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Abstract. In this paper we establish some results concerning the mixed-type reverse order laws for the
Moore-Penrose inverse of various products of three elements in rings with involution.

1. Introduction

Let R be an associative ring with unity and an involution a 7→ a∗ satisfying (a∗)∗ = a, (a + b)∗ = a∗ + b∗,
(ab)∗ = b∗a∗. An element a ∈ R has Moore-Penrose inverse, if there exists b such that the following equations
hold [11]:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.

In this case, b is unique and denoted by a†. The set of all Moore-Penrose invertible elements of R is denoted
by R†.

The well-known reverse order law for the ordinary inverses states that (ab)−1 = b−1a−1, where a and b
are invertible in R. However, this formula cannot trivially be extended to the Moore-Penrose inverse of
ab. Many authors studied this problem and gave some equivalent conditions for (ab)† = b†a†, as well as
(ab)† = b†(a†abb†)†a† in settings of matrices, C∗-algebra and rings (see, e.g., [1]-[10] and [12]). In 2007, Y. Tian
[13] investigated necessary and sufficient conditions for a group of mixed-type reverse order laws to hold
for the Moore-Penrose inverse of a triple matrix product. Recently, N. Č. Dinčić and D. S. Djordjević [2]
studied mixed-type reverse order law for various products of three operators on Hilbert spaces. Motivated
by [13] and [2], we consider mixed-type reverse order law for Moore-Penrose inverse of products of three
elements in rings with involution.

Rank formulas played an important role in [13], while [2] adopted the matrix representation of operators
with respect to the orthogonal decomposition of Hilbert spaces. In contrast to the above papers, we present
a purely ring theoretical proof of some equivalent conditions related to the mixed-type reverse order law
for the Moore-Penrose inverse. Thus, some known results from [2] are extend to more general settings.
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2. Main Results

We start with some simple lemmas on Moore-Penrose inverse that will be used later on in the paper.

Lemma 2.1. The following hold true for any a ∈ R†.
(i) a∗a, aa∗ ∈ R†. Moreover, (a∗a)† = a†(a∗)†, (aa∗)† = (a∗)†a† and a† = (a∗a)†a∗ = a∗(aa∗)†.
(ii) (aa∗)†(aa∗) = (aa∗)(aa∗)† and (a∗a)†(a∗a) = (a∗a)(a∗a)†.
(iii) (aa∗)n

∈ R† and [(aa∗)n]† = [(aa∗)†]n, where n is any positive integer.
(iv) (aa∗)na ∈ R† and [(aa∗)na]† = a†[(aa∗)†]n = a†[(a†)∗a†]n for any positive integer n.

Proof. (i) is straightforward to check.
(ii) The first equality holds since (aa∗)†(aa∗) = ((aa∗)†(aa∗))∗ = (aa∗)∗((aa∗)†)∗ = (aa∗)(aa∗)†. The second can

be verified similarly.
(iii) follows by (ii).
(iv) [(aa∗)na]† = a†[(aa∗)†]n follows by (i), (ii) and (iii). a†[(aa∗)†]n = a†[(a†)∗a†]n follows by (aa∗)† = (a∗)†a†

in (i).

Lemma 2.2. Let a ∈ R and b ∈ R† be such that a∗ = a and bR ⊆ aR. Then abR = bR if and only if abb† = bb†a.

Proof. If abR = bR, there exists r ∈ R such that ab = br. Then abb† = brb† = bb†brb† = bb†abb† and
bb†a = (bb†)∗a∗ = (abb†)∗ = (bb†abb†)∗ = (bb†)∗a∗(bb†)∗ = bb†abb† = abb†.

Conversely, if abb† = bb†a then we have abR ⊆ bR since ab = abb†b = bb†ab. By hypothesis bR ⊆ aR, there
exists r′ ∈ R such that b = ar′. Consequently, b = bb†b = bb†ar′ = abb†r′. This implies bR ⊆ abR. Therefore,
abR = bR.

Lemma 2.3. Let b ∈ R and a ∈ R† be such that a∗ = a. Then a†bR = bR if and only if abR = bR.

Proof. If a†bR = bR, there exist r, r′ ∈ R such that b = a†br and a†b = br′. Then we get ab = aa†br = aa†a†brr =
(aa†)∗a†brr = (a†)∗a∗a†brr = a†aa†brr = a†brr = br′rr. This implies abR ⊆ bR. Simultaneously, we have
bR ⊆ abR since b = a†br = a†aa†br = (a†a)∗a†br = aa†a†br = aa†b = abr′. This shows bR = abR.

Conversely, if abR = bR then (a†)†bR = abR = bR. By the above argument, we have a†bR = bR.

Next, we prove the mixed-type reverse order law for the MP-inverse of various products of three
elements. In what follows, let a1, a2, a3 ∈ R and m = a1a2a3.

Theorem 2.4. Suppose that a1, a3,m, a†1ma†3 ∈ R†. Then the following statements are equivalent:
(i) m† = a†3(a†1ma†3)†a†1.
(ii) a1a∗1mR = mR and a∗3a3m∗R = m∗R.

