

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Intuitionistic Fuzzy Stability of Jensen-Type Quadratic Functional Equations

Zhihua Wang^a, Themistocles M. Rassias^b, Reza Saadati^c

^aSchool of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
 ^bDepartment of Mathematics, National Technical University of Athens, Zografou Campus, 15780Athens, Greece
 ^cDepartment of Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract. In this paper, we prove some stability results for Jensen-type quadratic functional equations

$$2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) = f(x) + f(y),$$

$$f(ax + ay) + f(ax - ay) = 2a^2 f(x) + 2a^2 f(y)$$

in intuitionistic fuzzy normed spaces for a nonzero real number a with $a \neq \pm \frac{1}{2}$.

1. Introduction

The study of stability problem for functional equations is related to a question of Ulam [37] concerning the stability of group homomorphism, which was affirmatively answered by Hyers [8] for Banach spaces. Subsequently, Hyers' result was generalized by Aoki [1] for additive mappings and Rassias [31] for linear mappings by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. Rassias [30] considered the Cauchy difference controlled by a product of different powers of norms. The above results have been generalized by Forti [4] and Găvruta [5] who permitted the Cauchy difference to become arbitrarily unbounded. For further new progress on such problems, the reader is referred to [2, 3, 6, 9, 11, 12, 17, 32, 33]. For a fuzzy version one is referred to [13–16, 28]. Quite recently, the stability problem for Jensen functional equations, Pexiderized quadratic functional equations, cubic functional equations, mixed type additive and cubic functional equations have been considered in [18, 20, 21, 26, 38]. The idea of intuitionistic fuzzy normed space was studied in [19, 22–25, 27, 34] in order to deal with some summability problems.

Recently, interesting results concerning Jensen-type functional equations

$$2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) = f(x) + f(y),\tag{1}$$

$$f(ax + ay) + f(ax - ay) = 2a^2 f(x) + 2a^2 f(y)$$
(2)

2010 Mathematics Subject Classification. Primary 39B82; Secondary 39B72, 03F55

Keywords. Stability; Jensen-type quadratic functional equations; Intuitionistic fuzzy normed spaces.

Received: 05 June 2013; Accepted: 22 June 2013

Communicated by Dragan S. Djordjević

Research supported by BSQD12077, NSFC 11401190 and NSFC 11201132

Corresponding author: Zhihua Wang

Email addresses: matwzh2000@126.com (Zhihua Wang), trassias@math.ntua.gr (Themistocles M. Rassias), rsaadati@eml.cc, rezas720@yahoo.com (Reza Saadati)

have been obtained in [10], where a is a nonzero real number and $a \neq \pm \frac{1}{2}$. The main purpose of this paper is to prove the stability of the Jensen-type functional equations (1) and (2) in the setting of intuitionistic fuzzy normed space. The results obtained in this paper extend a number of recent well-know results in the subject.

2. Preliminaries

In this section by using the idea of intuitionistic fuzzy metric spaces introduced by Park [29] and Saadati-Park [34], we define a new notion of intuitionistic fuzzy metric spaces with the help of the notion of continuous *t*-representable [7].

Lemma 2.1. (cf. [35]). Consider the set L^* and the order relation \leq_{L^*} defined by

$$L^* = \{(x_1, x_2) | (x_1, x_2) \in [0, 1]^2, x_1 + x_2 \le 1\},$$

$$(x_1, x_2) \le_{L^*} (y_1, y_2) \Longleftrightarrow x_1 \le y_1, x_2 \ge y_2, \forall (x_1, x_2), (y_1, y_2) \in L^*.$$

Then (L^*, \leq_{L^*}) is a complete lattice.

Definition 2.2. (cf. [35]). An intuitionistic fuzzy set $\mathcal{A}_{\zeta,\eta}$ in a universal set U is an object $\mathcal{A}_{\zeta,\eta} = \{(\zeta(u), \eta(u)) | u \in U\}$, where, for all $u \in U$, $\zeta_{\mathcal{A}}(u) \in [0,1]$ and $\eta_{\mathcal{A}}(u) \in [0,1]$ are called the membership degree and the nonmembership degree, respectively, of u in $\mathcal{A}_{\zeta,\eta}$ and, furthermore, they satisfy $\zeta_{\mathcal{A}}(u) + \eta_{\mathcal{A}}(u) \leq 1$.

We denote its units by $0_{L^*} = (0,1)$ and $1_{L^*} = (1,0)$. Classically, a triangular norm T = * on [0,1] is defined as an increasing, commutative, associative mapping $T : [0,1]^2 \to [0,1]$ satisfying T(1,x) = 1 * x = x for all $x \in [0,1]$. A triangular conorm $S = \diamond$ is defined as an increasing, commutative, associative mapping $S : [0,1]^2 \to [0,1]$ satisfying $S(0,x) = 0 \diamond x = x$ for all $x \in [0,1]$.

Using the lattice (L^*, \leq_{L^*}) , these definitions can be extended in a straightforward manner.

Definition 2.3. (cf. [35]). A triangular norm (t-norm) on L^* is a mapping $\mathcal{T}:(L^*)^2\to L^*$ satisfying the following conditions:

- (a) $(\forall x \in L^*)(\mathcal{T}(x, 1_{L^*}) = x)$ (boundary condition);
- (b) $(\forall (x, y) \in (L^*)^2)(\mathcal{T}(x, y) = \mathcal{T}(y, x))$ (commutativity);
- (c) $(\forall (x, y, z) \in (L^*)^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z))$ (associativity);
- (d) $(\forall (x, x', y, y') \in (L^*)^4)(x \leq_{L^*} x' \text{ and } y \leq_{L^*} y' \Longrightarrow \mathcal{T}(x, y) \leq_{L^*} \mathcal{T}(x', y') \text{ (monotonicity)}.$

Definition 2.4. (cf. [35]). A continuous t-norm \mathcal{T} on L^* is said to be continuous t-representable if there exist a continuous t-norm * and a continuous t-conorm * on [0,1] such that, for all $x=(x_1,x_2)$, $y=(y_1,y_2)\in L^*$,

$$\mathcal{T}(x,y)=(x_1*y_1,x_2\diamond y_2).$$

Example 2.5. For all $a = (a_1, a_2), b = (b_1, b_2) \in L^*$, consider

$$\mathcal{T}(a,b) = (a_1b_1, \min\{a_2 + b_2, 1\})$$

 $\mathcal{M}(a,b) = (\min\{a_1, b_1\}, \max\{a_2, b_2\}).$

Then $\mathcal{T}(a,b)$ *and* $\mathcal{M}(a,b)$ *are continuous t-representable.*

Now, we define a sequence \mathcal{T}^n recursively by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^{n}(x^{(1)},\ldots,x^{(n+1)}) = \mathcal{T}(\mathcal{T}^{n-1}(x^{(1)},\ldots,x^{(n)}),x^{(n+1)})$$

for all n > 2 and $x^{(i)} \in L^*$.

