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Abstract. In this paper, we prove some stability results for Jensen-type quadratic functional equations
x+ x -
2f(S5E) +2(5) = e + £
flax+ay) + flax —ay) = 20° f(x) + 2 f(y)

in intuitionistic fuzzy normed spaces for a nonzero real number a with a # +1.

1. Introduction

The study of stability problem for functional equations is related to a question of Ulam [37] concerning
the stability of group homomorphism, which was affirmatively answered by Hyers [8] for Banach spaces.
Subsequently, Hyers’ result was generalized by Aoki [1] for additive mappings and Rassias [31] for linear
mappings by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of
influence in the development of what we now call the generalized Hyers-Ulam stability or Hyers-Ulam-
Rassias stability of functional equations. Rassias [30] considered the Cauchy difference controlled by a
product of different powers of norms. The above results have been generalized by Forti [4] and Gavruta
[5] who permitted the Cauchy difference to become arbitrarily unbounded. For further new progress on
such problems, the reader is referred to [2, 3, 6, 9, 11, 12, 17, 32, 33]. For a fuzzy version one is referred
to [13-16, 28]. Quite recently, the stability problem for Jensen functional equations, Pexiderized quadratic
functional equations, cubic functional equations, mixed type additive and cubic functional equations have
been considered in [18, 20, 21, 26, 38]. The idea of intuitionistic fuzzy normed space was studied in
[19, 22-25,27, 34] in order to deal with some summability problems.

Recently, interesting results concerning Jensen-type functional equations

21 () + 27 (52 ) = w0 + 5w @
flax +ay) + f(ax — ay) = 2a° f(x) + 2a*f(y) @)
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have been obtained in [10], where 4 is a nonzero real number and a # +1. The main purpose of this paper
is to prove the stability of the Jensen-type functional equations (1) and (2) in the setting of intuitionistic
fuzzy normed space. The results obtained in this paper extend a number of recent well-know results in the
subject.

2. Preliminaries

In this section by using the idea of intuitionistic fuzzy metric spaces introduced by Park [29] and
Saadati-Park [34], we define a new notion of intuitionistic fuzzy metric spaces with the help of the notion
of continuous t-representable [7].

Lemma 2.1. (cf. [35]). Consider the set L* and the order relation <[ defined by
L* = {(x1,%2)l(x1,%2) € [0,1], %1 + x5 < 1},
(x1,x2) <1 (Y1, ¥2) &= x1 S Y1, %2 = Yo, Y(x1,X2), (Y1, y2) € L.
Then (L*, <1-) is a complete lattice.
Definition 2.2. (cf. [35]). An intuitionistic fuzzy set A, in a universal set U is an object A, = {(C(w), n(u))lu €

Uy}, where, for all u € U, Ca(u) € [0,1] and na(u) € [0, 1] are called the membership degree and the nonmembership
degree, respectively, of u in A, and, furthermore, they satisfy Ca(u) + na(u) < 1.

We denote its units by 0;- = (0,1) and 1;- = (1, 0). Classically, a triangular norm T = * on [0, 1] is defined
as an increasing, commutative, associative mapping T : [0, 1> — [0,1] satisfying T(1,x) = 1*x = x for
all x € [0,1]. A triangular conorm S = ¢ is defined as an increasing, commutative, associative mapping
S :[0,1]?> — [0,1] satisfying S(0,x) = 0 o x = x for all x € [0, 1].

Using the lattice (L*, <;-), these definitions can be extended in a straightforward manner.

Definition 2.3. (cf. [35]). A triangular norm (t-norm) on L* is a mapping T : (L*)*> — L* satisfying the following
conditions:

(@) (Vx € L*)(7 (x,11-) = x) (boundary condition);

(b) (Y(x,y) € (LY)NT (x,y) = T (y, x)) (commutativity);

(©) (Y(x,y,2) € (LP)NT (x, T (v,2)) = T (T (x, y),2)) (associativity);

(d) (V(x, ¥, y,y) € L)) (x < ¥ and y <p ¥ = T (x,y) <1 7 (¥, y’) (monotonicity).

