs =

(
Hs

hs+1,seT
s

)
=

(
Hs−1 ⋆

0 hs+1,s

)
,
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be of full column rank s, where es = [0, 0, · · · , 0, 1]T, σ0 > 0 and s ≥ 1. For k = s − 1, s, assume that yk ∈ Rk is
the solution of the least squares problem

τk ≡ min
y∈Rk
∥gk+1 −Hky∥2, where gk+1 = σ0e(k+1)

1 ∈ Rk+1. (14)

Suppose that Hs is nonsingular, and set ỹs ≡ H−1
s gs. Then we get

ys = (1 − c2
s )

(
ys−1

0

)
+ c2

s ỹs, τs = τs−1θscs, (15)

where θs = τ−1
s−1∥gs+1 −Hs ỹs∥2 = σsτ−1

s−1 and cs = (1 + θ2
s )−1/2.

Proof. The proof is similar to that of Lemma 4.1 in [7], so it is omitted.�
By using (6), (13) and the first equation of (15), we obtain that

Xs = X0 +Ws ∗ [(1 − c2
s )

(
ys−1

0

)
+ c2

s ỹs]

= X0 + (1 − c2
s )Ws−1 ∗ ys−1 + c2

s Ws ∗ ỹs

= X0 +Ws−1 ∗ ys−1 + c2
s (X̃s − X0 −Ws−1 ∗ ys−1)

= (1 − c2
s )Xs−1 + c2

s X̃s. (16)

From (16) it follows that X̃s−Xs−1 = c−2
s (Xs−Xs−1). Let Ds = α−1

s−1(X̃s−Xs−1) = c−2
s α

−1
s−1(Xs−Xs−1) = η−1

s (Xs−Xs−1),
where ηs ≡ c2

sαs−1. Thus Xs = Xs−1 + ηsDs. It can be deduced from (13) that

X̃s = X̃s−1 + αs−1Ws−1. (17)

We now try to carry out an iterative formula for Ds. By (16), (17), one obtains that

Ds = α−1
s−1(X̃s − Xs−1) = α−1

s−1(X̃s − X̃s−1 + X̃s−1 − Xs−1)

= Ws−1 + α
−1
s−1(X̃s−1 − Xs−2 + Xs−2 − Xs−1)

= Ws−1 + α
−1
s−1(1 − c2

s−1)(X̃s−1 − Xs−2). (18)

Therefore, from Lemma 1, the recurrence for Ds is expressed by

Ds =Ws−1 + α
−1
s−1θ

2
s−1ηs−1Ds−1, (19)

where cs = (1 + θ2
s )−1/2, as defined in (15).

With (15), (17) and (19), we have generated the relations for Ds, θs, cs, τs and ηs respectively. Some
other relations, based on Gl-CGS, must be carried out to realize the actual implementation of Gl-TFQMR. It
should be noted that the matrices Rs are no longer the actual residuals in the algorithm, we hereby replace
it by Ls. From (7), it follows that

Ls = Ls−1 − αs−1A(Ws−1).

Here we use A(Wi) to update the matrices V2 j = A(P2 j). Imposing the linear operator A on both sides of
the equation in line 9 of Algorithm 1, we have

A(P2 j) = A(W2 j) + β2 j−2[A(Q2 j−2) + β2 j−2A(P2 j−2)].

Therefore, it holds that V2 j = A(W2 j) + β2 j−2[A(W2 j−1) + β2 j−2V2 j−2] by assuming Q2 j =W2 j+1. Furthermore,
we have the following relations

Ws+1 =Ws − αsVs for even s, Ws+1 = Ls+1 + βs−1Ws for odd s.

Based on the above process, the Gl-TFQMR method for solving the Sylvester equation (1) can be
presented in Algorithm 2.
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Algorithm 2 Global transpose-free quasi-minimal method (Gl-TFQMR).

1: Choose X0, set L0 = W0 = R0 = C −A(X0), V0 = A(W0), D0 = 0, θ0 = η0 = 0, and τ0 = ∥R0∥F. Choose R̃0

such that ρ0 =< R̃0,R0 >F, 0.
2: for s = 0, 1, · · · until convergence do
3: if s is even then
4: αs+1 = αs = ρs/ < Vs, R̃0 >F;
5: Ws+1 =Ws − αsVs;
6: end if
7: Ls+1 = Ls − αsA(Ws);
8: Ds+1 =Ws + α−1

s θ
2
sηsDs;

9: θs+1 = τ−1
s ∥Ls+1∥F, cs+1 = (1 + θ2

s+1)−1/2;
10: τs+1 = τsθs+1cs+1, ηs+1 = αsc2

s+1;
11: Xs+1 = Xs + ηs+1Ds+1;
12: if s is odd then
13: ρs+1 =< Ls+1, R̃0 >F, βs−1 = ρs+1/ρs−1;
14: Ws+1 = Ls+1 + βs−1Ws;
15: Vs+1 = A(Ws+1) + βs−1[A(Ws) + βs−1Vs−1];
16: end if
17: end for