Proof. (i)⇒(ii) By hypothesis, we have the following equation

m† = a†3(a†1ma†3)†a†1
= a†3(a†1ma†3)†(a†1ma†3)(a†1ma†3)†a†1
= a†3(a†1ma†3)∗((a†1ma†3)†)∗(a†1ma†3)†a†1. (1)

Multiplying (1) by a3 from the left-hand side, we get

a3m† = a3a†3(a†1ma†3)∗((a†1ma†3)†)∗(a†1ma†3)†a†1
= a3a†3(a†3)∗(a†1m)∗((a†1ma†3)†)∗(a†1ma†3)†a†1
= (a†1ma†3)∗((a†1ma†3)†)∗(a†1ma†3)†a†1
= (a†1ma†3)†(a†1ma†3)(a†1ma†3)†a†1
= (a†1ma†3)†((a†1ma†3)†)∗(a†1ma†3)∗a†1. (2)
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Multiplying (2) by a1 from the right-hand side, we get

a3m†a1 = (a†1ma†3)†((a†1ma†3)†)∗(a†1ma†3)∗a†1a1

= (a†1ma†3)†((a†1ma†3)†)∗(a†1ma†3)∗ = (a†1ma†3)†, (3)

whence

(a†1ma†3)(a†1ma†3)† = a†1ma†3a3m†a1 = a†1mm†a1.

It follows that a†1mm†a1 = (a†1mm†a1)∗. Multiplying it by a1 from the left-hand side and a∗1 from the right-
hand side, we get a1a†1mm†a1a∗1 = a1(a†1mm†a1)∗a∗1. Note that a1a†1mm†a1a∗1 = mm†a1a∗1 and a1(a†1mm†a1)∗a∗1 =

a1a∗1(m†)∗m∗(a†1)∗a∗1 = a1a∗1mm†. So we have

mm†a1a∗1 = a1a∗1mm†. (4)

Similarly, one can verify
(a†1ma†3)†(a†1ma†3) = a3m†a1(a†1ma†3) = a3m†ma†3,

from which we can see that a3m†ma†3 = (a3m†ma†3)∗. Multiplying it by a∗3 from the left-hand side and a3 from
the right-hand side, we get

a∗3a3m†ma†3a3 = a∗3(a3m†ma†3)∗a3.

This yields

a∗3a3m†m = m†ma∗3a3. (5)

Since m = a1a2a3 = (a1a∗1)((a†1)∗a2a3) and m∗ = a∗3a∗2a∗1 = (a∗3a3)(a†3a∗2a∗1), it follows that mR ⊆ (a1a∗1)R and
m∗R ⊆ (a∗3a3)R. By (4), (5) and Lemma 2.2, we have a1a∗1mR = mR and a∗3a3m∗R = m∗R.

(ii)⇒(i) By hypothesis and Lemma 2.2, we have mm†a1a∗1 = a1a∗1mm† and a∗3a3m†m = m†ma∗3a3. Multiply
the first equation from the left-hand side by a†1 and from the right-hand side by (a†1)∗, and multiply the
second equation from the left-hand side by (a†3)∗ and from the right-hand side by a†3, then we get a†1mm†a1 =

a∗1mm†(a†1)∗ and a3m†ma†3 = (a†3)∗m†ma∗3.
Now, it is straightforward to check (a†1ma†3)† = a3m†a1. Finally, we have

a†3(a†1ma†3)†a†1 = a†3a3m†a1a†1 = a†3a3m†mm†a1a†1 = (m†ma†3a3)∗m†a1a†1
= m†mm†a1a†1 = m†(a1a†1mm†)∗ = m†(mm†)∗ = m†.

If a1 and a3 have MP-inverse then a1a2a3 = (a†1)∗(a∗1a1a2a3a∗3)(a†3)∗. Substituting ã1 = (a†1)∗, ã2 = a∗1a1a2a3a∗3
and ã3 = (a†3)∗ for a1, a2 and a3 respectively in Theorem 2.4, we can establish another representation for m†

under suitable conditions.

Theorem 2.5. Suppose that a1, a3, m, a∗1ma∗3 ∈ R†. Then the following statements are equivalent:
(i) m† = a∗3(a∗1ma∗3)†a∗1.
(ii) a1a∗1mR = mR and a∗3a3m∗R = m∗R.

Proof. By hypothesis, m = a1a2a3 = (a†1)∗(a∗1a1a2a3a∗3)(a†3)∗. Let

ã1 = (a†1)∗, ã2 = a∗1a1a2a3a∗3, ã3 = (a†3)∗.

Then we have m = ã1ã2ã3, ã1, ã3 ∈ R† and (ã1)†m(ã3)† = a∗1ma∗3 ∈ R†.
According to Theorem 2.4, we know that the following conditions are equivalent:
(i′) m† = (ã3)†((ã1)†m(ã3)†)†(ã1)†;
(ii′) ã1(ã1)∗mR = mR and (ã3)∗ã3m∗R = m∗R.

Note that (ã3)†((ã1)†m(ã3)†)†(ã1)† = a∗3(a∗1ma∗3)†a∗1, ã1(ã1)∗ = (a†1)∗a†1 = (a1a∗1)† and (ã3)∗ã3 = a†3(a†3)∗ = (a∗3a3)†. Thus
(i′) and (ii′) can be restated as follows:
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(i) m† = a∗3(a∗1ma∗3)†a∗1;
(ii′) (a1a∗1)†mR = mR and (a∗3a3)†m∗R = m∗R.

By Lemma 2.3, (ii′) is equivalent to (ii). Therefore, the result follows.