Definition 2.4. (cf. [35]). A continuous t-norm T on L* is said to be continuous t-representable if there exist a
continuous t-norm = and a continuous t-conorm < on [0, 1] such that, for all x = (x1,x2), y = (y1,y2) € L,

T (x,y) = (x1*y1,%2 ¢ ¥2).

Example 2.5. Foralla = (a1,a2),b = (b1, bp) € L*, consider

T (a,b) = (a1b1, min{a, + by, 1})
M(a, b) = (min{ay, b1}, max{ay, by}).

Then T (a, b) and M(a, b) are continuous t-representable.
Now, we define a sequence 7" recursively by 7' = 7~ and
7D, Dy = (D, L x ™), w1 D)

foralln > 2 and x® e L*.



Zhihua Wang et al. / Filomat 28:4 (2014), 663—676 665

Definition 2.6. A negator on L* is any decreasing mapping N : L — L* satisfying N(0r-) = 1r- and N(11-) = Op-.
If N(N(x)) = x for all x € L*, then N is called an involutive negator. A negator on [0,1] is a decreasing mapping
N : [0,1] — [0,1] satisfying N(0) = 1 and N(1) = 0. N, denotes the standard negator on ([0, 1], <) defined by
Ns=1-xforallx €[0,1].

Definition 2.7. (cf. [35]). The triple (X,P,T) is said to be an IFNS if X is a vector space, T is a continuous
t-representable, and P is a mapping X x (0, 00) — L*, satisfying the following conditions for all x,y € X and t,s > 0:
(i) P(x, ) > Or:;

(i) P(x, t) = 11~ if and only if x = 0;

(iii) P(ax, t) = P (x, &) forall a # 0;

(v) Plx+y, t+s) = T (Px, 1), Py, 1);

(v) P(x,-) : (0,00) — L* is continuous;

(vi) limy—y 0o P(x, £) = 1.

In this case, P is called an intuitionistic fuzzy norm on X. Given u and v, membership and nonmembership
degrees of an intuitionistic fuzzy set from X x (0, o) to [0, 1], such that

ulx, t) +vix, t) <1
forall x € X and t > 0, we write

Pl 1) = (U, 1), v(x, ).

Example 2.8. (cf. [36]). Let (X, || - ||) be a normed space,
7 (a,b) = (a1b1, min{a, + by, 1})

foralla = (ay,a2),b = (b1, by) € L*, and u, v be membership and nonmembership degree of an intuitionistic fuzzy set
defined by

t [l
t+ 1l £+ [l

Puv(x, t) = (ulx, t), v(x, 1)) =( ) Vi e R*.
Then (X, Py, T) is an IFNS.

In Example 2.8, p(x, t) + v(x,t) = 1 for all x € X. We present an example in which u(x, t) + v(x, t) < 1 for
x # 0. This example is a modification of the example of Saadati and Park [34].

Example 2.9. (cf. [36]). Let (X, || - ||) be a normed space,
7 (a,b) = (a1by, min{ay + by, 1})

foralla = (a1,a2),b = (b1, b2) € L*, and u, v be membership and non-membership degree of an intuitionistic fuzzy set

defined by
t llxll )

P 8) = (s, 0,160, ) = (s 7y i
forall t € R* in which m > 1. Then (X, Py, T") is an IFNS. Here,

ulx, ) +v(x, t)=1,forx =0;
ulx, t) +v(x, t) <1, for x # 0.

Lemma 2.10. (cf. [35]). Let P, be an intuitionistic fuzzy norm on X. Then P, (x, t) is nondecreasing with respect
totforall x € X.
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The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed space are studied
in [34].
Let (X, PW, 7)) be an IFNS. Then, a sequence {x,} is said to be intuitionistic fuzzy convergent to a point

x € X (denoted by x, LR x) if Py (xy — x,t) — 1p- as n — oo for every t > 0. The sequence {x,} is said
to be intuitionistic fuzzy Cauchy sequence if for every ¢ > 0 and t > 0, there exists ny € IN such that
Puy(Xn = Xm, t) > 1-(Ns(€), €) for all n,m > ng, where N is the standard negator. (X,%,,,,7) is said to be
complete if every intuitionistic fuzzy Cauchy sequence in (X, #,,,,7") is intuitionistic fuzzy convergent in
(X, Py, T). A complete IFNS is called an intuitionistic fuzzy Banach space.