Definition 2.6. A negator on L^* is any decreasing mapping $\mathcal{N}: L^* \to L^*$ satisfying $\mathcal{N}(0_{L^*}) = 1_{L^*}$ and $\mathcal{N}(1_{L^*}) = 0_{L^*}$. If $\mathcal{N}(\mathcal{N}(x)) = x$ for all $x \in L^*$, then \mathcal{N} is called an involutive negator. A negator on [0,1] is a decreasing mapping $\mathcal{N}: [0,1] \to [0,1]$ satisfying $\mathcal{N}(0) = 1$ and $\mathcal{N}(1) = 0$. \mathcal{N}_s denotes the standard negator on $([0,1], \leq)$ defined by $\mathcal{N}_s = 1 - x$ for all $x \in [0,1]$.

Definition 2.7. (cf. [35]). The triple $(X, \mathcal{P}, \mathcal{T})$ is said to be an IFNS if X is a vector space, \mathcal{T} is a continuous t-representable, and \mathcal{P} is a mapping $X \times (0, \infty) \to L^*$, satisfying the following conditions for all $x, y \in X$ and t, s > 0: (i) $\mathcal{P}(x, t) > 0_L$;

- (ii) $\mathcal{P}(x, t) = 1_{L^*}$ if and only if x = 0;
- (iii) $\mathcal{P}(\alpha x, t) = \mathcal{P}\left(x, \frac{t}{|\alpha|}\right)$ for all $\alpha \neq 0$;
- (iv) $\mathcal{P}(x+y,t+s) \geq \sum_{k=1}^{\lfloor n/2 \rfloor} \mathcal{T}(\mathcal{P}(x,t),\mathcal{P}(y,t));$
- (v) $\mathcal{P}(x,\cdot):(0,\infty)\to L^*$ is continuous;
- (vi) $\lim_{t\to\infty} \mathcal{P}(x,t) = 1_{L^*}$.

In this case, \mathcal{P} is called an intuitionistic fuzzy norm on X. Given μ and ν , membership and nonmembership degrees of an intuitionistic fuzzy set from $X \times (0, \infty)$ to [0, 1], such that

$$\mu(x,t) + \nu(x,t) \le 1$$

for all $x \in X$ and t > 0, we write

$$\mathcal{P}_{\mu,\nu}(x,t) = (\mu(x,t),\nu(x,t)).$$

Example 2.8. (cf. [36]). Let $(X, ||\cdot||)$ be a normed space,

$$\mathcal{T}(a,b) = (a_1b_1, \min\{a_2 + b_2, 1\})$$

for all $a = (a_1, a_2), b = (b_1, b_2) \in L^*$, and μ, ν be membership and nonmembership degree of an intuitionistic fuzzy set defined by

$$\mathcal{P}_{\mu,\nu}(x,t) = (\mu(x,t),\nu(x,t)) = \left(\frac{t}{t+||x||},\frac{||x||}{t+||x||}\right) \ \forall t \in \mathbb{R}^+.$$

Then $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ is an IFNS.

In Example 2.8, $\mu(x,t) + \nu(x,t) = 1$ for all $x \in X$. We present an example in which $\mu(x,t) + \nu(x,t) < 1$ for $x \neq 0$. This example is a modification of the example of Saadati and Park [34].

Example 2.9. (cf. [36]). Let $(X, ||\cdot||)$ be a normed space,

$$\mathcal{T}(a,b) = (a_1b_1, \min\{a_2 + b_2, 1\})$$

for all $a = (a_1, a_2)$, $b = (b_1, b_2) \in L^*$, and μ, ν be membership and non-membership degree of an intuitionistic fuzzy set defined by

$$\mathcal{P}_{\mu,\nu}(x,t) = (\mu(x,t), \nu(x,t)) = \left(\frac{t}{t+m||x||}, \frac{||x||}{t+||x||}\right)$$

for all $t \in \mathbb{R}^+$ in which m > 1. Then $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ is an IFNS. Here,

$$\mu(x,t) + \nu(x,t) = 1$$
, for $x = 0$;
 $\mu(x,t) + \nu(x,t) < 1$, for $x \neq 0$.

Lemma 2.10. (cf. [35]). Let $\mathcal{P}_{\mu,\nu}$ be an intuitionistic fuzzy norm on X. Then $\mathcal{P}_{\mu,\nu}(x,t)$ is nondecreasing with respect to t for all $x \in X$.

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed space are studied in [34].

Let $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ be an IFNS. Then, a sequence $\{x_n\}$ is said to be intuitionistic fuzzy convergent to a point $x \in X$ (denoted by $x_n \xrightarrow{IF} x$) if $\mathcal{P}_{\mu,\nu}(x_n - x, t) \to 1_{L^*}$ as $n \to \infty$ for every t > 0. The sequence $\{x_n\}$ is said to be intuitionistic fuzzy Cauchy sequence if for every $\varepsilon > 0$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mathcal{P}_{\mu,\nu}(x_n - x_m, t) > {}_{L^*}(N_s(\varepsilon), \varepsilon)$ for all $n, m \ge n_0$, where N_s is the standard negator. $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ is said to be complete if every intuitionistic fuzzy Cauchy sequence in $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ is intuitionistic fuzzy convergent in $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T})$. A complete IFNS is called an intuitionistic fuzzy Banach space.

3. Intuitionistic fuzzy stability

Throughout this section, assume that X, $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ and $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ are linear space, IFNS, intuitionistic fuzzy Banach space, respectively. We prove the intuitionistic fuzzy stability of Jesen-type quadratic functional equations (1) and (2) in the setting of intuitionistic fuzzy normed space,

Theorem 3.1. Let $f: X \to Y$ be an even mapping with f(0) = 0. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ such that

$$\mathcal{P}_{\mu,\nu}\left(2f\left(\frac{x+y}{2}\right)+2f\left(\frac{x-y}{2}\right)-f(x)-f(y),t+s\right) \geq L^*\mathcal{M}\{\mathcal{P}'_{\mu,\nu}(\varphi(x),t),\mathcal{P}'_{\mu,\nu}(\varphi(y),s)\}$$
(3)

for all $x, y \in X \setminus \{0\}$ and all positive real numbers t, s. If $\varphi(3x) = \alpha \varphi(x)$ for some positive real number α with $\alpha < 9$, then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{(9-\alpha)t}{18}\right)$$
 (4)

for all $x \in X$ and t > 0, where

$$\mathcal{P}''_{\mu,\nu}(x,t) := \mathcal{M}^3\{\mathcal{P}'_{\mu,\nu}(\varphi(x),\frac{3}{2}t),\mathcal{P}'_{\mu,\nu}(\varphi(2x),\frac{3}{2}t),\mathcal{P}'_{\mu,\nu}(\varphi(3x),\frac{3}{2}t),\mathcal{P}'_{\mu,\nu}(\varphi(0),\frac{3}{2}t)\}.$$

Proof. Setting y = 3x and s = t in (3), we obtain

$$\mathcal{P}_{u,v}(2f(2x) + 2f(-x) - f(x) - f(3x), 2t) \ge \frac{1}{L^2} \mathcal{M}\{\mathcal{P}'_{u,v}(\varphi(x), t), \mathcal{P}'_{u,v}(\varphi(3x), t)\}$$
 (5)

for all $x \in X$ and all t > 0. Replacing x by 2x, y by 0 and s by t in (3), we get

$$\mathcal{P}_{\mu,\nu}(4f(x) - f(2x), 2t) \ge {}_{L^*}\mathcal{M}\{\mathcal{P}'_{\mu,\nu}(\varphi(2x), t), \mathcal{P}'_{\mu,\nu}(\varphi(0), t)\}. \tag{6}$$