Using a similar method as in Theorem 2.5, we obtain the following result based on Theorem 2.4.

Theorem 2.6. If a1, a3,m, ((a1a∗1)†)km((a∗3a3)†)l
∈ R†, then the following statements are equivalent for all positive

integers k and l:
(i) m† = ((a∗3a3)†)l(((a1a∗1)†)km((a∗3a3)†)l)†((a1a∗1)†)k.
(ii) (a1a∗1)2kmR = mR and (a∗3a3)2lm∗R = m∗R.

Proof. By Lemma 2.1(iii), we have ((a∗3a3)†)l = ((a∗3a3)l)† and ((a1a∗1)†)k = ((a1a∗1)k)†. Thus condition (i) can be
restated as

(i) m† = ((a∗3a3)l)†(((a1a∗1)k)†m((a∗3a3)l)†)†((a1a∗1)k)†.
Note that m = (a1a∗1)k((a1a∗1)†)k−1(a∗1)†a2(a†3)∗((a∗3a3)†)l−1(a∗3a3)l. We define ã1 = (a1a∗1)k, ã2 = ((a1a∗1)†)k−1(a∗1)†a2(a†3)∗((a∗3a3)†)l−1

and ã3 = (a∗3a3)l. Then m = ã1ã2ã3. By Lemma 2.1(iii), we have ã1, ã3 ∈ R†. In addition, (ã1)†m(ã3)† =

((a1a∗1)†)km((a∗3a3)†)l
∈ R†. In view of Theorem 2.4, we know that the following are equivalent:

(i′) m† = (ã3)†((ã1)†m(ã3)†)†(ã1)†;
(ii′) ã1(ã1)∗mR = mR and (ã3)∗ã3m∗R = m∗R.

But (i′) is just a restatement of (i) while (ii′) coincides with (ii) since ã1(ã1)∗ = (a1a∗1)2k and (ã3)∗ã3 = (a∗3a3)2l.

Taking k = l = 1 in Theorem 2.6, we obtain the following corollary, which will be used in the next section.

Corollary 2.7. Let a1, a3,m, (a1a∗1)†m(a∗3a3)† ∈ R†. Then the following statements are equivalent:
(i) m† = (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†.
(ii) (a1a∗1)2mR = mR and (a∗3a3)2m∗R = m∗R.

Remark 2.8. Since (a1a∗1)†m(a∗3a3)† = (a1a∗1)†a1a2a3(a∗3a3)† = (a∗1)†a2(a∗3)† = (a†3a∗2a†1)∗, the equality in Corollary
2.7(i) can be written as m† = (a∗3a3)†((a†3a∗2a†1)†)∗(a1a∗1)†.

From Theorem 2.5, we have the following result.

Theorem 2.9. Let a1, a3,m, (a1a∗1)km(a∗3a3)l
∈ R†. Then the following statements are equivalent for all positive

integers k and l:
(i) m† = (a∗3a3)l((a1a∗1)km(a∗3a3)l)†(a1a∗1)k.
(ii) (a1a∗1)2kmR = mR and (a∗3a3)2lm∗R = m∗R.

Proof. By Lemma 2.1, it is easy to check

m = (a1a∗1)k(((a1a∗1)†)k−1(a†1)∗a2(a†3)∗((a∗3a3)†)l−1)(a∗3a3)l.

Let ã1 = (a1a∗1)k, ã2 = ((a1a∗1)†)k−1(a∗1)†a2(a†3)∗((a∗3a3)†)l−1, ã3 = (a∗3a3)l. Then m = ã1ã2ã3. By Lemma 2.1 again,
we have ã1, ã3 ∈ R†. Simultaneously, (ã1)∗m(ã3)∗ = (a1a∗1)km(a∗3a3)l

∈ R† by hypothesis.
Now, Theorem 2.5 ensures that the following are equivalent:
(i′) m† = (ã3)∗((ã1)∗m(ã3)∗)†(ã1)∗;
(ii′) ã1(ã1)∗mR = mR and (ã3)∗ã3m∗R = m∗R.

It is easy to see that (i′) and (ii′) coincide with (i) and (ii), respectively. Therefore, (i) and (ii) are equivalent.

As a particular case of Theorem 2.9, we have the following corollary.

Corollary 2.10. The following are equivalent provided that a1, a3, m, a1a∗1ma∗3a3 ∈ R†.
(i) m† = a∗3a3(a1a∗1ma∗3a3)†a1a∗1.
(ii) (a1a∗1)2mR = mR and (a∗3a3)2m∗R = m∗R.
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Theorem 2.11. Suppose that a1, a3,m, ((a1a∗1)ka1)†m((a3a∗3)la3)† ∈ R†. Then the following statements are equivalent
for all positive integers k and l:

(i) m† = ((a3a∗3)la3)†(((a1a∗1)ka1)†m((a3a∗3)la3)†)†((a1a∗1)ka1)†.
(ii) (a1a∗1)2k+1mR = mR and (a∗3a3)2l+1m∗R = m∗R.