3. Intuitionistic fuzzy stability

Throughout this section, assume that X, (Z, P;,lv, M) and (Y, Py, M) are linear space, IFNS, intuition-
istic fuzzy Banach space, respectively. We prove the intuitionistic fuzzy stability of Jesen-type quadratic
functional equations (1) and (2) in the setting of intuitionistic fuzzy normed space,

Theorem 3.1. Let f : X — Y be an even mapping with f(0) = 0. Suppose that ¢ is a mapping from X to an
intuitionistic fuzzy normed space (Z, P, ,, M) such that

uyvs

Pun (27 (552) 421 (552) - 0 - Ft +5) 2 MU (000, 0,2, (000, 9)
)

forall x,y € X\{0} and all positive real numbers t,s. If p(3x) = a@(x) for some positive real number o with o <9,
then there exists a unique quadratic mapping Q : X — Y such that

9 —a)t
PuntQ) - 0,02 17, (5, O35 @
forall x € X and t > 0, where
3 3 3
PN (x t) - M3 (@( ) t)/ P;W(ﬁo(zx)/ Et)r P;;,v((P(?’x) t) P[uv((P(O)/ Et)}
Proof. Setting y = 3x and s = ¢ in (3), we obtain
Puv(2f(2x) + 2f(=x) = f(x) — f(3x),2t) > L M{P},,(p(x), 1), P, . (p(3x), 1)} ®)
for all x € X and all t > 0. Replacing x by 2x, y by 0 and s by ¢ in (3), we get
Pup@f(x) = f(22),28) 2 - MIP,,((2x), 1), P}, (9(0), ). (6)
Thus
P (9f(x) - f(3x),61) > L*M3{ P (@), 1), P, (0(2%), 1),
1 (P(3x), t)Pw(qo(O), Bl @)
and so
3
Py (f(x) - @t) > P (®)

for all x € X and all t > 0, where

P 0 = M (P (000, 31), P (020, 51). 2 (060, 51). 27, (0000, 31)}.
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Then by our assumption, we have
t
P13y, = P, (x, —) 9)
"\Na
Replacing x by 3"x in (8) and applying (9), we get

f(3”x) f(3n+1x) a't ; f(3n+1x) ;
Pﬂﬂ/( gn - gn+l 7 g_n = P,U,V f(3 x) — 9 st
> P, 3" a"t)
1P D). (10)

For all x € X,t > 0 and all non-negative integers n and m with n > m, we have

f(SnX) f(3mx) Lt gy ~ n-l f(3k+1x) (3k -
PP’/‘ 911 gm ’ki ? - PP’/V kZ 9k+1 - kZ
. f(3m+1 f( ) Oémt
z M ' (7):“'1/ ( gm+1 gm 7 gm |/
p (B0 fGT) it
Y gn gn-1 7 gn-1
L P ). (1)
Hence
f@"%)  f3™) ) b
P,Ll,v - P L'PH, (12)
T T
forallx € X,t > 0and m,n € N with n > m.
ok
Since 0 < a <9 and Z 9— < 00, then {f(3 : } is a Cauchy sequence in (Y, #,,,, M) for each x € X. Since
k=0

(Y, Py, M) is an intuitionistic fuzzy Banach space, the sequence converges to some point Q(x) € Y. So we
can define the mapping Q : X — Y by

Qe = tim 159 13)
for all x € X. Fix x € X and set m = 0 in (12) to obtain
3"x t
PF"V (M - f(x) t) »Pgﬂ/ n-1 gk ] (14)
Zk 0 gk
for all x € X, t > 0. Thus, we obtain that
3" 3"
PulQ) - f0,0) =Py, (Q( )- L8010 p, t)
3” 3"
o fan- 22 ), 22
f(3”x) t) t
> M|P,, - AR MES . 15
oo 2] ) -

Taking the limit as n — oo in (15) and using (13), we get

Q- o> 17 (5 5
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for all x € X and t > 0, which shows that Q satisfies (4).
Now we show that Q is quadratic. Let x, y € Y. Then we have