Thus

$$\mathcal{P}_{\mu,\nu}(9f(x) - f(3x), 6t) \ge {}_{L^*}\mathcal{M}^3\{\mathcal{P}'_{\mu,\nu}(\varphi(x), t), \mathcal{P}'_{\mu,\nu}(\varphi(2x), t), \\ \mathcal{P}'_{\mu,\nu}(\varphi(3x), t)\mathcal{P}'_{\mu,\nu}(\varphi(0), t)\},$$
(7)

and so

$$\mathcal{P}_{\mu,\nu}\left(f(x) - \frac{f(3x)}{9}, t\right) \ge L \mathcal{P}''_{\mu,\nu}(x,t) \tag{8}$$

for all $x \in X$ and all t > 0, where

$$\mathcal{P}''_{\mu,\nu}(x,t) := \mathcal{M}^3\left\{\mathcal{P}'_{\mu,\nu}\left(\varphi(x),\frac{3}{2}t\right),\mathcal{P}'_{\mu,\nu}\left(\varphi(2x),\frac{3}{2}t\right),\mathcal{P}'_{\mu,\nu}\left(\varphi(3x),\frac{3}{2}t\right),\mathcal{P}'_{\mu,\nu}\left(\varphi(0),\frac{3}{2}t\right)\right\}.$$

Then by our assumption, we have

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}(3x,t) = \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x,\frac{t}{\alpha}\right) \tag{9}$$

Replacing x by $3^n x$ in (8) and applying (9), we get

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(3^{n}x)}{9^{n}} - \frac{f(3^{n+1}x)}{9^{n+1}}, \frac{\alpha^{n}t}{9^{n}}\right) = \mathcal{P}_{\mu,\nu}\left(f(3^{n}x) - \frac{f(3^{n+1}x)}{9}, \alpha^{n}t\right)$$

$$\geq L \mathcal{P}''_{\mu,\nu}(3^{n}x, \alpha^{n}t)$$

$$= L \mathcal{P}''_{\mu,\nu}(x,t). \tag{10}$$

For all $x \in X$, t > 0 and all non-negative integers n and m with n > m, we have

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(3^{n}x)}{9^{n}} - \frac{f(3^{m}x)}{9^{m}}, \sum_{k=m}^{n-1} \frac{\alpha^{k}t}{9^{k}}\right) = \mathcal{P}_{\mu,\nu}\left(\sum_{k=m}^{n-1} \left[\frac{f(3^{k+1}x)}{9^{k+1}} - \frac{f(3^{k}x)}{9^{k}}\right], \sum_{k=m}^{n-1} \frac{\alpha^{k}t}{9^{k}}\right) \\
\geq {}_{L^{*}}\mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu,\nu}\left(\frac{f(3^{m+1}x)}{9^{m+1}} - \frac{f(3^{m}x)}{9^{m}}, \frac{\alpha^{m}t}{9^{m}}\right), \dots, \\
\mathcal{P}_{\mu,\nu}\left(\frac{f(3^{n}x)}{9^{n}} - \frac{f(3^{n-1}x)}{9^{n-1}}, \frac{\alpha^{n-1}t}{9^{n-1}}\right)\right) \\
\geq {}_{L^{*}}\mathcal{P}_{\mu,\nu}^{\prime\prime}(x,t). \tag{11}$$

Hence

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(3^{n}x)}{9^{n}} - \frac{f(3^{m}x)}{9^{m}}, t\right) \ge L^{*}\mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x, \frac{t}{\sum_{k=m}^{n-1} \frac{\alpha^{k}}{9^{k}}}\right) \tag{12}$$

for all $x \in X$, t > 0 and $m, n \in \mathbb{N}$ with n > m.

Since $0 < \alpha < 9$ and $\sum_{k=0}^{\infty} \frac{\alpha^k}{9^k} < \infty$, then $\left\{ \frac{f(3^n x)}{9^n} \right\}$ is a Cauchy sequence in $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ for each $x \in X$. Since $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} \frac{f(3^n x)}{9^n} \tag{13}$$

for all $x \in X$. Fix $x \in X$ and set m = 0 in (12) to obtain

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(3^n x)}{9^n} - f(x), t\right) \ge L \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^k}{\alpha^k}}\right) \tag{14}$$

for all $x \in X$, t > 0. Thus, we obtain that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) = \mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f(3^{n}x)}{9^{n}} + \frac{f(3^{n}x)}{9^{n}} - f(x), t\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f(3^{n}x)}{9^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu,\nu}\left(\frac{f(3^{n}x)}{9^{n}} - f(x), \frac{t}{2}\right)\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f(3^{n}x)}{9^{n}}, \frac{t}{2}\right), \mathcal{P}''_{\mu,\nu}\left(x, \frac{t}{2\sum_{k=0}^{n-1} \frac{\alpha^{k}}{9^{k}}}\right)\right). \tag{15}$$

Taking the limit as $n \to \infty$ in (15) and using (13), we get

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{(9-\alpha)t}{18}\right)$$

for all $x \in X$ and t > 0, which shows that Q satisfies (4).

Now we show that Q is quadratic. Let $x, y \in Y$. Then we have

$$\mathcal{P}_{\mu,\nu}\left(2Q\left(\frac{x+y}{2}\right) + 2Q\left(\frac{x-y}{2}\right) - Q(x) - Q(y), t\right) \\
\geq L^* \mathcal{M}^4 \left\{ \mathcal{P}_{\mu,\nu}\left(2Q\left(\frac{x+y}{2}\right) - \frac{2f(3^n(x+y)/2)}{9^n}, \frac{t}{5}\right), \right. \\
\mathcal{P}_{\mu,\nu}\left(2Q\left(\frac{x-y}{2}\right) - \frac{2f(3^n(x-y)/2)}{9^n}, \frac{t}{5}\right), \\
\mathcal{P}_{\mu,\nu}\left(\frac{f(3^nx)}{9^n} - Q(x), \frac{t}{5}\right), \mathcal{P}_{\mu,\nu}\left(\frac{f(3^ny)}{9^n} - Q(y), \frac{t}{5}\right), \\
\mathcal{P}_{\mu,\nu}\left(\frac{2f(3^n(x+y)/2)}{9^n} + \frac{2f(3^n(x-y)/2)}{9^n} - \frac{f(3^ny)}{9^n}, \frac{t}{5}\right) \right\}.$$
(16)

The first four terms on the right hand side of the above inequality tend to 1_{L^*} as $n \to \infty$ by (13) and the fifth term, by (3), is greater than or equal to

$$L \cdot \mathcal{M}\left\{\mathcal{P}'_{\mu,\nu}\left(\varphi(3^{n}x), \frac{9^{n}t}{10}\right), \mathcal{P}'_{\mu,\nu}\left(\varphi(3^{n}y), \frac{9^{n}t}{10}\right)\right\}$$

$$=_{L} \cdot \mathcal{M}\left\{\mathcal{P}'_{\mu,\nu}\left(\varphi(x), \left(\frac{9}{\alpha}\right)^{n} \frac{t}{10}\right), \mathcal{P}'_{\mu,\nu}\left(\varphi(y), \left(\frac{9}{\alpha}\right)^{n} \frac{t}{10}\right)\right\}, \tag{17}$$

which tends to 1_{L^*} as $n \to \infty$. Hence

$$\mathcal{P}_{\mu,\nu}\left(2Q\left(\frac{x+y}{2}\right) + 2Q\left(\frac{x-y}{2}\right) - Q(x) - Q(y), t\right) = 1_{L^*}$$
(18)

for all $x, y \in X$ and all t > 0. This means that Q satisfies the Jensen quadratic functional equation and so it is quadratic.