Proof. First, we recompose m as m = ((a1a∗1)ka1)(((a∗1a1)†)ka2((a3a∗3)†)l)((a3a∗3)la3). Then set ã1 = (a1a∗1)ka1,
ã2 = ((a∗1a1)†)ka2((a3a∗3)†)l, ã3 = (a3a∗3)la3. By Lemma 2.1(iv), we have ã1, ã3 ∈ R†. Moreover, (ã1)†m(ã3)† =

((a1a∗1)ka1)†m((a3a∗3)la3)† ∈ R†.
By Theorem 2.4, we know that

m† = (ã3)†((ã1)†m(ã3)†)†(ã1)† ⇔ ã1(ã1)∗mR = mR and (ã3)∗ã3m∗R = m∗R.

Thus, the result follows from the following facts:
(1) (ã3)†((ã1)†m(ã3)†)†(ã1)† = ((a3a∗3)la3)†(((a1a∗1)ka1)†m((a3a∗3)la3)†)†((a1a∗1)ka1)†;
(2) ã1(ã1)∗ = (a1a∗1)2k+1 and (ã3)∗ã3 = (a∗3a3)2l+1.

The following corollary is a special case of Theorem 2.11.

Corollary 2.12. Let a1, a3,m, (a1a∗1a1)†m(a3a∗3a3)† ∈ R†. Then the following statements are equivalent:
(i) m† = (a3a∗3a3)†((a1a∗1a1)†m(a3a∗3a3)†)†(a1a∗1a1)†.
(ii) (a1a∗1)3mR = mR and (a∗3a3)3m∗R = m∗R.

Theorem 2.13. Suppose that a1, a3, m, ((a1a∗1)ka1)∗m((a3a∗3)la3)∗ ∈ R†. Then the following conditions are equivalent
for any positive integers k and l:

(i) m† = ((a3a∗3)la3)∗(((a1a∗1)ka1)∗m((a3a∗3)la3)∗)†((a1a∗1)ka1)∗.
(ii) (a1a∗1)2k+1mR = mR and (a∗3a3)2l+1m∗R = m∗R.

Proof. Let ã1 = (a1a∗1)ka1, ã2 = ((a∗1a1)†)ka2((a3a∗3)†)l, and ã3 = (a3a∗3)la3. Then m = ã1ã2ã3. As a consequence of
Lemma 2.1(iv), we have ã1, ã3 ∈ R†. Moreover, (ã1)∗m(ã3)∗ = ((a1a∗1)ka1)∗m((a3a∗3)la3)∗ ∈ R†.

By Theorem 2.5, m† = (ã3)∗((ã1)∗m(ã3)∗)†(ã1)∗ if and only if ã1(ã1)∗mR = mR and (ã3)∗ã3m∗R = m∗R. It can
be verified that

(ã3)∗((ã1)∗m(ã3)∗)†(ã1)∗ = ((a3a∗3)la3)∗(((a1a∗1)ka1)∗m((a3a∗3)la3)∗)†((a1a∗1)ka1)∗,

ã1(ã1)∗ = (a1a∗1)2k+1 and (ã3)∗ã3 = (a∗3a3)2l+1. This completes the proof.

By taking k = l = 1 in Theorem 2.13, we obtain the following corollary.

Corollary 2.14. Let a1, a3,m, (a1a∗1a1)∗m(a3a∗3a3)∗ ∈ R†. Then the following statements are equivalent:
(i) m† = (a3a∗3a3)∗((a1a∗1a1)∗m(a3a∗3a3)∗)†(a1a∗1a1)∗.
(ii) (a1a∗1)3mR = mR and (a∗3a3)3m∗R = m∗R.
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3. Some Equivalencies

In this section, whenever we write a† we will assume a ∈ R has Moore-Penrose inverse. The results
presented in previous section are connected as follows.

Theorem 3.1. The following statements are equivalent:
(i) m† = a†3(a†1ma†3)†a†1.
(ii) m† = a∗3(a∗1ma∗3)†a∗1.
(iii) a†3(a†1ma†3)†a†1 = (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†.
(iv) a∗3(a†1ma†3)†a∗1 = a∗3a3m†a1a∗1.
(v) (a†1ma†3)† = a3m†a1.
(vi) a∗3(a∗1ma∗3)†a∗1 = a∗3a3(a1a∗1ma∗3a3)†a1a∗1.
(vii) a1a∗1mR = mR and a∗3a3m∗R = m∗R.

Proof. (i)⇔(ii)⇔(vii) follows from Theorem 2.4 and 2.5.
(iii)⇒(vii) First we have

a†3(a†1ma†3)†a†1
= (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†

= (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†m(a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†

= (a∗3a3)†((a1a∗1)†m(a∗3a3)†)∗(((a1a∗1)†m(a∗3a3)†)†)∗((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†. (6)

Multiplying (6) by a∗3a3 from the left-hand side, we have

(a∗3a3)(a†3(a†1ma†3)†a†1)

= ((a1a∗1)†m(a∗3a3)†)∗(((a1a∗1)†m(a∗3a3)†)†)∗((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†

= ((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†

= ((a1a∗1)†m(a∗3a3)†)†(((a1a∗1)†m(a∗3a3)†)†)∗((a1a∗1)†m(a∗3a3)†)∗(a1a∗1)†. (7)

Multiplying (7) by a1a∗1 from the right-hand side, we have

(a∗3a3)(a†3(a†1ma†3)†a†1)(a1a∗1)

= ((a1a∗1)†m(a∗3a3)†)†((a1a∗1)†m((a∗3a3)†)†)∗((a1a∗1)†m(a∗3a3)†)∗

= ((a1a∗1)†m(a∗3a3)†)†.