P (20(552)+20(55 ) - aw - Qi)
> M {Pu,v (ZQ(x+y)_ 2f(3"(x + 1)/2) f)’

2 9n ’5
x—-y\ 2fGB"(x-y)/2) t
P“”(zg( 2 )_ 9" '5)’

3” 37‘[
SDW(M—Q() ) w(f( ”—Q()—)

P 2f@x+y)/2)  2fC'-y/2) fBx) fG'Y) t
v on 9n 9n o "5)f°

The first four terms on the right hand side of the above inequality tend to 1;- as # — oo by (13) and the fifth
term, by (3), is greater than or equal to

M {Piw ((p(3"x), %),P;,v (@(3”y), 2)}

e w{i (o, (2) 1) 2 (o (2) ) (17)

which tends to 1;- as n — oo. Hence

P (20(55E)+20(55 ) - oW - Q1) = 10 (18)

forall x, y € X and all ¢ > 0. This means that Q satisfies the Jensen quadratic functional equation and so it
is quadratic.

To prove the uniqueness of the mapping Q subject to (4), assume that there exists another quadratic
mapping Q' : X — Y which satisfies (4). Then for each x € X, clearly Q(3"x) = 9"Q(x) and Q’(3"x) = 9"Q’(x)
for all n € IN. It follows from (4) that

(16)

Pu(Qx) = Q' (x),t) = Py (Q(3nx) _ Q’(3”x)l t)

9n 9n

M {% (Q(93:x) B f(gnx>, ! ) P, (f(gnao ) Q’(93n"x), ! )}
9yn(g —
> P, (X, W] (19)

forallx € X,t >0and alln € IN. Since 0 < a < 9 and limn_m(%)” = oo, the right hand side of the above
inequality tends to 1;- as n — oo. Therefore, £, ,(Q(x) — Q'(x),t) = 1 for all t > 0, whence Q(x) = Q’(x) for
all x € X. This completes the proof of the theorem. o

Theorem 3.2. Let f : X — Y be an even mapping with f(0) = 0. Suppose that ¢ is a mapping from X to an
intuitionistic fuzzy normed space (Z, %, ,, M) satisfying (3). If p(3x) = aq(x) for some real number a with a > 9,
then there exists a unique quadratic mapping Q : X — Y such that

(o —9)t
2u

yv Q(X) f(x) t) 2 P”,v (x/ (20)

forall x € X and t > 0, where

= {5 o 5)£) 25 (2. £) 72 o 5 o0 )
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Proof. It follows from (8) that

P ( Fx) - 9f (;—C) , t) > P 1)

for all x € X and all t > 0, where

o w7 () 2) 75 ) 57 o ) 7 s )

Then by our assumption, we have

24 X 44
P, (5, t) =P (x,at) 22)
Replacing x by 5 in (21) and applying (22), we obtain
wef X . x \ 9"t X X t
Pl i) m) ) =l () (5m) )
24 i L
2 e Py (3"’ a”)

) (23)

For all x € X,t > 0 and all non-negative integers n and m with n > m, we have

ws(5)- s ) £ 2w (L lrla) - G £ %)
2 o (7 ()71 (5) )

n X n— X 9" 1t
P (9 ) r(55) 2 )

=P, (x, b). (24)

wy

Pp,v

wy

Hence

Pelrt(3)- () )2 g

k=m gk

forallx € X,t > 0and m,n € N with n > m.

Since & > 9 and Y7, 37]; < oo, then {9" f(57)} is a Cauchy sequence in (Y, #,,,, M) for each x € X. Since
(Y, Py, M) is an intuitionistic fuzzy Banach space, the sequence converges to some point Q(x) € Y. So we
can define the mapping Q : X — Y by

Q@) = lim 9" (31) 26)

for all x € X. Fix x € X and set m = 0 in (25) to obtain
P (97F (= t> Py ! 27
y,v( f(3_n)—f(x)/ )_ LTy m (27)

for all x € X, t > 0 and so we have that

Pu(Q) - f.0 =P (00 -9f (5) + 9 (5) - F1)
ol (e -1(3) ) (). )

