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Abstract. In this article, we establish several properties of the composition of functions which are related
to certain classes of completely monotonic functions and logarithmically completely monotonic functions.

1. Introduction, Preliminaries and the Main Results

Throughout this paper, we denote byN the set of all positive integers,

N0 :=N ∪ {0} and R+ := (0,∞).

Furthermore, I+ is an open interval contained in R+, Io is the interior of the interval I ⊂ R, R is the set of all
real numbers, R( f ) denotes the range of the function f and C(I) is the class of all continuous functions on
the interval I.

We first recall some definitions which we shall use and some basic results which are related to them.

Definition A (see [27]). A function f is said to be absolutely monotonic on an interval I, if f ∈ C(I) has
derivatives of all orders on Io and

f (n)(x) = 0 (x ∈ Io)

for all n ∈N0.

The class of all absolutely monotonic functions on I is denoted by AM(I).

Definition B (see [27]). A function f is said to be completely monotonic on an interval I, if f ∈ C(I) has
derivatives of all orders on Io and

(−1)n f (n)(x) = 0 (x ∈ Io)

for all n ∈N0.
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Remark 1. In the existing literature on the subject of our investigation, the terminology completely monotone
is also used instead of the terminology completely monotonic which we have used in our present investigation.

The class of all completely monotonic functions on I is denoted by CM(I).

By Leibniz’s rule for the derivative of order n of the function f1, we can easily prove that, if
f , 1 ∈ CM(I)

(
AM(I)

)
, then f1 ∈ CM(I)

(
AM(I)

)
.

Definition C (see [2] and [19]). A function f is said to be logarithmically completely monotonic on an
interval I if f > 0, f ∈ C(I) has derivatives of all orders on Io and

(−1)n[ln f (x)](n) = 0 (x ∈ Io)

for all n ∈N0.

The set of all logarithmically completely monotonic functions on I is denoted by LCM(I).

The result below was proved recently (see, for example, [19]).

Theorem A. The following assertion holds true: LCM(I) ⊂ CM(I).

Definition D (see [26]). A function f is said to be strongly completely monotonic on I+ if, for all n ∈ N0,
the functions (−1)nxn+1 f (n)(x) are nonnegative and decreasing on I+.

The class of strongly completely monotonic functions on I+ is denoted by SCM(I+).

Definition E (see [12]). A function f is said to be strongly logarithmically completely monotonic on I+ if
f > 0 and

(−1)nxn+1[ln f (x)](n) (n ∈N)

are nonnegative and decreasing on I+.

The class of strongly logarithmically completely monotonic on I+ is denoted by SLCM(I+).

It is apparent that if each of the functions f and 1 belongs to

SLCM(I+)
(
LCM(I)

)
,

then
f1 ∈ SLCM(I+)

(
LCM(I)

)
.

Guo and Srivastava [12] proved an important relationship between SLCM(R+) and SCM(R+) as follows.

Theorem B (see [12]). The following assertion holds true:

SLCM(R+) ∩ SCM(R+) = ∅.

The following result (see [12]) also reveals a relationship between SLCM(I+) and SCM(I+).

Theorem C (see [12]). Suppose that

f ∈ C(I+), f > 0 and f ′ ∈ SCM(I+).

If
x f ′(x) = f (x) (x ∈ I+),

then
1
f
∈ SLCM(I+).
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Remark 2. The condition:
x f ′(x) = f (x) (x ∈ I+)

in Theorem C can not be dropped. See a counterexample given by Guo and Srivastava [12].

In order to simplify the statements of our results, we also use the following two terminologies.

Definition F (see [12]). A function f is said to be almost strongly completely monotonic on I+ if, for all
n ∈N, the functions (−1)nxn+1 f (n)(x) are nonnegative and decreasing on I+.

The class of all almost strongly completely monotonic functions on the interval I+ is denoted by ASCM(I+).

Definition G (see [25]). A function f is said to be almost completely monotonic on an interval I, if the
function f ∈ C(I) has derivatives of all orders on Io and

(−1)n f (n)(x) = 0 (x ∈ Io)

for all n ∈N.

The class of almost completely monotonic functions on the interval Iis denoted by ACM(I+).