To prove the uniqueness of the mapping Q subject to (4), assume that there exists another quadratic mapping $Q': X \to Y$ which satisfies (4). Then for each $x \in X$, clearly $Q(3^n x) = 9^n Q(x)$ and $Q'(3^n x) = 9^n Q'(x)$ for all $n \in \mathbb{N}$. It follows from (4) that

$$\mathcal{P}_{\mu,\nu}(Q(x) - Q'(x), t) = \mathcal{P}_{\mu,\nu}\left(\frac{Q(3^{n}x)}{9^{n}} - \frac{Q'(3^{n}x)}{9^{n}}, t\right) \\
\geq L \mathcal{M}\left\{\mathcal{P}_{\mu,\nu}\left(\frac{Q(3^{n}x)}{9^{n}} - \frac{f(3^{n}x)}{9^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu,\nu}\left(\frac{f(3^{n}x)}{9^{n}} - \frac{Q'(3^{n}x)}{9^{n}}, \frac{t}{2}\right)\right\} \\
\geq L \mathcal{P}''_{\mu,\nu}\left\{x, \frac{(\frac{9}{\alpha})^{n}(9 - \alpha)t}{36}\right\} \tag{19}$$

for all $x \in X$, t > 0 and all $n \in \mathbb{N}$. Since $0 < \alpha < 9$ and $\lim_{n \to \infty} (\frac{9}{\alpha})^n = \infty$, the right hand side of the above inequality tends to 1_{L^*} as $n \to \infty$. Therefore, $\mathcal{P}_{\mu,\nu}(Q(x) - Q'(x), t) = 1_{L^*}$ for all t > 0, whence Q(x) = Q'(x) for all $x \in X$. This completes the proof of the theorem. \square

Theorem 3.2. Let $f: X \to Y$ be an even mapping with f(0) = 0. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ satisfying (3). If $\varphi(3x) = \alpha \varphi(x)$ for some real number α with $\alpha > 9$, then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x, \frac{(\alpha - 9)t}{2\alpha}\right)$$
(20)

for all $x \in X$ and t > 0, where

$$\mathcal{P}''_{\mu,\nu}(x,t) := \mathcal{M}^3\left\{\mathcal{P}'_{\mu,\nu}\left(\varphi\left(\frac{x}{3}\right),\frac{t}{6}\right),\mathcal{P}'_{\mu,\nu}\left(\varphi\left(\frac{2x}{3}\right),\frac{t}{6}\right),\mathcal{P}'_{\mu,\nu}\left(\varphi(x),\frac{t}{6}\right),\mathcal{P}'_{\mu,\nu}\left(\varphi(0),\frac{t}{6}\right)\right\}.$$

Proof. It follows from (8) that

$$\mathcal{P}_{\mu,\nu}\left(f(x) - 9f\left(\frac{x}{3}\right), t\right) \ge L \cdot \mathcal{P}''_{\mu,\nu}(x, t) \tag{21}$$

for all $x \in X$ and all t > 0, where

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}(x,t) := \mathcal{M}^3\left\{\mathcal{P}_{\mu,\nu}^{\prime}\left(\varphi\left(\frac{x}{3}\right),\frac{t}{6}\right),\mathcal{P}_{\mu,\nu}^{\prime}\left(\varphi\left(\frac{2x}{3}\right),\frac{t}{6}\right),\mathcal{P}_{\mu,\nu}^{\prime}\left(\varphi(x),\frac{t}{6}\right),\mathcal{P}_{\mu,\nu}^{\prime}\left(\varphi(0),\frac{t}{6}\right)\right\}.$$

Then by our assumption, we have

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}\left(\frac{x}{3},t\right) = \mathcal{P}_{\mu,\nu}^{\prime\prime}(x,\alpha t) \tag{22}$$

Replacing x by $\frac{x}{3^n}$ in (21) and applying (22), we obtain

$$\mathcal{P}_{\mu,\nu}\left(9^{n}f\left(\frac{x}{3^{n}}\right) - 9^{n+1}f\left(\frac{x}{3^{n+1}}\right), \frac{9^{n}t}{\alpha^{n}}\right) = \mathcal{P}_{\mu,\nu}\left(f\left(\frac{x}{3^{n}}\right) - 9f\left(\frac{x}{3^{n+1}}\right), \frac{t}{\alpha^{n}}\right)$$

$$\geq L^{*}\mathcal{P}''_{\mu,\nu}\left(\frac{x}{3^{n}}, \frac{t}{\alpha^{n}}\right)$$

$$= L^{*}\mathcal{P}''_{\mu,\nu}(x,t). \tag{23}$$

For all $x \in X$, t > 0 and all non-negative integers n and m with n > m, we have

$$\mathcal{P}_{\mu,\nu}\left(9^{n} f\left(\frac{x}{3^{n}}\right) - 9^{m} f\left(\frac{x}{3^{m}}\right), \sum_{k=m}^{n-1} \frac{9^{k} t}{\alpha^{k}}\right) = \mathcal{P}_{\mu,\nu}\left(\sum_{k=m}^{n-1} \left[9^{k+1} f\left(\frac{x}{3^{k+1}}\right) - 9^{k} f\left(\frac{x}{3^{k}}\right)\right], \sum_{k=m}^{n-1} \frac{9^{k} t}{\alpha^{k}}\right) \\
\geq {}_{L^{*}} \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu,\nu}\left(9^{m+1} f\left(\frac{x}{3^{m+1}}\right) - 9^{m} f\left(\frac{x}{3^{m}}\right), \frac{9^{m} t}{\alpha^{m}}\right), \dots, \\
\mathcal{P}_{\mu,\nu}\left(9^{n} f\left(\frac{x}{3^{n}}\right) - 9^{n-1} f\left(\frac{x}{3^{n-1}}\right), \frac{9^{n-1} t}{\alpha^{n-1}}\right)\right) \\
\geq {}_{L^{*}} \mathcal{P}''_{\mu,\nu}(x,t). \tag{24}$$