Table 1 Iterations and CPU time (in sec.) for Example 1.

m Iterations (time)
Gl-GMRES(10) Gl-GMRES(20) Gl-GMRES(50) Gl-TFQMR

200 30(0.4780) 21(0.5404) 21(0.5961) 14(0.2949)
400 57(7.537) 37(7.709) 29(8.646) 24(4.382)
600 71(28.496) 55(33.714) 37(39.896) 28(15.457)
800 95(81.856) 69(91.688) 44(119.635) 37(43.584)
1000 119(309.548) 82(283.364) 57(370.902) 44(109.843)

A few comments are in order. If B = 0 in the Sylvester equation (1), then Algorithm 2 can be adopted
to solve the linear systems with multiple right-hand sides, namely, AX = C; furthermore, if n = 1, then
Algorithm 2 reduces to the classical TFQMR method for solving the general linear system [7, 17]. Like the
Gl-CGS method, the Gl-TFQMR method presented here can break down. Although such breakdowns are
very rare in practice, it is crucial to incorporate look-ahead and composite steps techniques which are not
pursued in this paper; see, for instance, [17] for more about the look-ahead technique. It should also be
noted that in Algorithm 2 there is no explicit formula for the residual matrices Rs (corresponding to Xs), the
F-norm of which are often used to check the convergence of the algorithm. However, a result at no extra
cost is available, namely,

∥Rs∥F ≤ ∥Rs+1 ∗ Σ−1
s+1∥F∥gs+1 −Hsys∥2 = τs(s + 1)1/2, (20)

where the relations (11), (14) and the inequality ∥(Rs+1 ∗ Σ−1
s+1) ∗ (gs+1 −Hsys)∥F ≤ ∥Rs+1 ∗ Σ−1

s+1∥F∥gs+1 −Hsys∥2
have been used. Therefore, we can examine the convergence of Algorithm 2 by using τs(s+ 1)1/2, the upper
bound of ∥Rs∥F in (20), instead of computing the actual values of ∥Rs∥F.

4. Numerical Examples

In this section, we give some numerical examples to demonstrate the effectiveness of Gl-TFQMR method.
Some recently proposed global methods, such as Gl-GMRES [12], Gl-CGS, G-GlCGS2 [20] and Gl-CRS [21],
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Fig. 1. Convergence histories of Gl-TFQMR and Gl-GMRES(k) with m = 1000, k = 10, 20, and 50.

are used for comparison. Though originally proposed for linear systems with multiple right-hand sides,
Gl-CGS, G-GlCGS2 and Gl-CRS, as stated in [20, 21], belong to the global methods and can be applied to the
Sylvester equation (1). All examples are terminated as soon as ∥Rk∥F/∥R0∥F ≤ 1e−8, where Rk and R0 denote
respectively the true residuals at the kth and the initial step. To report the true relative residual norms,
we compute the kth residual for Gl-TFQMR by Rk = C − AXk − XkB instead of using (20). The maximum
iterative step is set to be 500 and the initial matrix X0 is chosen to be zero. All computations are carried out
using Matlab 7.6.0.

Example 1. In this example, we compare Gl-TFQMR with Gl-GMRES(k), where k denotes the integer
number of iterations between restarts. The matrices in the Sylvester equation (1) are given by the Matlab
code [6]:

• A = triu(rand(m, m), 1) + diag(10 + diag(rand(m)))’;

• B = A’; C = rand(m,m)+eye(m)*2; C = C+C’;

The function rand in the above code returns a random matrix with coefficients uniformly distributed
on the unit interval. We consider different values of m in this example. For this example, as seen from
Table 1 and Fig. 1, Gl-TFQMR outperforms Gl-GMRES(k) with less iterations and CPU time. For small
values of m, say m = 200, Gl-TFQMR shows better performance by a small margin. However, memory
and computational requirements grow as m increases for Gl-GMRES. Yet Gl-TFQMR can reach the required
accuracy with relatively less iterations and time; see Table 1 for details.

Example 2. In this example, we compare the performances of Gl-TFQMR with Gl-CGS, G-GlCGS2 and
Gl-CRS. Three groups of matrices taken from the Matrix Market collection [15] are discussed: A1=utm1700a,
B1=fs7601; A2=rdb200, B2=A2; A3=watt2, B3=rand(35), Ci are generated by rand with conforming dimension
for i = 1, 2, and C3=1, where 1 is the matrix with all entries 1.

