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Abstract. In the present paper, we obtain some new fixed point theorems for set-valued contractive and
nonexpansive mappings in the setting of ultrametric spaces. Our theorems complement, generalize and
extend some well known results of Petalas and Vidalis [A fixed point theorem in non-Archimedean vector
spaces, Proc. Amer. Math. Soc 118(1993), 819–821.], Suzuki [A new type of fixed point theorem in metric
spaces, Nonlinear Anal. 71(2009), 5313-5317.] and others.

1. Introduction and Preliminaries

Let (X, d) be a metric space and T : X → X a self-mapping. The mapping T is said to be contractive if
d(Tx,Ty) < d(x, y) for all x, y ∈ X with x , y and nonexpansive if d(Tx,Ty) ≤ d(x, y) for all x, y ∈ X. It is well
known that the contractive and nonexpansive mappings are necessarily continuous on the whole domain.
Further, it is also interesting to note that these mappings (contractive and nonexpansive) need not have a
fixed point in a complete metric space. Followings are the well known examples.

Example 1.1. [6]. Let X = (−∞,−∞) endowed with the usual metric and T : X→ X defined by

Tx = x +
1

1 + ex

for all x ∈ X. Notice that X is complete and T is contractive mapping but T does not have a fixed point.

Example 1.2. Let X = [0,∞) endowed with the usual metric and T : X→ X defined by

Tx = 1 + x

for all x ∈ X. Notice that X is complete and T is a nonexpansive mapping but T does not have a fixed point.

A metric space (X, d) is said to be ultrametric space if the triangle inequality is replaced by the strong
triangle inequality, i.e.,

d(x, y) ≤ max{d(x, z), d(y, z)}

for all x, y, z ∈ X.
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Example 1.3. [2]. Every discrete metric space is an ultra-metric space.

An ultrametric space (X, d) is said to be spherically complete if every descending collections of closed balls
in X has nonempty intersection.

Petalas and Vidalis in [6], studied the sufficient condition for existence of fixed points of contractive and
nonexpansive mappings on ultrametric spaces and obtained the following theorems:

Theorem 1.4. Let (X, d) be a spherically complete ultrametric space and T : X→ X a contractive mapping. Then T
has a unique fixed point.

Theorem 1.5. Let (X, d) be a spherically complete ultrametric space and T : X→ X a nonexpansive mapping. Then
either T has at least one fixed point or there exists a ball B of radius r > 0 such that T : B → B and for which
d(b,Tb) = r for each b ∈ B.

A number of extensions and generalizations of Theorem 1.4 and 1.5 have appeared in [2–5] and others.

In this paper, we obtain some fixed point theorems for certain classes of contractive and nonexpansive
mappings, which are not necessarily continuous. Our results extend and generalize a number of fixed point
theorems including the above theorems of Petalas and Vidalis [6].

2. Contractive Mappings

In [1], Edelstein proved that every contractive self-mapping of a compact space has a fixed point. Suzuki
[7], obtained the following generalization of Edelstein’s theorem.

Theorem 2.1. [7]. Let (X, d) be a compact metric space and T : X→ X mapping. Assume that

1
2

d(x,Tx) < d(x, y) implies d(Tx,Ty) < d(x, y),

for x, y ∈ X. Then T has a unique fixed point.

A mapping satisfying the conditions of the Theorem 2.1 need not be continuous [7, example 1].

In this section we shall obtain a set-valued extension of the above theorem in a spherically complete
ultrametric space.

Let (X, d) be an ultrametric space and C(X) the collection of all compact subsets of X. The Hausdorffmetric
induced by d is defined by

H(A,B) = max

sup
x∈A

d(x,B), sup
y∈B

d(y,A)


for all A,B ⊆ C(X), where d(x,B) = inf

y∈B
d(x, y).

Let T : X→ C(X) be a set-valued mapping. A point z ∈ X is said to be a fixed point of T if z ∈ Tz.

The following theorem is our main result of this section.

Theorem 2.2. Let (X, d) be a spherically complete ultrametric space and T : X → C(X) a set-valued mapping.
Assume that

1
2

d(x,Tx) < d(x, y) implies H(Tx,Ty) < d(x, y) (2.1)

for x, y ∈ X. Then T has a fixed point.

0)The proof techniques have been used from [5, 6].



R. Pant / Filomat 28:2 (2014), 313–317 315

Proof. We define Ba := B (a, r), the closed balls centered at a with radii r = d(a,Ta). Let A be the collection
of these balls for all a ∈ X. The relation

Ba ≤ Bb iff Bb ⊆ Ba

is a partial order. Let A1 be a totally ordered subfamily of A . From the spherical completeness of X, we
have ∩

Ba∈A1

Ba := B , ∅.

Let b ∈ B and Ba ∈ A1. Then if x ∈ Bb,

d(x, b) ≤ d(b,Tb) ≤ max{d(b, a), d(a,Ta),H(Ta,Tb)}.