Hence

$$\mathcal{P}_{\mu,\nu}\left(9^{n}f\left(\frac{x}{3^{n}}\right)-9^{m}f\left(\frac{x}{3^{m}}\right),t\right) \geq L \cdot \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x,\frac{t}{\sum_{k=m}^{n-1}\frac{9^{k}}{-k}}\right) \tag{25}$$

for all $x \in X$, t > 0 and $m, n \in \mathbb{N}$ with n > m. Since $\alpha > 9$ and $\sum_{k=0}^{\infty} \frac{9^k}{\alpha^k} < \infty$, then $\{9^n f(\frac{x}{3^n})\}$ is a Cauchy sequence in $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ for each $x \in X$. Since $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} 9^n f\left(\frac{x}{3^n}\right) \tag{26}$$

for all $x \in X$. Fix $x \in X$ and set m = 0 in (25) to obtain

$$\mathcal{P}_{\mu,\nu}\left(9^{n}f\left(\frac{x}{3^{n}}\right) - f(x), t\right) \ge L \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{9^{k}}{2^{k}}}\right) \tag{27}$$

for all $x \in X$, t > 0 and so we have that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) = \mathcal{P}_{\mu,\nu}\left(Q(x) - 9^{n} f\left(\frac{x}{3^{n}}\right) + 9^{n} f\left(\frac{x}{3^{n}}\right) - f(x), t\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - 9^{n} f\left(\frac{x}{3^{n}}\right), \frac{t}{2}\right), \mathcal{P}_{\mu,\nu}\left(9^{n} f\left(\frac{x}{3^{n}}\right) - f(x), \frac{t}{2}\right)\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - 9^{n} f\left(\frac{x}{3^{n}}\right), \frac{t}{2}\right), \mathcal{P}''_{\mu,\nu}\left(x, \frac{t}{2\sum_{k=0}^{n-1} \frac{9k}{2k}}\right)\right). \tag{28}$$

Taking the limit as $n \to \infty$ in (28) and using (26), we get

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{(\alpha - 9)t}{2\alpha}\right)$$

for all $x \in X$ and t > 0, which shows that Q satisfies (20). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.3. Let $f: X \to Y$ be a mapping with f(0) = 0. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ satisfying (3). If $\varphi(2x) = \alpha \varphi(x)$ for some positive real number α with $\alpha < 4$, then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{(4-\alpha)t}{8}\right)$$
 (29)

for all $x \in X$ and t > 0, where $\mathcal{P}''_{\mu,\nu}(x,t) := \mathcal{M}\{\mathcal{P}'_{\mu,\nu}(\varphi(2x),2t),\mathcal{P}'_{\mu,\nu}(\varphi(0),2t)\}$.

Proof. Setting y = 0 and replacing x by 2x and s by t in (3), we get

$$\mathcal{P}_{\mu,\nu}(4f(x) - f(2x), 2t) \ge L \mathcal{M}\{\mathcal{P}'_{\mu,\nu}(\varphi(2x), t), \mathcal{P}'_{\mu,\nu}(\varphi(0), t)\}$$
(30)

for all $x \in X$ and all t > 0. Thus

$$\mathcal{P}_{\mu,\nu}\left(f(x) - \frac{f(2x)}{4}, t\right) \ge L \mathcal{P}''_{\mu,\nu}(x,t) \tag{31}$$

for all $x \in X$ and all t > 0, where

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}(x,t):=\mathcal{M}\{\mathcal{P}_{\mu,\nu}^{\prime}(\varphi(2x),2t),\mathcal{P}_{\mu,\nu}^{\prime}(\varphi(0),2t)\}.$$

Then by our assumption, we have

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}(2x,t) = \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x,\frac{t}{\alpha}\right) \tag{32}$$

Replacing x by $2^n x$ in (31) and applying (32), we get

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(2^{n}x)}{4^{n}} - \frac{f(2^{n+1}x)}{4^{n+1}}, \frac{\alpha^{n}t}{4^{n}}\right) = \mathcal{P}_{\mu,\nu}\left(f(2^{n}x) - \frac{f(2^{n+1}x)}{4}, \alpha^{n}t\right)$$

$$\geq L \mathcal{P}''_{\mu,\nu}(2^{n}x, \alpha^{n}t)$$

$$= L \mathcal{P}''_{\mu,\nu}(x,t). \tag{33}$$

For all $x \in X$, t > 0 and all non-negative integers n and m with n > m, we have

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(2^{n}x)}{4^{n}} - \frac{f(2^{m}x)}{4^{m}}, \sum_{k=m}^{n-1} \frac{\alpha^{k}t}{4^{k}}\right) = \mathcal{P}_{\mu,\nu}\left(\sum_{k=m}^{n-1} \left[\frac{f(2^{k+1}x)}{4^{k+1}} - \frac{f(2^{k}x)}{4^{k}}\right], \sum_{k=m}^{n-1} \frac{\alpha^{k}t}{4^{k}}\right) \\
\geq {}_{L^{*}}\mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu,\nu}\left(\frac{f(2^{m+1}x)}{4^{m+1}} - \frac{f(2^{m}x)}{4^{m}}, \frac{\alpha^{m}t}{4^{m}}\right), \dots, \right. \\
\mathcal{P}_{\mu,\nu}\left(\frac{f(2^{n}x)}{4^{n}} - \frac{f(2^{n-1}x)}{4^{n-1}}, \frac{\alpha^{n-1}t}{4^{n-1}}\right)\right) \\
\geq {}_{L^{*}}\mathcal{P}_{\mu,\nu}^{\prime\prime}(x,t). \tag{34}$$

Hence

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(2^{n}x)}{4^{n}} - \frac{f(2^{m}x)}{4^{m}}, t\right) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{t}{\sum_{k=m}^{n-1} \frac{\alpha^{k}}{4^{k}}}\right)$$
(35)

for all $x \in X$, t > 0 and $m, n \in \mathbb{N}$ with n > m. Since $0 < \alpha < 4$ and $\sum_{k=0}^{\infty} \frac{\alpha^k}{4^k} < \infty$, then $\{\frac{f(2^n x)}{4^n}\}$ is a Cauchy sequence in $(Y, \mathcal{P}_{\mu, \nu}, \mathcal{M})$ for each $x \in X$. Since $(Y, \mathcal{P}_{\mu, \nu}, \mathcal{M})$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \tag{36}$$

for all $x \in X$. Fix $x \in X$ and set m = 0 in (35) to obtain

$$\mathcal{P}_{\mu,\nu}\left(\frac{f(2^{n}x)}{4^{n}} - f(x), t\right) \ge L^{*}\mathcal{P}''_{\mu,\nu}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{4^{k}}}\right)$$
(37)

for all $x \in X$, t > 0. Thus, we have that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) = \mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f(2^{n}x)}{4^{n}} + \frac{f(2^{n}x)}{4^{n}} - f(x), t\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f(2^{n}x)}{4^{n}}, \frac{t}{2}\right), \mathcal{P}_{\mu,\nu}\left(\frac{f(2^{n}x)}{4^{n}} - f(x), \frac{t}{2}\right)\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f(2^{n}x)}{4^{n}}, \frac{t}{2}\right), \mathcal{P}''_{\mu,\nu}\left(x, \frac{t}{2\sum_{k=0}^{n-1} \frac{c^{k}}{4^{k}}}\right)\right). \tag{38}$$

Taking the limit as $n \to \infty$ in (38) and using (36), we get

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{(4-\alpha)t}{8}\right)$$

for all $x \in X$ and t > 0, which shows that Q satisfies (30). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.4. Let $f: X \to Y$ be a mapping with f(0) = 0. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ satisfying (3). If $\varphi(2x) = \alpha \varphi(x)$ for some real number α with $\alpha > 4$, then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x, \frac{(\alpha - 4)t}{2\alpha}\right)$$
(39)

for all $x \in X$ and t > 0, where $\mathcal{P}''_{\mu,\nu}(x,t) := \mathcal{M}\{\mathcal{P}'_{\mu,\nu}(\varphi(x), \frac{t}{2}), \mathcal{P}'_{\mu,\nu}(\varphi(0), \frac{t}{2})\}$.