Hence ((a1a∗1)†m(a∗3a3)†)† = (a∗3a3)(a†3(a†1ma†3)†a†1)(a1a∗1) = a∗3(a†1ma†3)†a∗1. This implies

((a1a∗1)†m(a∗3a3)†)((a1a∗1)†m(a∗3a3)†)† = ((a1a∗1)†m(a∗3a3)†)a∗3(a†1ma†3)†a∗1
= (a†1)∗(a†1ma†3)(a†1ma†3)†a∗1.

By the condition (3) in the definition of MP-inverse, we have[
(a†1)∗(a†1ma†3)(a†1ma†3)†a∗1

]∗
= (a†1)∗(a†1ma†3)(a†1ma†3)†a∗1.

Multiplying it from the left-hand side by a∗1 and from the right-hand side by a1, we obtain

a∗1
[
(a†1)∗(a†1ma†3)(a†1ma†3)†a∗1

]∗
a1 = a∗1(a†1)∗(a†1ma†3)(a†1ma†3)†a∗1a1,

a∗1a1((a†1ma†3)†)∗(a†1ma†3)∗a†1a1 = (a†1ma†3)(a†1ma†3)†a∗1a1,

a∗1a1((a†1ma†3)†)∗(ma†3)∗(a†1)∗a†1a1 = (a†1ma†3)(a†1ma†3)†a∗1a1

and

a∗1a1(a†1ma†3)(a†1ma†3)† = (a†1ma†3)(a†1ma†3)†a∗1a1. (8)
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Then we have a∗1a1(a†1ma†3) = a∗1a1(a†1ma†3)(a†1ma†3)†(a†1ma†3) and by (8) we get

a∗1ma†3 = (a†1ma†3)(a†1ma†3)†(a∗1a1)(a†1ma†3) (9)

Multiplying (9) from the left-hand side by a1 and from the right-hand side by a3, we get a1a∗1m =

a1(a†1ma†3)(a†1ma†3)†(a∗1a1)a†1m = ma†3(a†1ma†3)†a∗1m. Consequently, it follows that a1a∗1mR ⊆ mR.
By (3.3), we also have

a†1ma†3 = (a†1ma†3)(a†1ma†3)†(a†1ma†3)

= (a†1ma†3)(a†1ma†3)†(a∗1a1)(a†1(a†1)∗a2a3a†3)

= (a∗1a1)(a†1ma†3)(a†1ma†3)†(a†1(a†1)∗a2a3a†3) (10)

Multiplying (10) by a1 from the left-hand side and a3 from the right-hand side, one can see

m = a1a∗1ma†3(a†1ma†3)†a†1(a†1)∗a2a3,

which induces mR ⊆ a1a∗1mR. Thus, mR = a1a∗1mR.
Similarly, we have

((a1a∗1)†m(a∗3a3)†)†((a1a∗1)†m(a∗3a3)†) = a∗3(a†1ma†3)†a∗1((a1a∗1)†m(a∗3a3)†)

= a∗3(a†1ma†3)†(a†1ma†3)(a†3)∗.

By the condition (4) in the definition of MP-inverse, we have

(a∗3(a†1ma†3)†(a†1ma†3)(a†3)∗)∗ = a∗3(a†1ma†3)†(a†1ma†3)(a†3)∗

and hence

a†3(a†1ma†3)∗((a†1ma†3)†)∗a3 = a∗3(a†1ma†3)†(a†1ma†3)(a†3)∗. (11)

Multiplying (11) by a3 from the left-hand side and a∗3 from the right-hand side, we get

a3a†3(a†1ma†3)∗((a†1ma†3)†)∗a3a∗3 = a3a∗3(a†1ma†3)†(a†1ma†3)(a†3)∗a∗3,

i.e.,

(a†1ma†3)†(a†1ma†3)a3a∗3 = a3a∗3(a†1ma†3)†(a†1ma†3). (12)

This implies

a3m∗(a†1)∗ = a3a∗3(a†1ma†3)∗

= a3a∗3(a†1ma†3)†(a†1ma†3)(a†1ma†3)∗

= (a†1ma†3)†(a†1ma†3)a3a∗3(a†1ma†3)∗. (13)

Multiplying (13) by a∗3 from the left-hand side and a∗1 from the right-hand side, we get

a∗3a3m∗(a†1)∗a∗1 = a∗3(a†1ma†3)∗((a†1ma†3)∗)†a3a∗3(a†1ma†3)∗a∗1

and
a∗3a3m∗ = m∗(a†1)∗((a†1ma†3)∗)†a3a∗3(a†1ma†3)∗a∗1,

from which one can see that a∗3a3m∗R ⊆ m∗R.
By (12) we also have

(a†1ma†3)∗ = (a†1ma†3)†(a†1ma†3)(a†1ma†3)∗

= (a†1ma†3)†(a†1ma†3)(a3a∗3)((a†3)∗a†3(a2)∗a†1a1)

= (a3a∗3)(a†1ma†3)†(a†1ma†3)((a†3)∗a†3(a2)∗a†1a1). (14)
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Multiplying (14) from the left-hand side by a∗3 and from the right-hand side by a∗1, we obtain

a∗3(a†1ma†3)∗a∗1 = a∗3(a3a∗3)(a†1ma†3)∗((a†1ma†3)†)∗((a†3)∗a†3(a2)∗a†1a1)a∗1.