() et

\Y

I\

M|P
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Taking the limit as n — oo in (28) and using (26), we get
(a - 9)t)

PH,V(Q(x) - f(x)/ t) 2 L*P;j,v (x/ 2a

for all x € X and t > 0, which shows that Q satisfies (20). The rest of the proof is similar to the proof of
Theorem 3.1. This completes the proof of the theorem. m]

Theorem 3.3. Let f : X — Y be a mapping with f(0) = 0. Suppose that ¢ is a mapping from X to an intuitionistic
fuzzy normed space (Z, 9, ,, M) satisfying (3). If ¢(2x) = aq(x) for some positive real number o with o < 4, then
there exists a unique quadratic mapping Q : X — Y such that

PunlQ@) - 10,0 > 177, (5, 45 )
forall x € X and t > 0, where Pr(xt) = {P}’J,V((p(Zx), 21), P, (¢(0), 2t)}.

Proof. Setting y = 0 and replacing x by 2x and s by ¢ in (3), we get
Puv(df(x) = f(2%),2t) =2 - MP, (p(2x), 1), P, (@(0), )} (30)
forall x € X and all t > 0. Thus

Py (f(x) - @,t) > 1Pt (31)

for all x € X and all t > 0, where

P ) = MIP,(0(2x),2t), P, . (9(0), 20)}.

Then by our assumption, we have

7 754 1
P 2x ) =P, (x, a) (32)
Replacing x by 2"x in (31) and applying (32), we get
f@"x)  f2"x) ant f(2"*1x)
Pm( T T =Pur | f2"x) - 1 o't
> P2, a't)
= 1P, b). (33)

For all x € X,t > 0 and all non-negative integers n and m with n > m, we have

(z"x> _fe) o (V@) @] okt
P!"V 4m - PF"V ; gkl T gk ’; F
- f@"x)  f2"x) amt
> M I(Pum( qml  gqm gqm |7
f@)  f@7x) arlt
PF"V 4n - 4n-1 7 gn-1
> 1P 1). (34)
Hence

4n 4m n=1 ak
k=m gk

p, (L&D _1 (zmx),t)z UP;,’,V[ S ! ] (35)
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forallxe X,t >0and m,n ele1thn > m.

Since 0 < @ <4 and Y7, 4k < o0, then {ﬂ } is a Cauchy sequence in (Y, P, ,, M) for each x € X. Since
(Y, Py, M) is an intuitionistic fuzzy Banach space, the sequence converges to some point Q(x) € Y. So we
can define the mapping Q : X — Y by

f(2” X)

Q(x) := lim (36)
forall x € X. Fixx € X and set m = 0 in (35) to obtain
fe) ) : ]
P ,V(—n_f(x)lt > LPI:V P k (37)
T4 U DSy
forall x € X,t > 0. Thus, we have that
2" 2"
PurQE) - f), 1) = PW(Q( )~ 18D TEN i, t)
2" 2"
o 24 (22
f (Z”X) f) ., t
> M|P,, - P . 38
2L L (Q() ", [ ZZZ_SZT)] (38)
Taking the limit as n — oo in (38) and using (36), we get
4 — a)t
PuntQ) - 0,0 > 17, (5, 45

for all x € X and t > 0, which shows that Q satisfies (30). The rest of the proof is similar to the proof of
Theorem 3.1. This completes the proof of the theorem. m]

Theorem 3.4. Let f : X — Y be a mapping with f(0) = 0. Suppose that ¢ is a mapping from X to an intuitionistic
fuzzy normed space (Z,%}, ,,, M) satisfying (3). If p(2x) = aq(x) for some real number a with a > 4, then there
exists a unique quadratic mapping Q : X — Y such that

2
forall x € X and t > 0, where P} ,(x, t) := MIP}, ,(p(x), 5),P,,.((0), 3)}-
Proof. It follows from (31) that
Pun (F0) - 4£(3) ) > ol (40)
for all x € X and all t > 0, where
Pt = M{PL, (000, 5) 27 (0000, 3}

Then by our assumption, we have

QW) - f(),1) > LP,,V( M) (39)