The following result was established by Guo and Srivastava [12].

Theorem D (see [12]). The following assertion holds true: SLCM(I+) ⊂ ASCM(I+).

For compositions of completely monotonic and related functions, the following two results were given
in [27, Chapter IV]

Theorem E. Suppose that
f ∈ AM(I1), 1 ∈ AM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ AM(I).

Theorem F. Suppose that
f ∈ AM(I1), 1 ∈ CM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ CM(I).

The result below is a converse of Theorem F (see [17, Theorem 5]).

Theorem G. Let the function f be defined on [0,∞). If, for each 1 ∈ CM(R+), f ◦ 1 ∈ CM(R+), then
f ∈ AM(R+).

Recently, Srivastava et al. [25] proved a number of interesting results including (for example)the
following theorem.

Theorem H (see [25]). Suppose that

f ∈ AM(I), 1 ∈ ASCM(I+) and R(1) ⊂ I.

Then f ◦ 1 ∈ ASCM(I+).

There is a rich literature on completely monotonic and related functions. For several recent works, see
(for example) [1], [3], [5] to [15], [16] and [18] to [25].

In this article, we further investigate the properties of the composition of functions which are related
to the above-defined classes of completely monotonic functions and logarithmically completely monotonic
functions. We begin by stating our main results as follows.
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Theorem 1. Suppose that

f ∈ ACM(I1), 1 ∈ C(I), 1′ ∈ CM(Io) and R(1) ⊂ I1.

Then f ◦ 1 ∈ ACM(I).

Corollary 1. Suppose that

f ∈ ACM(I1), −1 ∈ ACM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ ACM(I).

Theorem 2. Suppose that

f ∈ LCM(I1), 1 ∈ C(I), 1′ ∈ CM(Io) and R(1) ⊂ I1.

Then f ◦ 1 ∈ LCM(I).

Theorem 3. Suppose that

f ∈ SLCM(I+
1 ), 1′ ∈ SCM(I+) and R(1) ⊂ I+

1 .

If
2x1′(x) = 1(x) (x ∈ I+),

then f ◦ 1 ∈ SLCM(I+).

Remark 3. The condition:
2x1′(x) = 1(x) (x ∈ I+)

in Theorem 3 cannot be waived. For example, we let

f (x) := e1/x and 1(x) := ln x

and suppose that
I+ := (e2,∞).

Then it is easy to verify that
f ∈ SLCM(R+) and 1′ ∈ SCM(I+).

Moreover, the following condition:
2x1′(x) = 1(x) (x ∈ I+)

is not satisfied. We can show that

h(x) := f ◦ 1(x) = exp
( 1

ln x

)
< SLCM(I+).

In fact, we have

(−1)1x2[ln h(x)]′ =
x

ln2 x
→∞ (x→∞).

Therefore, the function (−1)1x2[ln h(x)]′ cannot be decreasing on I+. Consequently, we find that

f ◦ 1 < SLCM(I+).

Theorem 4. Suppose that

f ∈ LCM(I1), −1 ∈ ACM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ LCM(I).

Theorem 5. Let I1 and I be open intervals. Also let f and 1 be defined on I1 and I, respectively. If

f ′ ∈ LCM(I1), 1′ ∈ LCM(I) and R(1) ⊂ I1,

then ( f ◦ 1)′ ∈ LCM(I).
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2. A Set of Lemmas

We need each of the following lemmas to prove our main results which are stated already in Section 1.

Lemma 1 (see [4, p. 21]). Suppose that the functions y = y(x) (x ∈ I1) and x = ϕ(t) (t ∈ I) are n times
differentiable and that R(ϕ) ⊂ I1. Then, for t ∈ I,

dny
dtn =

∑
(i1,...,in)∈Λn

( n!
i1! · · · in!

) dmy(ϕ(t))
dxm

n∏
j=1


(
ϕ( j)(t)

j!

)i j
 ,

where
m = i1 + · · · + in

and

Λn :=
{
(i1, . . . , in) : i1, . . . , in ∈N0 and

n∑
ν=1

νiν = n
}
. (1)

Lemma 2 (see [25, Theorem 3]). Suppose that

f ∈ ASCM(I+
1 ), 1′ ∈ SCM(I+) and R(1) ⊂ I+

1 .