Proof. It follows from (31) that

$$\mathcal{P}_{\mu,\nu}\left(f(x) - 4f\left(\frac{x}{2}\right), t\right) \ge L \mathcal{P}_{\mu,\nu}^{\prime\prime}(x, t) \tag{40}$$

for all $x \in X$ and all t > 0, where

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}(x,t) := \mathcal{M}\left\{\mathcal{P}_{\mu,\nu}^{\prime}\left(\varphi(x),\frac{t}{2}\right),\mathcal{P}_{\mu,\nu}^{\prime}\left(\varphi(0),\frac{t}{2}\right)\right\}.$$

Then by our assumption, we have

$$\mathcal{P}_{\mu,\nu}^{\prime\prime}\left(\frac{x}{2},t\right) = \mathcal{P}_{\mu,\nu}^{\prime\prime}(x,\alpha t) \tag{41}$$

Replacing *x* by $\frac{x}{2^n}$ in (40) and applying (41), we obtain

$$\mathcal{P}_{\mu,\nu}\left(4^{n}f\left(\frac{x}{2^{n}}\right)-4^{n+1}f\left(\frac{x}{2^{n+1}}\right),\frac{4^{n}t}{\alpha^{n}}\right) = \mathcal{P}_{\mu,\nu}\left(f\left(\frac{x}{2^{n}}\right)-4f\left(\frac{x}{2^{n+1}}\right),\frac{t}{\alpha^{n}}\right)$$

$$\geq {}_{L^{*}}\mathcal{P}_{\mu,\nu}^{\prime\prime}\left(\frac{x}{2^{n}},\frac{t}{\alpha^{n}}\right)$$

$$= {}_{L^{*}}\mathcal{P}_{\mu,\nu}^{\prime\prime}(x,t). \tag{42}$$

For all $x \in X$, t > 0 and all non-negative integers n and m with n > m, we have

$$\mathcal{P}_{\mu,\nu}\left(4^{n} f\left(\frac{x}{2^{n}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right), \sum_{k=m}^{n-1} \frac{4^{k} t}{\alpha^{k}}\right) = \mathcal{P}_{\mu,\nu}\left(\sum_{k=m}^{n-1} \left[4^{k+1} f\left(\frac{x}{2^{k+1}}\right) - 4^{k} f\left(\frac{x}{2^{k}}\right)\right], \sum_{k=m}^{n-1} \frac{4^{k} t}{\alpha^{k}}\right) \\
\geq L \cdot \mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu,\nu}\left(4^{m+1} f\left(\frac{x}{2^{m+1}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right), \frac{4^{m} t}{\alpha^{m}}\right), \dots, \\
\mathcal{P}_{\mu,\nu}\left(4^{n} f\left(\frac{x}{2^{n}}\right) - 4^{n-1} f\left(\frac{x}{2^{n-1}}\right), \frac{4^{n-1} t}{\alpha^{n-1}}\right)\right) \\
\geq L \cdot \mathcal{P}'_{\mu,\nu}(x,t). \tag{43}$$

Hence

$$\mathcal{P}_{\mu,\nu}\left(4^{n}f\left(\frac{x}{2^{n}}\right)-4^{m}f\left(\frac{x}{2^{m}}\right),t\right) \geq L^{*}\mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x,\frac{t}{\sum_{k=m}^{n-1}\frac{4^{k}}{\sqrt{k}}}\right) \tag{44}$$

for all $x \in X$, t > 0 and $m, n \in \mathbb{N}$ with n > m. Since $\alpha > 4$ and $\sum_{k=0}^{\infty} \frac{4^k}{\alpha^k} < \infty$, then $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence in $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ for each $x \in X$. Since $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. Therefore we can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right) \tag{45}$$

for all $x \in X$. Fix $x \in X$ and set m = 0 in (44) to obtain

$$\mathcal{P}_{\mu,\nu}\left(4^{n}f\left(\frac{x}{2^{n}}\right) - f(x), t\right) \ge L \mathcal{P}_{\mu,\nu}^{\prime\prime}\left(x, \frac{t}{\sum_{k=0}^{n-1} \frac{4^{k}}{2^{k}}}\right) \tag{46}$$

for all $x \in X$, t > 0. Thus, we obtain that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) = \mathcal{P}_{\mu,\nu}\left(Q(x) - 4^{n} f\left(\frac{x}{2^{n}}\right) + 4^{n} f\left(\frac{x}{2^{n}}\right) - f(x), t\right)$$

$$\geq {}_{L^{*}}\mathcal{M}(\mathcal{P}_{\mu,\nu}(Q(x) - 4^{n} f\left(\frac{x}{2^{n}}\right), \frac{t}{2}), \mathcal{P}_{\mu,\nu}(4^{n} f\left(\frac{x}{2^{n}}\right) - f(x), \frac{t}{2}))$$

$$\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - 4^{n} f\left(\frac{x}{2^{n}}\right), \frac{t}{2}\right), \mathcal{P}''_{\mu,\nu}\left(x, \frac{t}{2\sum_{k=0}^{n-1} \frac{4^{k}}{\sigma^{k}}}\right)\right). \tag{47}$$

Taking the limit as $n \to \infty$ in (47) and using (45), we get

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}''_{\mu,\nu}\left(x, \frac{(\alpha - 4)t}{2\alpha}\right)$$

for all $x \in X$ and t > 0, which shows that Q satisfies (39). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.5. Let |2a| > 1 and $f: X \to Y$ be a mapping with f(0) = 0. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ such that

$$\mathcal{P}_{\mu,\nu}(f(ax+ay) + f(ax-ay) - 2a^2f(x) - 2a^2f(y), t+s)$$

$$\geq {}_{L^*}\mathcal{M}\{\mathcal{P}'_{\mu,\nu}(\varphi(x),t), \mathcal{P}'_{\mu,\nu}(\varphi(y),s)\}$$
(48)

for all $x,y \in X\setminus\{0\}$ and all positive real numbers t,s. If $\varphi(2ax)=\alpha\varphi(x)$ for some positive real number α with $0 < \alpha < 4a^2$, then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge {}_{L^*}\mathcal{P}'_{\mu,\nu}\left(x, \frac{(4a^2 - \alpha)t}{4}\right)$$
 (49)

for all $x \in X$ and t > 0.