Since m∗ = a∗3(a†3)∗m∗(a†1)∗a∗1 = a∗3(a†1ma†3)∗a∗1 and

a∗3a3m∗(a†1)∗((a†1ma†3)†)∗(a†3)∗a†3(a2)∗a∗1
= a∗3a3a∗3(a†3)∗m∗(a†1)∗((a†1ma†3)†)∗(a†3)∗a†3(a2)∗a∗1
= a∗3(a3a∗3)(a†1ma†3)∗((a†1ma†3)†)∗((a†3)∗a†3(a2)∗a†1a1)a∗1,

it follows that m∗R ⊆ a∗3a3m∗R. So we have m∗R = a∗3a3m∗R.
(vii)⇒(iii) By hypothesis, we have (a1a∗1)2mR = mR and (a∗3a3)2m∗R = m∗R. In view of Theorem 2.4 and

Corollary 2.7, it follows that m† = a†3(a†1ma†3)†a†1 and m† = (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†. Hence

a†3(a†1ma†3)†a†1 = (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†.

(vi)⇔(vii) Let ã1 = (a†1)∗, ã2 = a∗1a1a2a3a∗3 and ã3 = (a†3)∗. Then m = ã1ã2ã3. From the proof of (iii)⇔(vii),
one can see the following conditions are equivalent:

(vi′) (ã3)†((ã1)†m(ã3)†)†(ã1)† = (ã3
∗ã3)†((ã1ã1

∗)†m(ã3
∗ã3)†)†(ã1ã1

∗)†;
(vii′) ã1(ã1)∗mR = mR and (ã3)∗ã3m∗R = m∗R,

where (vi′) coincides with (vi) since (ã1)† = a∗1, (ã3)† = a∗3, (ã1)∗ = a†1 and (ã3)∗ = a†3. Moreover, (vii′) can be
translated into

(vii′′) (a1a∗1)†mR = mR and (a∗3a3)†m∗R = m∗R,
which is equivalent to (vii) by Lemma 2.3.

(iv)⇒(v) Suppose that a∗3(a†1ma†3)†a∗1 = a∗3a3m†a1a∗1. Multiplying this equation by (a†3)∗ from the left-hand
side and by (a†1)∗ from the right-hand side, we obtain

(a†3)∗a∗3(a†1ma†3)†a∗1(a†1)∗ = a3a†3(a†1ma†3)†a†1a1 = (a†3)∗a∗3a3m†a1a∗1(a†1)∗.

Note the fact: p(ap)† = (ap)† and (pa)†p = (pa)†, where p is a orthogonal projection.
Since a3a†3 and a†1a1 are orthogonal projections, it follows that a3a†3(a†1ma†3)†a†1a1 = (a†1ma†3)†. Therefore,
(a†1ma†3)† = (a†3)∗a∗3a3m†a1a∗1(a†1)∗ = a3m†a1.

(v)⇒(iv) is obvious.
(v)⇔(vii) By the proof of the Theorem 2.4, one can verify the following equivalence:

(a†1ma†3)† = a3m†a1

⇔ a1a∗1mm† = mm†a1a∗1 and a∗3a3m†m = m†ma∗3a3

⇔ a1a∗1mR = mR and a∗3a3m∗R = m∗R.

This completes the proof.

Theorem 3.2. The following statements are equivalent:
(i) m† = (a∗3a3)†((a1a∗1)†m(a∗3a3)†)†(a1a∗1)†.
(ii) m† = a∗3a3(a1a∗1ma∗3a3)†a1a∗1.
(iii) a†3(a†1ma†3)†a†1 = a∗3(a∗1ma∗3)†a∗1.
(iv) (a1a∗1)2mR = mR and (a∗3a3)2m∗R = m∗R.

Proof. (i)⇔(iv) See Corollary 2.7.
(ii)⇔(iv) See Corollary 2.10.
(iii)⇒(iv) Multiplying the equation in (iii) by a3 from the left-hand side and a1 from the right side,

we obtain a3a∗3(a∗1ma∗3)†a∗1a1 = a3a†3(a†1ma†3)†a†1a1. Since a3a†3 and a†1a1 are orthogonal projections, we have
a3a†3(a†1ma†3)†a†1a1 = (a†1ma†3)†. Therefore,

(a†1ma†3)† = a3a∗3(a∗1ma∗3)†a∗1a1. (15)
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From which it follows that

(a†1ma†3)(a†1ma†3)† = (a†1ma†3)(a3a∗3(a∗1ma∗3)†a∗1a1)

= a†1ma∗3(a∗1ma∗3)†a∗1a1

= (a∗1a1)†(a∗1ma∗3)(a∗1ma∗3)†a∗1a1.

By the condition (3) in the definition of MP-inverse, we have

((a∗1a1)†(a∗1ma∗3)(a∗1ma∗3)†a∗1a1)∗ = (a∗1a1)†(a∗1ma∗3)(a∗1ma∗3)†a∗1a1.

Multiplying it by a∗1a1 from the left-hand side and a∗1a1 from the right-hand side, we get

a∗1a1a∗1a1((a∗1ma∗3)†)∗(a∗1ma∗3)∗(a∗1a1)†a∗1a1 = a∗1a1(a∗1a1)†(a∗1ma∗3)(a∗1ma∗3)†a∗1a1a∗1a1.