P, ( ) P (x, af) 1)
Replacing x by zin in (40) and applying (41), we obtain
X 1 x \ 4" B X X t
Puls(z) -0 (m) w)  Pel(E)-Y () 7)

/7 t
L PH 14 (211 an )
1P D). (42)
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For all x € X, t > 0 and all non-negative integers n and m with n > m, we have
er(5)- i) 5] r (Ll Ge) -4 ()L £ )
> M (P (11 (52) - 4 (22), 25)

o) )

P =P

> L*Pﬂ,v(x, f). (43)
Hence
X X . t
Py,v (4nf(2_n)—4mf(2_m),t) > L”?)H,V X, W] (44)
k=m qk

forallx € X,t > 0and m,n eleithn > m.

Since @ > 4 and Y7, k < oo, then {4"f(57)} is a Cauchy sequence in (Y,#,,, M) for each x € X.
Since (Y, Py, M) is an intuitionistic fuzzy Banach space, the sequence converges to some point Q(x) € Y.
Therefore we can define the mapping Q : X — Y by

QW) := lim 4" f (21) (45)

for all x € X. Fix x € X and set m = 0 in (44) to obtain

X, ;] (46)

1
Tioo &

Pun(#'F (55) - F01) 2 w2,
for all x € X, t > 0. Thus, we obtain that

PuQW = f@, =P Q- 27 () + 41 (21) - feo.t)
EMP QW) = 4'£(0), ), Pl f(5) - @), )

[\

2'1
t t
- onrfoor-1(2). )7 ]
Taking the limit as n — oo in (47) and using (45), we get

Punl Q) - f(0),0)> 1P, ( (“z;f’t)

for all x € X and t > 0, which shows that Q satisfies (39). The rest of the proof is similar to the proof of
Theorem 3.1. This completes the proof of the theorem. o

Theorem 3.5. Let [2a| > 1 and f : X — Y be a mapping with f(0) = 0. Suppose that ¢ is a mapping from X to an
intuitionistic fuzzy normed space (Z, 9}, ,, M) such that
Puy(flax +ay) + fax — ay) — 2a2f(x) - 2a2f(y), t+5s)

2 r M P, v((p(x) t) L,v((P(y)/ S)} (48)

for all x,y € X\{0} and all positive real numbers t,s. If p(2ax) = aqp(x) for some positive real number a with
0 < & < 4a?, then there exists a unique quadratic mapping Q : X — Y such that

2 _
Q- £, > 1, (x, ) )

forallx € Xandt > 0.
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Proof. Setting y = x and s = t in (48), we get

P (f(ax) — 40’ f(x),2t) = 1P, (@), t) (50)
forallx € Xand all t > 0. Thus
2
P,U,V (f(x) - f%/ t) Z L*PL,v((P(x)/ Zazt) (51)

forallx € X and all ¢ > 0.
Replacing x by (2a)"x in (51), we have

P (f((za)”x)_f (2a)"'x) ot
(2u)2” (za)2n+2 4 (za)Zn

2 n+1
| - 220

> 1P (), 242%t). (52)
For all x € X,t > 0 and all non-negative integers n and m with n > m, we have
f(@ay'x) — f(2a)"x) §
pw[ (2a)2" - (2a)m Z (2a)2k]
n-1 n-1
_ f(@a)*x)  f(2a)x)
=Py [Z (2a)%+2 - (2a)* ] Z‘] (2a)%

k=m
> M (P,‘,v(f((Z“)”’“x) _f@) )

(2{1)2m+2 (2{1)2'” 4 (211)2"'

o (@) f@ay ) ot

1244 (ZLI)ZH (2a)2n—2 ’(za)Zn—Z
> L*P;W((p(x),Zuzt). (53)

Hence
2a)" 2a)" 2a%t
(L - L5012 &
k=m za)2k

forallxe X, t > 0and m,n € N with n > m.