Proof. Setting y = x and s = t in (48), we get

$$\mathcal{P}_{\mu,\nu}(f(2ax) - 4a^2 f(x), 2t) \ge {}_{L^*} \mathcal{P}'_{\mu,\nu}(\varphi(x), t) \tag{50}$$

for all $x \in X$ and all t > 0. Thus

$$\mathcal{P}_{\mu,\nu}\left(f(x) - \frac{f(2ax)}{4a^2}, t\right) \ge L \cdot \mathcal{P}'_{\mu,\nu}(\varphi(x), 2a^2t) \tag{51}$$

for all $x \in X$ and all t > 0

Replacing x by $(2a)^n x$ in (51), we have

$$\mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{n}x)}{(2a)^{2n}} - \frac{f((2a)^{n+1}x)}{(2a)^{2n+2}}, \frac{\alpha^{n}t}{(2a)^{2n}}\right) = \mathcal{P}_{\mu,\nu}\left(f((2a)^{n}x) - \frac{f((2a)^{n+1}x)}{4a^{2}}, \alpha^{n}t\right) \\ \ge {}_{L}\cdot\mathcal{P}'_{\mu,\nu}(\varphi(x), 2a^{2}t).$$
(52)

For all $x \in X$, t > 0 and all non-negative integers n and m with n > m, we have

$$\mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{n}x)}{(2a)^{2n}} - \frac{f((2a)^{m}x)}{(2a)^{m}}, \sum_{k=m}^{n-1} \frac{\alpha^{k}t}{(2a)^{2k}}\right) \\
= \mathcal{P}_{\mu,\nu}\left(\sum_{k=m}^{n-1} \left[\frac{f((2a)^{k+1}x)}{(2a)^{2k+2}} - \frac{f((2a)^{k}x)}{(2a)^{2k}}\right], \sum_{k=m}^{n-1} \frac{\alpha^{k}t}{(2a)^{2k}}\right) \\
\geq L^{*}\mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{m+1}x)}{(2a)^{2m+2}} - \frac{f((2a)^{m}x)}{(2a)^{2m}}, \frac{\alpha^{m}t}{(2a)^{2m}}\right), \dots, \\
\mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{n}x)}{(2a)^{2n}} - \frac{f((2a)^{n-1}x)}{(2a)^{2n-2}}, \frac{\alpha^{n-1}t}{(2a)^{2n-2}}\right)\right) \\
\geq L^{*}\mathcal{P}'_{\mu,\nu}(\varphi(x), 2a^{2}t). \tag{53}$$

Hence

$$\mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{n}x)}{(2a)^{2n}} - \frac{f((2a)^{m}x)}{(2a)^{m}}, t\right) \ge L \cdot \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{2a^{2}t}{\sum_{k=m}^{n-1} \frac{\alpha^{k}}{(2a)^{2k}}}\right)$$
(54)

for all $x \in X$, t > 0 and $m, n \in \mathbb{N}$ with n > m. Since $0 < \alpha < 4a^2$ and $\sum_{k=0}^{\infty} \frac{\alpha^k}{(2a)^{2k}} < \infty$, then $\{\frac{f((2a)^n x)}{(2a)^{2n}}\}$ is a Cauchy sequence in $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ for each $x \in X$. Since $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} \frac{f((2a)^n x)}{(2a)^{2n}}$$
 (55)

for all $x \in X$. Fix $x \in X$ and put m = 0 in (54) to obtain

$$\mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{n}x)}{(2a)^{2n}} - f(x), t\right) \ge L \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{2a^{2}t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{(2a)^{2k}}}\right)$$
(56)

for all $x \in X$, t > 0. Thus

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) = \mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f((2a)^{n}x)}{(2a)^{2n}} + \frac{f((2a)^{n}x)}{(2a)^{2n}} - f(x), t\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f((2a)^{n}x)}{(2a)^{2n}}, \frac{t}{2}\right), \mathcal{P}_{\mu,\nu}\left(\frac{f((2a)^{n}x)}{(2a)^{2n}} - f(x), \frac{t}{2}\right)\right) \\
\geq {}_{L^{*}}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - \frac{f((2a)^{n}x)}{(2a)^{2n}}, \frac{t}{2}\right), \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{a^{2}t}{\sum_{k=0}^{n-1} \frac{a^{k}}{(2a)^{2k}}}\right)\right). \tag{57}$$

Taking the limit as $n \to \infty$ in (57) and using (55), we get

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}'_{\mu,\nu}\left(x, \frac{(4a^2 - \alpha)t}{4}\right)$$

for all $x \in X$ and t > 0, which shows that Q satisfies (49). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem. \Box

Theorem 3.6. Let |2a| < 1 and $f: X \to Y$ be a mapping with f(0) = 0. Suppose that φ is a mapping from X to an intuitionistic fuzzy normed space $(Z, \mathcal{P}'_{\mu,\nu}, \mathcal{M})$ satisfying (48). If $\varphi(2ax) = \alpha \varphi(x)$ for some real number α with $\alpha > 4a^2$, then there exists a unique quadratic mapping $Q: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \cdot \mathcal{P}'_{\mu,\nu}\left(x, \frac{(\alpha - 4a^2)t}{4}\right)$$
(58)

for all $x \in X$ and t > 0.

Proof. It follows from (50) that

$$\mathcal{P}_{\mu,\nu}\left(f(x) - (2a)^2 f\left(\frac{x}{2a}\right), 2t\right) \ge L \mathcal{P}'_{\mu,\nu}\left(\varphi\left(\frac{x}{2a}\right), t\right)$$
(59)

for all $x \in X$ and all t > 0. Thus

$$\mathcal{P}_{\mu,\nu}\left(f(x) - (2a)^2 f\left(\frac{x}{2a}\right), t\right) \ge L \cdot \mathcal{P}'_{\mu,\nu}\left(\varphi\left(\frac{x}{2a}\right), \frac{t}{2}\right) = L \cdot \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{\alpha}{2}t\right). \tag{60}$$

Replacing *x* by $\frac{x}{(2a)^n}$ in (60), we have

$$\mathcal{P}_{\mu,\nu}\left((2a)^{2n}f\left(\frac{x}{(2a)^n}\right) - (2a)^{2n+2}f\left(\frac{x}{(2a)^{n+1}}\right), \frac{(2a)^{2n}t}{\alpha^n}\right)$$

$$= \mathcal{P}_{\mu,\nu}\left(f\left(\frac{x}{(2a)^n}\right) - 4a^2f\left(\frac{x}{(2a)^{n+1}}\right), \frac{t}{\alpha^n}\right)$$

$$\geq L \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{\alpha}{2}t\right). \tag{61}$$

For all $x \in X$, t > 0 and all non-negative integers n and m with n > m, we have

$$\mathcal{P}_{\mu,\nu}\left((2a)^{2n}f\left(\frac{x}{(2a)^{n}}\right) - (2a)^{2m}f\left(\frac{x}{(2a)^{m}}\right), \sum_{k=m}^{n-1} \frac{(2a)^{2k}t}{\alpha^{k}}\right) \\
= \mathcal{P}_{\mu,\nu}\left(\sum_{k=m}^{n-1} \left[(2a)^{2k+2}f\left(\frac{x}{(2a)^{k+1}}\right) - (2a)^{2k}f\left(\frac{x}{(2a)^{k}}\right)\right], \sum_{k=m}^{n-1} \frac{(2a)^{2k}t}{\alpha^{k}}\right) \\
\geq L^{*}\mathcal{M}^{n-m-1}\left(\mathcal{P}_{\mu,\nu}\left((2a)^{2m+2}f\left(\frac{x}{(2a)^{m+1}}\right) - (2a)^{2m}f\left(\frac{x}{(2a)^{m}}\right), \frac{(2a)^{2m}t}{\alpha^{m}}\right), \dots, \\
\mathcal{P}_{\mu,\nu}\left((2a)^{2n}f\left(\frac{x}{(2a)^{n}}\right) - (2a)^{2n-2}f\left(\frac{x}{(2a)^{n-1}}\right), \frac{(2a)^{2n-2}t}{\alpha^{n-1}}\right)\right) \\
\geq L^{*}\mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{\alpha}{2}t\right). \tag{62}$$