Hence (a∗1a1)2(a∗1ma∗3)(a∗1ma∗3)† = (a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)2. Consequently,

(a∗1a1)2(a∗1ma∗3) = (a∗1a1)2(a∗1ma∗3)(a∗1ma∗3)†(a∗1ma∗3)

= (a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)2(a∗1ma∗3). (16)

Multiplying (16) by (a∗1)† from the left-hand side and (a∗3)† from the right-hand side, we get

(a∗1)†(a∗1a1)2(a∗1ma∗3)(a†3)∗ = (a∗1)†(a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)2(a∗1ma∗3)(a†3)∗,

which means (a1a∗1)2m = ma∗3(a∗1ma∗3)†((a∗1a1)2a∗1m. This guarantees (a1a∗1)2mR ⊆ mR.
From (15) it also follows that

a∗1ma∗3 = (a∗1ma∗3)(a∗1ma∗3)†(a∗1ma∗3)

= (a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)2(a†1(a†1)∗a2a3a∗3)

= (a∗1a1)2(a∗1ma∗3)(a∗1ma∗3)†(a†1(a†1)∗a2a3a∗3).

Whence

m = (a†1)∗a∗1ma∗3(a†3)∗

= (a†1)∗(a∗1a1)2(a∗1ma∗3)(a∗1ma∗3)†(a†1(a†1)∗a2a3a∗3)(a†3)∗

= (a1a∗1)2ma∗3(a∗1ma∗3)†a†1(a†1)∗a2a3.

This implies mR ⊆ (a1a∗1)2mR. So we have mR = (a1a∗1)2mR.
By a similar argument, one can show (a∗3a3)2m∗R = m∗R.
(iv)⇒(iii) First, we claim that (a∗1a1)2a∗1ma∗3R = a∗1ma∗3R. Indeed, since (a1a∗1)2mR = mR, there exist

r1, r2 ∈ R such that (a1a∗1)2m = mr1 and m = (a1a∗1)2mr2. This induces a∗1(a1a∗1)2m = a∗1mr1, (a∗1a1)2a∗1ma∗3 =

a∗1mr1a∗3 = a∗1ma∗3(a†3)∗r1a∗3 and a∗1ma∗3 = a∗1(a1a∗1)2mr2a∗3 = (a∗1a1)2a∗1ma∗3(a†3)∗r2a∗3. Thus, (a∗1a1)2a∗1ma∗3R = a∗1ma∗3R.
Similarly, it follows that (a3a∗3)2(a∗1ma∗3)∗R = (a∗1ma∗3)∗R.
Now, in view of Lemma 2.2, we have

(a∗1a1)2(a∗1ma∗3)(a∗1ma∗3)† = (a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)2

and
(a3a∗3)2(a∗1ma∗3)†(a∗1ma∗3) = (a∗1ma∗3)†(a∗1ma∗3)(a3a∗3)2.

Based on these two equations, one can verify

(a∗1a1)(a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)† = (a∗1a1)†(a∗1a1)2(a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)†

= (a∗1a1)†(a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)2(a∗1a1)†

= (a∗1a1)†(a∗1ma∗3)(a∗1ma∗3)†(a∗1a1)
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and
(a3a∗3)(a∗1ma∗3)†(a∗1ma∗3)(a3a∗3)† = (a3a∗3)†(a∗1ma∗3)†(a∗1ma∗3)(a3a∗3).

Combining these with the fact that a†1 = (a∗1a1)†a∗1 and a†3 = a∗3(a3a∗3)†, it is easy to check that (a†1ma†3)† =

a3a∗3(a∗1ma∗3)†a∗1a1. Therefore, a†3(a†1ma†3)†a†1 = a†3a3a∗3(a∗1ma∗3)†a∗1a1a†1 = a∗3(a∗1ma∗3)†a∗1.

Theorem 3.3. The following statements are equivalent:
(i) m† = (a3a∗3a3)†((a1a∗1a1)†m(a3a∗3a3)†)†(a1a∗1a1)†.
(ii) m† = (a3a∗3a3)∗((a1a∗1a1)∗m(a3a∗3a3)∗)†(a1a∗1a1)∗.
(iii) a†3(a†1ma†3)†a†1 = a∗3a3(a1a∗1ma∗3a3)†a1a∗1.
(iv) (a†1ma†3)† = a3a∗3a3(a1a∗1ma∗3a3)†a1a∗1a1.
(v) (a1a∗1)3mR = mR and (a∗3a3)3m∗R = m∗R.

Proof. (i)⇔(ii)⇔(v) follows from Corollary 2.12 and 2.14.
(iii)⇒(iv) By hypothesis, it is clear that

a3a∗3a3(a1a∗1ma∗3a3)†a1a∗1a1 = a3a†3(a†1ma†3)†a†1a1.

Moreover, we have a3a†3(a†1ma†3)†a†1a1 = (a†1ma†3)† since a3a†3 and a†1a1 are orthogonal projections. Therefore,
(a†1ma†3)† = a3a∗3a3(a1a∗1ma∗3a3)†a1a∗1a1.

(iv)⇒(v) By Lemma 2.1(iv), we have

(a†1ma†3)(a†1ma†3)† = (a†1ma†3)a3a∗3a3(a1a∗1ma∗3a3)†a1a∗1a1

= a†1ma∗3a3(a1a∗1ma∗3a3)†a1a∗1a1

= (a1a∗1a1)†(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†a1a∗1a1.