Since 0 < @ < 44? and Yo (2‘;% < 00, then {f (((22:)2,,")} is a Cauchy sequence in (Y, P, M) for each x € X.
Since (Y, Py, M) is an intuitionistic fuzzy Banach space, the sequence converges to some point Q(x) € Y.
So we can define the mapping Q : X — Y by

2 n
Q) = lim % (55)
for all x € X. Fix x € X and put m = 0 in (54) to obtain
f((2a)"x) ) , 2a%t
- > P, 56
(2a)2n f ) t L* [(P(X) ZZ 3 (ZC;ka] ( )

forallx € X,t > 0. Thus

2a)" 2a)"
G [

2 n 2 n
M(PM (Q(x) _ f(2a)"x) E)’p“’v(f(((ztg)znx) - ), %))

(2a)> 2
a’t
PO ||
Zk é (zafzk ]]

v

[\

2 n
P, (Q(x) fe, t) P,

(57)
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Taking the limit as n — oo in (57) and using (55), we get

(4a* - a)t)

Py,v(Q(x) - f(x)r t) 2 L*P;J,v (x/ 4

for all x € X and t > 0, which shows that Q satisfies (49). The rest of the proof is similar to the proof of
Theorem 3.1. This completes the proof of the theorem. m|

Theorem 3.6. Let 2a] < 1and f : X — Y be a mapping with f(0) = 0. Suppose that ¢ is a mapping from X to
an intuitionistic fuzzy normed space (Z, P, ,, M) satisfying (48). If ¢(2ax) = a@(x) for some real number o with

Hov
a > 4a?, then there exists a unique quadratic mapping Q : X — Y such that
o — 4a*)t
Q) - fmo>LPw(£—q—l) (59)
forallx € Xandt > 0.
Proof. It follows from (50) that
2 [ X , x
Py,v (f(x) - (2&) f(%)/Zt) > L”Py,v ((P (2_51), t) (59)
forall x € X and all t > 0. Thus
> , L AA TS a
‘u v (f(x 2“) f( )/ t) > L*Plu,v (ﬁo (Z) s E) =L P‘u,v ((p(x)/ Et) . (60)

Replacing x by (27)" in (60), we have

20 2n+2 X (20)*"t
Py v ((2@) f ( (2 )71 ) ) f ( (211)”+1 ) 4 an
_ Al B Y G S I
_P“’V(f((Za)") 4a f((za)n+1)/an)
, a
> 17 (90, 51). G)
For all x € X,t > 0 and all non-negative integers n and m with n > m, we have

n-1 2 2%k
() - @ >2mf((2a)m) 2y t]

o)) 227

k=m

2 th
> L*Mn—m 1 ( v ((za)erHZf ( (za)m+1 ) (2a)2"'f ( (2;()”1 ) , %) Jesey
: " (2a)2n—2t
Hl ((2{’1)2 f( 2a )71)_ (za)2 zf((Z;)Cn—l)’ F))

yv

> 1P, (000, 51). ©)
Hence
n m , Olt
Pruv ((29)2 f(( ) (2a)? f( o )m) )2 1Py | P, W] (63)

forallx € X,t > 0and m,n € N with n > m.
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Since & > 4a% and Y7, (Z;ZZk < oo, then {(2a2)*" f( =y )} is a Cauchy sequence in (Y, P,,,, M) for each x € X.
Since (Y, P,,, M) is an intuitionistic fuzzy Banach space, the sequence converges to some point Q(x) € Y.
So we can define the mapping Q : X — Y by

QW) := lim <2a>2"f((2’;)n) (64)
for all x € X. Fix x € X and set m = 0 in (63) to obtain
2 2n > Pr at 65
[J, ( ﬂ) f (2 )n _f(x)/t = L* wy (P(x)’ 2 n—-1 (2a)%t ( )
k=0 ~oF
for all x € X, t > 0 and so we have that
Pur(Q) = f(x), 1) = Py (Q(X) (Zﬂ)znf( 20y ) (Zﬂ)Z"f( ),,) fx), t)
> oM (P00 - @ 55 ) ((2a)2"f( 2a)n) o))
2 L*M Pl»l,v (Q(x) (za)an((z )n n 1 (Za)kzkt
(66)

Taking the limit as n — oo in (66) and using (64), we get

2 _
Py,v(Q(x) - f(x)r t) 2 L*P;J,v (x/ w)

for all x € X and t > 0, which shows that Q satisfies (58). The rest of the proof is similar to the proof of
Theorem 3.1. This completes the proof of the theorem. o
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