The orders, the numbers of nonzero elements and the application disciplines of these test matrices are
listed in Table 2. From Fig.2-Fig.4 and Table 3, we have the following observations for this example. (a)
Gl-CGS usually converges with less CPU time but its convergence curves are rather erratic. Such oscillating
behavior may possibly destroy the convergence, which is shown in Fig.4 (from step 350 to step 431). On
the contrary, Gl-TFQMR shows much smoother convergence curves than Gl-CGS. Peaks that appear in
the curves of Gl-CGS vanish in those of Gl-TFQMR while the original convergence property of Gl-CGS is
retained in Gl-TFQMR, which validates that Gl-TFQMR can be a remedy for the erratic behavior of Gl-
CGS. (b) Except the CPU time, Gl-TFQMR, G-GlCGS2 and Gl-CRS outperform Gl-CGS regarding iteration
number. (c) In terms of convergence curves, iteration steps and time, Gl-CRS shows moderate performance
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Table 2 Test matrices: the order (m) and the number of nonzero elements (nnz).
Matrix m nnz Application discipline
fs7601 760 5739 Chemical kinetics
rdb200 200 1120 Chemical engineering

utm1700a 1700 21313 Nuclear physics (plasmas)
watt2 1856 11550 Petroleum engineering
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Fig.2. Convergence histories for A1.
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Fig.3. Convergence histories for A2.

in this example. As for the comparison between Gl-TFQMR and G-GlCGS2, Gl-TFQMR presents smoother
convergence with less CPU time than G-GlCGS2 in all three testing groups, while G-GlCGS2 converges
with less iteration steps than Gl-TFQMR in all but the second testing group. The final true relative residual
norms (TRR) are also reported in Table 3; see Table 3 for details.
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Fig.4. Convergence histories for A3.

Table 3 Iterations, CPU time and TRR for Example 2.

Matrix Iter/Time/TRR
Gl-CGS G-GlCGS2 Gl-CRS Gl-TFQMR

A1 123/134.701/1.2e − 9 111/219.716/3.2e − 9 118/147.270/9.1e − 10 121/119.370/9.6e − 10
A2 125/1.581/9.5e − 9 125/2.8/9.5e − 9 125/2.230/9.2e − 9 124/2.005/9.9e − 9
A3 431/4.835/5.8e − 9 300/6.781/5.5e − 9 379/7.780/5.7e − 9 348/6.556/5.9e − 9

Table 4 Iterations, CPU time and TRR for Example 3.

(m,n) Iter/Time/TRR
G-GlCGS2 Gl-CRS Gl-TFQMR

(1000, 50) 24/0.523/9.3e − 9 21/0.341/4.4e − 9 21/0.260/9.8 − 9
(1000, 500) 61/45.152/3.6e − 9 55/24.259/9.9e − 9 57/20.509/8.6e − 9
(1000, 700) 69/88.022/6.4e − 9 60/49.152/9.8e − 9 63/35.617/9.7e − 9
(2000, 50) 23/1.018/3.0e − 9 21/0.681/5.7e − 9 21/0.933/7.9e − 9
(2000, 500) 68/96.394/5.5e − 9 60/50.393/7.5e − 9 62/42.466/8.5e − 9
(2000, 700) 75/187.092/7.6e − 9 68/95.416/7.8e − 9 71/76.473/8.9e − 9
(5000, 50) 23/2.748/2.2e − 9 21/2.054/6.7e − 9 21/2.024/8.9e − 9
(5000, 500) 71/245.272/6.9e − 9 63/127.852/9.8e − 9 66/112.924/8.8e − 9
(5000, 700) 82/508.868/7.8e − 9 73/255.861/9.8e − 9 77/209.703/9.6e − 9

Example 3. In this example, we consider the Sylvester eqaution (1) with A = tridiag(−1 + 10/(m +
1), 2,−1 + 10/(m + 1)), B = tridiag(−1 + 10/(n + 1), 2,−1 + 10/(n + 1)), and C= rand(m,n).

The numerical results are reported in Table 4 for different m and n. An overall conclusion observed from
Table 4 is that Gl-CRS and Gl-TFQMR show better performance than G-GlCGS2 in both iterations and time.
As for Gl-CRS and Gl-TFQMR, they perform similarly for small values n, for example, n = 50. Nevertheless,
Gl-TFQMR converges to the required accuracy, though with some additional marginal iterations, using less
CPU time than Gl-CRS as n increases.
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5. Conclusions

In this paper, we present a global transpose-free method with quasi-minimal residual technique for
solving the Sylvester equation. The resulting method can be attractive for the reason that it is transpose
free, with short-term recurrence and often has much smoother convergence than some other existing global
methods. Numerical results illustrate that the presented method not only has the smooth convergence but
preserves the fast convergence of the Gl-CGS method. The future work may include the theoretical analysis
of the convergence of Gl-TFQMR.
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