By the condition (3) of the definition of MP-inverse, we get

((a1a∗1a1)†(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†a1a∗1a1)∗ = (a1a∗1a1)†(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†a1a∗1a1.

Multiply it by a1a∗1a1 from the left-hand side and (a1a∗1a1)∗ from the right-hand side, we can see

a1a∗1a1(a1a∗1a1)∗((a1a∗1ma∗3a3)†)∗(a1a∗1ma∗3a3)∗

= (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†a1a∗1a1(a1a∗1a1)∗,

which can be simplified as

(a1a∗1)3(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)† = (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)3. (17)

Consequently, we have

(a1a∗1)3(a1a∗1ma∗3a3) = (a1a∗1)3(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1ma∗3a3)

= (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)3(a1a∗1ma∗3a3).

Multiplying it by a†3(a†3)∗ from the right-hand side, we get

(a1a∗1)3(a1a∗1ma∗3a3)(a3)†(a†3)∗ = (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)3(a1a∗1ma∗3a3)(a3)†(a†3)∗,

i.e.,
(a1a∗1)4m = (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)4m.

Multiplying it by (a†1)∗a†1 from the left-hand side, we have (a1a∗1)3m = ma∗3a3(a1a∗1ma∗3a3)†(a1a∗1)4m. Hence
(a1a∗1)3mR ⊆ mR.
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On the other hand, (17) induces

a1a∗1ma∗3a3 = (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1ma∗3a3)

= (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)3(a1a∗1)†(a†1)∗a2a3a∗3a3

= (a1a∗1)3(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)†(a†1)∗a2a3a∗3a3.

Multiplying it by (a†1)∗a†1 from the left-hand side and a†3(a†3)∗ from the right-hand side, we get m = (a1a∗1)3ma∗3a3(a1a∗1ma∗3a3)†(a1a∗1)†(a†1)∗a2a3a∗3a3(a∗3a3)†,
from which we can see mR ⊆ (a1a∗1)3mR. Hence, (a1a∗1)3mR = mR.

The equality (a∗3a3)3m∗R = m∗R can be proved in a similar way.
(v)⇒(iii) First, we claim that (a1a∗1)3a1a∗1ma∗3a3R = a1a∗1ma∗3a3R. Indeed, since (a1a∗1)3mR = mR, there exist

r1, r2 ∈ R such that (a1a∗1)3m = mr1 and m = (a1a∗1)3mr2. Hence

(a1a∗1)3a1a∗1ma∗3a3 = a1a∗1mr1a∗3a3 = a1a∗1ma∗3a3(a∗3a3)†r1a∗3a3

and
a1a∗1ma∗3a3 = a1a∗1(a1a∗1)3mr2a∗3a3 = (a1a∗1)3a1a∗1ma∗3a3(a∗3a3)†r2a∗3a3.

Now, (a1a∗1)3a1a∗1ma∗3a3R = a1a∗1ma∗3a3R is clear.
Simultaneously, a similar argument shows (a∗3a3)3(a1a∗1m∗a∗3a3)∗R = (a1a∗1m∗a∗3a3)∗R from (a∗3a3)3m∗R = m∗R.
By Lemma 2.2, we know that

(a1a∗1)3(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)† = (a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)3 (18)

and

(a∗3a3)3(a1a∗1ma∗3a3)†(a1a∗1ma∗3a3) = (a1a∗1ma∗3a3)†(a1a∗1ma∗3a3)(a∗3a3)3. (19)

Then by (18), we have

(a1a∗1a1)∗(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†((a1a∗1a1)†)∗

= (a1a∗1a1)†(a1a∗1)3(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†((a1a∗1a1)†)∗

= (a1a∗1a1)†(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1)3((a1a∗1a1)†)∗

= (a1a∗1a1)†(a1a∗1ma∗3a3)(a1a∗1ma∗3a3)†(a1a∗1a1).

Similarly, by (19), we have

(a3a∗3a3)(a1a∗1ma∗3a3)†(a1a∗1ma∗3a3)(a3a∗3a3)†

= ((a3a∗3a3)†)∗(a1a∗1ma∗3a3)†(a1a∗1ma∗3a3)(a3a∗3a3)∗.

By Lemma 2.1(iv), we have a†1 = (a1a∗1a1)†a1a∗1 and a†3 = a∗3a3(a3a∗3a3)†. Consequently, it is not hard to check
(a†1ma†3)† = a3a∗3a3(a1a∗1ma∗3a3)†a1a∗1a1. Therefore, a†3(a†1ma†3)†a†1 = a†3a3a∗3a3(a1a∗1ma∗3a3)†a1a∗1a1a†1 = a∗3a3(a1a∗1ma∗3a3)†a1a∗1.

We conclude this section by a corollary which follows from Theorem 2.6 and 2.9.

Corollary 3.4. The following statements are equivalent:
(i) m† = ((a∗3a3)†)2(((a1a∗1)2)†m((a∗3a3)2)†)†((a1a∗1)†)2.
(ii) m† = (a∗3a3)2((a1a∗1)2m(a∗3a3)2)†(a1a∗1)2.
(iii) (a1a∗1)4mR = mR and (a∗3a3)4m∗R = m∗R.
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[3] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl., 29 (2007) 1242–1246.
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