Since 1
2 d(a, b) < d(a, b) for all a, b ∈ X, by (2.1), we get

d(x, b) ≤ max{d(b, a), d(a,Ta), d(a, b)} = max{d(a, b), d(a,Ta)}. (2.2)

Now for x ∈ Bb

d(x, a) ≤ max{d(a, b), d(b, x)}.

By the fact that d(a, b) ≤ d(a,Ta) and (2.2), we get

d(x, a) ≤ max{d(a, b), d(b, x)} ≤ d(a,Ta).

Hence x ∈ Ba and Bb ⊆ Ba for every Ba ∈ A1. Thus Bb is an upper bound in A for the family A1. By
Zorn’s lemma, A has a maximal element, say Bz, for some z ∈ X. We shall show that z ∈ Tz. Suppose that
z < Tz. Then the compactness of Tz implies that there exists w ∈ Tz with w , z such that d(w, z) = d(z,Tz).
We show that Bw ⊆ Bz.

If u ∈ Bw then d(w,u) ≤ d(w,Tw). Since w ∈ Tz and 1
2 d(w, z) < d(w, z) for all w, z ∈ X, we have

d(w,u) ≤ d(w,Tw) ≤ H(w,Tw) < d(z,w) = d(z,Tz).

Also

d(u, z) ≤ max{d(u,w), d(w, z)} ≤ d(z,Tz).

Therefore u ∈ Bz and Bw ⊆ Bz. But as

d(w,Tw) ≤ H(Tw,Tz) < d(w, z),

z < Bw, so Bw  Bz. This contradicts the maximality of Bz. Therefore T has a fixed point.

When T is a single valued mapping on X, we get the following corollary, which generalizes Theorem 1.4
and extends Theorem 2.1.

Corollary 2.3. Let (X, d) be a spherically complete ultrametric space and T : X→ X a mapping. Assume that

1
2

d(x,Tx) < d(x, y) implies d(Tx,Ty) < d(x, y)

for all x, y ∈ X. Then T has a unique fixed point.



R. Pant / Filomat 28:2 (2014), 313–317 316

3. Nonexpansive Mappings

In [8], Suzuki introduced the following notion of condition (C), which is weaker than nonexpansiveness.

Definition 3.1. Let C be a nonempty subset of a metric space (X, d) and T : C → C a mapping. The mapping T is
said to satisfy the condition (C) if

1
2

d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ d(x, y) (C)

for all x, y ∈ C.

Every nonexpansive mapping satisfies the condition (C), but the converse is not true. Further, the mapping
satisfying condition (C), need not be continuous [8, Example 1].

Now we obtain a fixed point theorem for a set-valued mapping satisfying Suzuki’s type condition.

Theorem 3.2. Let (X, d) be a spherically complete ultrametric space and T : X → C(X) a set-valued mapping.
Assume that

1
2

d(x,Tx) ≤ d(x, y) implies H(Tx,Ty) ≤ d(x, y) (3.1)

for x, y ∈ X. Then either T has at least one fixed point or there exists a ball B of radius r > 0 such that T : B→ B and
for which d(b,Tb) = r for each b ∈ B.

Proof. Let Ba and A as in the proof of Theorem 2.2. We find a maximal element Bz of A . For any b ∈ Bz,
we have

d(b,Tb) ≤ max{d(b, z), d(z,Tz),H(Tz,Tb)}.
Since 1

2 d(b, z) ≤ d(b, z), by (3.1), the above inequality leads to

d(b,Tb) ≤ max{d(b, z), d(z,Tz), d(z, b)} = d(z,Tz).

Thus Bb ⊆ Bz (since b ∈ Bz ∩Bb) and Tb ∈ Bz. If z ∈ Tz then z is fixed point of T.

Finally, we show that if z < Tz then d(b,Tb) = d(z,Tz). Suppose that for some b ∈ Bz

d(b,Tb) < d(z,Tz).

We know that d(b, z) ≤ d(z,Tz). Now

d(z,Tz) ≤ max{d(z, b), d(b,Tb),H(Tb,Tz)}.
Since 1

2 d(b, z) ≤ d(b, z), by (3.1), we get

d(z,Tz) ≤ max{d(z, b), d(b,Tb), d(b, z)} = d(b, z).

Hence we get d(b,Tb) < d(z,Tz) = d(b, z). This implies that z < Bz, which is impossible from the maximality
of Bz. Thus

d(b,Tb) = d(z,Tz) := r ∀b ∈ Bz.

When T is a single valued mapping on X, we get the following corollary, which generalizes Theorem 1.5.

Corollary 3.3. (Compare [4, Theorem 4]). Let (X, d) be a spherically complete ultrametric space and T : X→ X a
mapping. Assume that

1
2

d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤ d(x, y)

for x, y ∈ X. Then either T has at least one fixed point or there exists a ball B of radius r > 0 such that T : B→ B and
for which d(b,Tb) = r for each b ∈ B.
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