Hence

$$\mathcal{P}_{\mu,\nu}\left((2a)^{2n} f\left(\frac{x}{(2a)^n}\right) - (2a)^{2m} f\left(\frac{x}{(2a)^m}\right), t\right) \ge {}_{L^*}\mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{\alpha t}{2\sum_{k=m}^{n-1} \frac{(2a)^{2k}t}{\alpha^k}}\right)$$
(63)

for all $x \in X$, t > 0 and $m, n \in \mathbb{N}$ with n > m.

Since $\alpha > 4a^2$ and $\sum_{k=0}^{\infty} \frac{(2a)^{2k}}{a^k} < \infty$, then $\{(2a)^{2n} f(\frac{x}{(2a)^n})\}$ is a Cauchy sequence in $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ for each $x \in X$. Since $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{M})$ is an intuitionistic fuzzy Banach space, the sequence converges to some point $Q(x) \in Y$. So we can define the mapping $Q: X \to Y$ by

$$Q(x) := \lim_{n \to \infty} (2a)^{2n} f\left(\frac{x}{(2a)^n}\right) \tag{64}$$

for all $x \in X$. Fix $x \in X$ and set m = 0 in (63) to obtain

$$\mathcal{P}_{\mu,\nu}\left((2a)^{2n} f\left(\frac{x}{(2a)^n}\right) - f(x), t\right) \ge L \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{\alpha t}{2\sum_{k=0}^{n-1} \frac{(2a)^{2k}t}{\alpha^k}}\right)$$
(65)

for all $x \in X$, t > 0 and so we have that

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) = \mathcal{P}_{\mu,\nu}\left(Q(x) - (2a)^{2n} f\left(\frac{x}{(2a)^n}\right) + (2a)^{2n} f\left(\frac{x}{(2a)^n}\right) - f(x), t\right) \\
\geq {}_{L^*}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - (2a)^{2n} f\left(\frac{x}{(2a)^n}\right), \frac{t}{2}\right), \mathcal{P}_{\mu,\nu}\left((2a)^{2n} f\left(\frac{x}{(2a)^n}\right) - f(x), \frac{t}{2}\right)\right) \\
\geq {}_{L^*}\mathcal{M}\left(\mathcal{P}_{\mu,\nu}\left(Q(x) - (2a)^{2n} f\left(\frac{x}{(2a)^n}\right), \frac{t}{2}\right), \mathcal{P}'_{\mu,\nu}\left(\varphi(x), \frac{\alpha t}{4\sum_{k=0}^{n-1} \frac{(2a)^{2k}t}{\alpha^k}}\right)\right). \tag{66}$$

Taking the limit as $n \to \infty$ in (66) and using (64), we get

$$\mathcal{P}_{\mu,\nu}(Q(x) - f(x), t) \ge L \mathcal{P}'_{\mu,\nu}\left(x, \frac{(4a^2 - \alpha)t}{4}\right)$$

for all $x \in X$ and t > 0, which shows that Q satisfies (58). The rest of the proof is similar to the proof of Theorem 3.1. This completes the proof of the theorem.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950) 64–66.
- [2] Y. J. Cho, C. Park and R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett. 10(2010) 1238–1242.
- [3] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992) 59-64.
- [4] G. L. Forti, The stability of homomorphisms and amembility, with applications to functional equations, *Abh. Math. Sem. Univ. Hamburg* 57(1987) 215–226.
- [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994) 431–436.
- [6] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations, Lap Lambert Academic Publishing, 2010.
- [7] S. B. Hosseini, D. O'Regan and R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Systems, 4(2007) 53-64.
- [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941) 222–224.
- [9] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several variables, Birkhäuser, Basel, 1998.
- [10] S. Y. Jang, J. R. Lee and C. Park, Fuzzy stability of Jensen-type quadratic functional equations, *Abstract Appl. Anal.* Volume 2009, Article ID 535678, 17 pages
- [11] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011.
- [12] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009.
- [13] A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, *Fuzzy Sets and Systems* **159**(2008) 730–738.
- [14] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159(2008) 720–729.
- [15] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy Almost Quadratic Functions, Result. Math. 52(2008) 161-177.
- [16] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sciences 178(2008) 3791–3798.
- [17] A. K. Mirmostafaee, Stability of quadratic mappings in non-Archimedean normed spaces, Kyungpook Math. J. 49(2009) 289–297.
- [18] S. A. Mohiuddine, M. Cancan and H. Şevli, Intuitionistic fuzzy stability of a Jensen functional equation via fixed point technique, Math. Comput. Model. 54 (2011) 2403–2409.
- [19] S. A. Mohiuddine and Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons and Fractals 42(2009) 1731–1737.

- [20] S. A. Mohiuddine, Stability of Jensen functional equation in intuitionistic fuzzy normed spaces, *Chaos, Solitons and Fractals* **42**(2009) 2989–2996.
- [21] S. A. Mohiuddine and H. Şevli, Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space, *J. Comput. Appl. Math.* **235**(2011) 2137–2146.
- [22] M. Mursaleen, V. Karakaya and S.A. Mohiuddine, Schauder basis, separability, and approximation property in intuitionistic fuzzy normed space, *Abstract Appl. Anal.* Volume 2010, Article ID 131868, 14 pages.
- [23] M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces, *Chaos, Solitons and Fractals* **41**(2009) 2414–2421.
- [24] M. Mursaleen and S. A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative, Chaos, Solitons and Fractals 42(2009) 1010–1015.
- [25] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, *J. Comput. Appl. Math.* **233**(2009) 142–149.
- [26] M. Mursaleen and S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals 42(2009) 2997–3005.
- [27] M. Mursaleen, S.A. Mohiuddine and Osama H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, *Comput. Math. Appl.* **59**(2010) 603–611.
- [28] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Systems 160(2009) 1632–1642.
- [29] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals 22(2004) 1039–1046.
- [30] J. M. Rassias, On approximation of approximately linear mappings, J. Funct. Anal. 46(1982), 126-130.
- [31] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978) 297–300.
- [32] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62(2000) 23–130.
- [33] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003.
- [34] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27(2006) 331-344.
- [35] R. Saadati, A note on Some results on the IF-normed spaces, Chaos, Solitons and Fractals 41(2009) 206-213.
- [36] S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. 2(2009) 105–112.
- [37] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
- [38] T. Xu, J. M. Rassias and W. Xu, Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys. 51 063519(2010).