If
2x1′(x) = 1(x) (x ∈ I+),

then f ◦ 1 ∈ ASCM(I+).

3. Proofs of the Main Results

Proof. [Proof of Theorem 1]

Let
h(x) := f ◦ 1(x) = f

(
1(x)

)
(x ∈ I).

By Lemma 1, for n ∈N, we find that

(−1)nh(n)(x) = (−1)n
∑

(i1,...,in)∈Λn

( n!
i1! · · · in!

)
f (m)(1(x))

n∏
j=1


(
1( j)(x)

j!

)i j


=
∑

(i1,...,in)∈Λn

( n!
i1! · · · in!

)
(−1)m f (m)(1(x))

n∏
j=1


(

(−1) j−11( j)(x)
j!

)i j
 , (2)

where
m = i1 + · · · + in = 1

and Λn is defined by (1).
Since

f ∈ ACM(I1) and R(1) ⊂ I1,

we get, for i ∈N,

(−1)i f (i)
(
1(x)

)
= 0 (x ∈ I). (3)
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Since 1′ ∈ CM(I), we find for j ∈N0 that

(−1) j
(
1′(x)

)( j)
= (−1) j1( j+1)(x) = 0 (x ∈ I)

or, equivalently, that

(−1)i−11(i)(x) = 0 (x ∈ I; i ∈N). (4)

By (3) and (4), we find from (2) that

(−1)nh(n)(x) = 0 (x ∈ I)

for n ∈N.

The proof of Theorem 1 is thus completed.

Proof. [Proof of Corollary 1]

Since

−1 ∈ ACM(I),

we get
1 ∈ C(I) and 1′ ∈ CM(Io).

Then, by Theorem 1, we find that
f ◦ 1 ∈ ACM(I).

This evidently completes the proof of Corollary 1.

Proof. [Proof of Theorem 2]

Since
f ∈ LCM(I1),

we get
ln f ∈ ACM(I1).

Then, by Theorem 1, we have

(ln f ) ◦ 1 ∈ ACM(I). (5)

Since
(ln f ) ◦ 1 = ln( f ◦ 1),

wev find from (5) that

ln( f ◦ 1) ∈ ACM(I). (6)

Also, from (6) we observe that
f ◦ 1 ∈ LCM(I).

The proof of Theorem 2 is thus completed.



S. Guo et al. / Filomat 28:4 (2014), 821–828 827

Proof. [Proof of Theorem 3]

Since
f ∈ SLCM(I+

1 ),

we get
ln f ∈ ASCM(I+

1 ).

Then, by Lemma 2, we have

(ln f ) ◦ 1 ∈ ASCM(I+). (7)

Since

ln( f ◦ 1) = (ln f ) ◦ 1, (8)

we find from (7) that

ln( f ◦ 1) ∈ ASCM(I+). (9)

Furthermore, from (9), we see that
f ◦ 1 ∈ SLCM(I+).

The proof of Theorem 3 is evidently completed.

Proof. [Proof of Theorem 4]

Since
f ∈ LCM(I1),

we get

ln f ∈ ACM(I1). (10)

Then, by Corollary 1, we have

(ln f ) ◦ 1 ∈ ACM(I). (11)

Since

(ln f ) ◦ 1 = ln( f ◦ 1), (12)

we find from (11) that

ln( f ◦ 1) ∈ ACM(I). (13)

Moreover, from (13), we observe that
f ◦ 1 ∈ LCM(I).

The proof of Theorem 4 is thus completed.

Proof. [Proof of Theorem 5]

First of all, we know that

( f ◦ 1)′(x) = f ′
(
1(x)

)
· 1′(x) (14)

By Theorem 2 and in view of the fact that

LCM(I) ⊂ CM(I),
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we have

f ′ ◦ 1 ∈ LCM(I). (15)

Since
1′ ∈ LCM(I),

we find from (14) and (15) that
( f ◦ 1)′ ∈ LCM(I).

This evidently completes the proof of Theorem 5.
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